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Abstract 11 

 12 

In this study we have demonstrated that plants originating from upland peat bogs are 13 

sensitive to increasing background concentrations of ozone.  Peatland mesocosms 14 

from an upland peat bog in North Wales, UK were exposed to eight levels of elevated 15 

background ozone in solardomes for 4 months from May to August, with 24 hour 16 

mean ozone concentrations ranging from 16 to 94 ppb and cumulative AOT024hr 17 

ranging from 45.98 ppmh to 259.63 ppmh.  Our results show that plant senescence 18 

increased with increasing exposure to ozone, although there was no significant effect 19 

of increasing ozone on plant biomass.  Assessments of carbon dioxide and methane 20 

fluxes from the mesocosms suggests that there was no change in carbon dioxide 21 

fluxes over the 4 month exposure period but that methane fluxes increased as 22 

cumulative ozone exposure increased to a maximum AOT 024hr of approximately 120 23 

ppm h and then decreased as cumulative ozone exposure increased further. 24 
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Highlights 28 

 Peatland plant senescence is increased by season-long exposure to elevated 29 

ozone but above and below ground plant biomass is not significantly affected. 30 

 Methane emissions increase at low to moderate cumulative ozone exposure 31 

but decrease as cumulative ozone exposure increases further. 32 

 Dissolved organic carbon in the peat pore water and carbon dioxide exchange 33 

are not significantly affected by increasing background ozone concentrations.  34 

 35 

Introduction 36 

Peat-forming wetlands are an important carbon storage ecosystem with global estimates 37 

of carbon sequestration in the region of 20-30 gCm-2yr-1 (Wieder, 2001).  Carbon 38 

dioxide is taken up by vascular plants and mosses during photosynthesis and, although 39 

some is released back to the environment during plant respiration, the remainder is 40 

stored in plant tissue or transported through the plant and released as exudates of 41 

dissolved organic material (Schutz et al., 1991).  Once the plants die, the carbon in their 42 

tissues is not broken down and released to the atmosphere as peatland decomposition 43 

rates are low so the plant material is laid down as peat.  The low molecular weight 44 

exudates such as sugars and amino acids form an energy source for bacteria and archaea 45 

living in the peatland and their metabolism contributes to the carbon dioxide release 46 

and to the release of methane.  The dissolved carbon in the pore water can be exported 47 

out of the peatland in streams and this can be an important loss point for carbon in the 48 

peatland carbon cycle.  The majority of peat-forming wetlands in northern Europe are 49 

in upland areas where ozone concentrations are higher than adjacent low-lying areas 50 

(Royal Society, 2008), and thus any changes that affect plant growth and carbon gas 51 

exchange have the potential to affect carbon storage within peatlands. 52 



Annual mean tropospheric ozone concentrations in Northern Europe are currently in 53 

the region of 30-35 ppb, having increased from less than 20 ppb in the mid-20th century.  54 

Although there has been little change in mean concentrations in the past decade 55 

(Hartmann et al., 2014), climate change and hemispheric transport of pollutants may 56 

affect future ozone levels.  One future scenario predicts that background ozone 57 

concentrations in Northern Europe will continue to increase during the 21st century due 58 

to hemispheric transport of ozone precursor molecules (Royal Society 2008).   59 

Tropospheric ozone is a phytotoxic pollutant and wetland vascular plants have been 60 

found to be relatively sensitive to elevated ozone concentrations (Franzaring et al., 61 

2000, Power & Ashmore, 2002, Williamson et al., 2010) with symptoms including 62 

premature senescence, reductions in photosynthesis and reduced biomass.  However, 63 

Sphagnum mosses have been shown to be relatively tolerant to elevated ozone 64 

concentrations (Rinnan 2003) during both short term acute ozone fumigation (Potter et 65 

al., 1996a) and during longer term exposure with only Sphagnum recurvum showing a 66 

reduction in shoot growth under elevated ozone (Potter et al., 1996b). 67 

Carbon dioxide uptake in wetland mesocosms takes place during photosynthesis and, 68 

if plant growth is reduced by increasing background ozone, it may be expected that 69 

carbon dioxide uptake would be reduced.  Increasing tropospheric ozone 70 

concentrations during short-term exposure was found to transiently increase the rate 71 

of dark respiration (Niemi et al., 2002, Rinnan et al., 2003), possibly as a result of the 72 

plants repairing ozone damaged tissues.  Under a doubling in ambient ozone 73 

concentrations Haapala et al., (2011) showed that photosynthesis was reduced during 74 

the first year of a four year exposure period but during the fourth year both 75 

photosynthesis and total respiration showed a tendency to be higher than under 76 

ambient conditions. 77 



As wetland plants play a major role in methane emission from wetlands it is possible 78 

that any damage to wetland plant functioning by ozone could have a secondary effect 79 

on these.  Two possible routes via which methane emissions are affected by plant 80 

growth are: through the provision of a conduit for gas exchange via the aerenchyma 81 

(Chanton et al., 1997; Ding et al., 2005; Greenup et al., 2000; Thomas et al., 1996) 82 

and the exudation of low molecular weight compounds to provide an energy source 83 

for microbes (Schutz et al., 1991).  A range of wetland adapted species demonstrate 84 

active pressurised gas flow from the leaves to the roots to allowed continued oxygen 85 

supply in waterlogged soils, whereby air is forced downwards through the 86 

aerenchyma as a result of the pressure generated through the gradient in temperature 87 

and water vapour pressure.  The return flow of gas is through the older leaves of the 88 

plants as they are unable to support the pressure gradients required to force air down 89 

into the roots (Mitsch and Gosselink 2000).  Ozone-induced increased senescence 90 

could increase the available pathways for gas release and hence the flow of methane 91 

between the substrate and the atmosphere.  Previous studies have shown that recently 92 

fixed photosynthate is preferentially retained in leaves rather than transported through 93 

the plant (Andersen, 2003; Grantz and Farrar, 1999, 2000), which could lead to a 94 

reduction in root exudates meaning that there would be less energy available for 95 

methanogens. 96 

Previous published research on the effect of elevated ozone on methane emissions 97 

from peatlands ranged from showing an increase when mesocosms were exposed to 98 

100ppb ozone (Niemi et al., 2002), a non-significant increase after 50 days exposure 99 

to 200ppb ozone (Rinnan et al., 2003), a transient decrease at ozone concentrations 100 

double the current ambient (Morsky et al., 2008) to a significant decrease in methane 101 

emissions during the growing seasons of a two year exposure period (Toet et al., 102 



2011).  A previous study investigating the impacts of elevated background ozone 103 

using open top chambers showed that seasonal exposure of meadow mesocosms to 104 

elevated ozone over a three year period did not change methane fluxes (Kanerva et 105 

al., 2007).   106 

Here, we have studied the effects of increasing background ozone concentrations on 107 

plant senescence, plant growth and carbon gas exchange in peatlands, an ecosystem 108 

recognised as having the potential to exert profound changes to the planet’s climate 109 

through the storage of carbon and the emission of methane (Bridgham et al., 2013, 110 

Freeman et al., 2001).  By using a wide range of ozone treatments, we hoped to 111 

increase our understanding of tropospheric ozone effects on plant growth and carbon 112 

gas exchange from peatlands and shed some light on the conflicting results found in 113 

other studies.  114 

 115 

Materials and Methods 116 

Ozone exposure: 117 

Forty-eight mesocosms (diameter 16cm, depth 40cm) were collected from the 118 

Migneint, a large area of oligotrophic, blanket bog in North Wales, UK (3°48.8′ W, 119 

52°59.6′ N) dominated by the NVC vegetation type M6 (Carex echinata-Sphagnum 120 

recurvum/auriculatum mire) (Buckton & Ormerod, 1997), following the method of 121 

Freeman et al., (1993) and exposed to ozone in specially constructed greenhouses 122 

(solardomes), with 6 replicate mesocosms per ozone treatment.  Mesocosms were 123 

selected to ensure as uniform as possible vegetation cover, with the vascular plants 124 

being Juncus effusus and Carex echinata.  Sphagum mosses were not identified to 125 

species level but the majority of the Sphagnum present in the area sampled was 126 

Sphagnum fallax.  The water table was maintained within 2cm of the surface of the 127 



mesocosms throughout the exposure period. 128 

The solardome facility consists of eight hemispherical glass domes, 3 m in diameter 129 

and 2 m tall, situated on an East-West line to minimise differences in shading as used 130 

in previous experiments including: Hayes et al (2015), Hayes et al (2011), and Mills et 131 

al (2009).  Ozone was generated by passing oxygen (from a Workhorse 8 oxygen 132 

generator, Ozone Industries Ltd.) through a G11 ozone generator (Ozone Industries 133 

Ltd.).  A computer-controlled (Lab-VIEW version 7) mass-flow controller system was 134 

used to deliver ozone to the solardomes, where it was mixed with charcoal filtered air 135 

and the fan system ensured two complete air changes per minute.  The ozone 136 

concentration in the centre of each of the solardomes was measured on a 30 minute 137 

cycle by two API400 ozone analysers (Envirotech) with matched calibrations.  Ozone 138 

concentrations in one solardome were continually sampled to provide a feedback 139 

system using a Model 49C ozone analyser (Thermo Electron) and the ozone supply to 140 

all domes was adjusted accordingly.  141 

The ozone profile used in the solardomes was based on concentrations measured at 142 

the Snowdonia ozone monitoring site at Marchlyn Mawr, Wales, UK(4°03.4′ W, 143 

53°08.2′ N) during a typical week with no marked ozone episodes but relatively high 144 

background ozone: 31st May – 6th June 2006 (AA treatment) and with incremental 145 

starting points.  The target treatments consisted of a sub-ambient treatment (AA-20 146 

ppb), a simulated ambient treatment (AA) and six treatments with increasing 147 

background ozone (AA+12 ppb, AA+24 ppb, AA+36 ppb, AA+48 ppb, AA+60 ppb 148 

and AA+72 ppb).  These were applied as a continuous, repeated, weekly regime 149 

designed to simulate increased background ozone concentrations.  The exposure 150 

period within the solardomes was from 9th May 2008 -2nd September 2008.  151 

 152 



Gas and water sampling and analysis: 153 

Gas exchange samples were taken fortnightly by placing a two litre transparent, 154 

plastic chamber over the mesocosms and attaching with a rubber seal between the 155 

headspace and the outer casing of the mesocosm to ensure that the soil structure was 156 

not disturbed by the attachment of the chamber.  A 30ml sample of the background 157 

gas was taken at the moment of capping and a second sample of the gas within the 158 

chamber was taken after one hour.  The accumulation of methane and carbon dioxide 159 

within the chamber was found to be linear over this time period when measured in a 160 

preliminary experiment prior to the mesocosms being placed in the solardomes.  Gas 161 

samples were stored under positive pressure in airtight glass vials (Perkin Elmer) that 162 

were evacuated prior to use and analysed within 24 hours of sample collection.  Gas 163 

samples were analysed for the concentration of methane and carbon dioxide using a 164 

Perkin Elmer Gas Chromatograph (GC) fitted with a flame ionisation detector (FID) 165 

to detect methane and a methaniser to convert carbon dioxide to methane.  Gas 166 

samples were pressurised with a known amount of nitrogen in the headspace 167 

autosampler (Turbo-Matrix) and samples were injected into the GC at 23.2psi with 168 

nitrogen carrier gas.  Samples were passed through a Poropak QS ceramic column, 169 

hydrogen flow was set at 45ml min-1 and airflow was set to 450 ml min-1.  The FID 170 

(flame ionisation detector) temperature was 375oC.   171 

Pore water samples were taken at three weekly intervals from the wetland mesocosms. 172 

Samples were filtered through a 0.45µm cellulose acetate filter immediately following 173 

collection.  Total dissolved carbon was measured using a ThermaloxTM elemental 174 

analyser.  Samples were injected over a platinum-coated, mesh catalyst.  Oxygen was 175 

used as the carrier gas and thermal catalytic oxidation was used to oxidise carbon 176 

compounds in the sample to carbon dioxide, which was detected and measured using 177 



a non-dispersive infra-red detector.   178 

 179 

Plant Growth: 180 

During the growing season visible senescence on vascular plants growing in the 181 

mesocosms was assessed at two week intervals.  Vascular plant leaves were counted 182 

as senesced if more than 25% of an individual leaf had died back and the percentage 183 

of the entire plant that was senesced was calculated.  184 

Above and below ground vascular plant and moss biomass present in the mesocosms 185 

was measured following 16 weeks of ozone exposure.  Plant biomass was harvested 186 

and dried to constant mass at 65oC. 187 

 188 

Statistical analysis: 189 

Relationships between ozone exposure, plant senescence, plant biomass and methane 190 

emissions were analysed using regression analysis in R v 2.14.2.  Ozone exposure is 191 

reported as accumulated hourly mean ozone concentration over 24 hours without a 192 

threshold ozone concentration (AOT024hr).  This measure incorporated the effects of 193 

elevated ozone throughout the night, rather than daylight hours as is more usually 194 

used. It also included the potential effects of ozone in treatments that were below 40 195 

ppb, which would be omitted if the more commonly used parameter AOT40 had been 196 

calculated.  Use of AOT024hr also allowed the cumulative effect of ozone to be 197 

assessed, irrespective of the time scale of ozone exposure.  Gas exchange and 198 

senescence measurements are plotted  grouped by cumulative ozone exposure; dome 199 

mean values for senescence, carbon dioxide and methane fluxes measured through the 200 

4 month ozone exposure were ordered by cumulative ozone dose and averaged by 201 

each 20 ppm h increase in ozone exposure. 202 



 203 

Results 204 

Seasonal mean ozone concentrations ranged from 16 ppb in the lowest ozone 205 

treatment to 94 ppb in the highest treatment, while AOT024hr and daylight AOT40 206 

ranged from 45 to 260 ppm h and 0 to 73 ppm h respectively (Table 1). 207 

 208 

Vascular plant species emerging or germinating in the mesocosms consisted of Juncus 209 

effusus, Carex echinata and small quantities of Poa triviata.  Although each 210 

mesocosm did not have the same number of plants per species, there was no 211 

significant difference in the species present across the eight ozone treatments.  Using 212 

combined data from all ozone treatments and assessments, vascular plant senescence 213 

on the species growing in the mesocosms showed a positive relationship (P<0.05) 214 

with increasing AOT024hr (Figure 1a), indicating senescence increased to a greater 215 

extent in the mesocosms exposed to higher doses of background ozone.  Elevated 216 

background ozone over the 16 week period caused an increase in the percentage of 217 

senesced vascular plant material from 5% in the lowest exposure to 25% in the 218 

highest accumulated ozone exposure.  There were no significant differences in 219 

senescence seen in the individual vascular plant species present in the mesocosms so 220 

senescence data was pooled across all vascular plant species for analysis and 221 

presentation.  After 16 weeks of ozone exposure there was a significant relationship 222 

between ozone exposure and senescence, with the mesocosms exposed to higher 223 

ozone showing higher vascular plant senescence (Figure 1b).  In contrast, there was 224 

no significant effect of ozone on vascular plant cover, above or below ground vascular 225 

plant biomass (for all biomass combined and for individual species present in each 226 

mesocosm) or Sphagnum spp. moss biomass (Table 2). 227 



Methane fluxes showed an inverse polynomial relationship with accumulated ozone 228 

exposure.  At low to moderate AOT024hr values (ranging from 0 – 120 ppm h) 229 

methane fluxes increased as accumulated ozone exposure increased, whereas from 230 

AOT024 hr values of 120 ppm h to 220 ppm h methane fluxes decreased as AOT024hr 231 

values increased (Figure 2).  When methane fluxes after 16 weeks of ozone exposure 232 

were correlated with vascular plant senescence, vascular plant biomass and moss 233 

biomass there was no correlation between methane fluxes and above or below 234 

vascular plant biomass, vascular plant cover or moss biomass (Table 3).  However, 235 

there was a trend towards a significant correlation (P = 0.08) between vascular plant 236 

senescence and methane fluxes (Table 3).  Carbon dioxide fluxes did not show a 237 

statistically significant change with increasing exposure to ozone and showed high 238 

levels of variability within mesocosms exposed to similar levels of ozone, though 239 

mesocosms showed a net uptake of carbon dioxide throughout the exposure period 240 

(data not presented). 241 

Dissolved organic carbon within the pore waters of the wetland mesocosms showed 242 

no relationship with increasing exposure to elevated background ozone, remaining 243 

unchanged over time and as ozone exposure increased (data not presented). 244 

 245 

Discussion 246 

This experiment has shown that elevating the background ozone throughout the 247 

growing season increases vascular plant senescence and changes methane fluxes from 248 

wetlands, although plant biomass, carbon dioxide fluxes and dissolved organic carbon 249 

concentrations were unchanged.  250 

 251 



The increase in vascular plant senescence caused by exposure to elevated ozone 252 

agrees with published results  showing that wetland plants were sensitive to mean 253 

daily peak concentrations of ozone of 77 ppb, 80 ppb and 150 ppb respectively 254 

(Franzaring et al., 2000, Power & Ashmore, 2002, Williamson et al., 2010).  In this 255 

study the linear relationship between AOT 024 hr indicates that vascular plants exposed 256 

to lower concentrations of ozone for a longer time period showed similar levels of 257 

senescence to those exposed to higher ozone concentrations for shorter time periods at 258 

any given value of AOT 024 hr.  This suggests that a growing season with moderately 259 

high background tropospheric ozone could be as detrimental to plant health as one 260 

where there are a small number of high peaks in tropospheric ozone. 261 

Above and below ground vascular plant biomass was unaffected by increasing 262 

exposure to ozone, a finding that agrees with published results from Toet et al (2011) 263 

who found that vascular plant biomass in wetland mesocosms was unaffected by two 264 

years exposure to elevated ozone.  However, this is in contrast to studies on other 265 

semi-natural vegetation types where increasing ozone exposure reduced vascular plant 266 

biomass with examples from grasslands (Barbo et al., 1998; Hayes et al., 2006; Ramo 267 

et al., 2006; Ramo et al., 2007) and trees (Paakkonen et al., 1996; Saleem et al., 2001).  268 

Similarly to the vascular plants in this study Sphagnum moss biomass was unaffected 269 

by elevated ozone exposure, which agrees with previous studies showing that the 270 

majority of Sphagnum species are relatively tolerant to ozone (Morsky et al., 2011, 271 

Toet et al., 2011).  In addition, as carbon dioxide fluxes were unchanged by increasing 272 

ozone exposure, this suggests that ozone exposure does not have a significant impact 273 

on wetland plant photosynthesis and respiration. 274 

Methane emissions increased with increasing AOT024hr to a maximum at 275 

approximately 120 ppm h and then decreased as AOT024hr continued to increase.  It is 276 



possible that effects of ozone on methane fluxes seen in published papers, ranging 277 

from large increases through to decreases in methane emissions, are due to differences 278 

in cumulative ozone exposure between experiments taking into account the ambient 279 

ozone concentrations at the experimental sites used.  The results of Lloyd (2004) 280 

showed large increases in methane emission but the cumulative ozone exposure of the 281 

highest treatment was an AOT024hr of 120 ppm h which coincides with the peak in 282 

methane emissions shown in this experiment.  The positive effects of ozone on 283 

methane emissions shown by Niemi et al., (2002) occurred at an estimated cumulative 284 

ozone exposure of up to 48.8 ppm h in their highest ozone treatment, which, when 285 

compared with an AOT024hr of 9.7 ppm h in their control exposure would be in the 286 

range of the results in this experiment that show an increase in methane.  The results 287 

of Morsky et al., (2008) and Toet et al., (2011), showing a decrease in methane 288 

emissions after exposing peatland mesocosms to increases in ozone above current 289 

ambient concentrations of tropospheric ozone, potentially coincided with the 290 

decreasing methane phase of the relationship found in our experiment.  Using ozone 291 

concentrations measured at the Snowdonia ozone monitoring site at Marchlyn Mawr 292 

over a four month summer growing season the average ozone exposure (AOT024hr) 293 

between 2006 and 2010 was 101 ppm h, a value that is close to the ozone exposure 294 

corresponding to the highest methane emissions seen in our study.  This could be one 295 

possible explanation for the decrease in methane emissions measured here and in 296 

other studies under ozone concentrations above ambient levels, although it should be 297 

remembered that the different studies took place in very different locations with 298 

different ambient ozone characteristics. 299 

The increase in methane fluxes from peatlands seen following exposure to low to 300 

moderate accumulated levels of ozone in this study could either be due to an increase 301 



in methanogenic activity, a decrease in methanotropic activity or an increase in the 302 

release of methane through the aerenchyma of the vascular plants.  Toet et al., (2009) 303 

showed that ozone does not diffuse more than a few millimetres into the substrate, 304 

particularly in waterlogged soils, suggesting that it is unlikely that the change in 305 

methane fluxes seen is a result of the direct impact of ozone on methanogenic or 306 

methanotrophic bacteria.  This is corroborated by results from Morsky et al., (2008) 307 

and Rinnan et al., (2003) showing that exposure to elevated ozone had no impact on 308 

potential methane production or consumption in peat taken from mesocosms. 309 

Wetland vascular plants show two main types of gas exchange between the 310 

atmosphere and their roots: passive diffusion and active pressurised flow (Brix et al., 311 

1992, Whiting & Chanton, 1993) and the major flow mechanism differs between 312 

species (Roura-Carol & Freeman, 1999, Thomas et al., 1996, Van der Nat et al., 313 

1998).  Passive molecular diffusion occurs as a result of a concentration gradient 314 

between the methane within the substrate and the atmosphere.  If this were the 315 

dominant gas exchange mechanism then an increase in methane production would 316 

have to occur for methane emissions to increase.  DOC concentrations were 317 

unchanged by exposure to elevated ozone, which suggests that substrate availability to 318 

methanogens is not increasing. However, active pressurised flow occurs because of a 319 

pressure differential developing between green, photosynthesising leaves and older, 320 

senescing leaves (Chanton &  Whiting, 1996, Chanton et al., 1997, Chanton et al., 321 

1993, Shannon et al., 1996, Yavitt &  Knapp, 1998) forcing the flow of methane into 322 

the roots, through the aerenchyma and out through inter-cellular pore spaces in 323 

senesced leaves.  As the senesced leaf area was increased by elevated ozone, then the 324 

lower pressure “leaky” leaf area is increased, thus there may be more gas flow 325 

through plants resulting in more methane being transported from the peat to the 326 



atmosphere.  Senesced leaves are also unlikely to show any stomatal control and it has 327 

been shown that methane emissions from Carex species are partially under stomatal 328 

control (Morrissey et al., 1993), which suggests that this could also be a factor behind 329 

the increasing methane emissions seen in this experiment as many of the mesocosms 330 

were dominated by Carex echinata.  A further indication that the influence of elevated 331 

ozone on methane fluxes may be under stomatal control comes from Mills et al., 332 

(2009) and Wagg et al., (2012) who showed that grassland plants exposed to elevated 333 

ozone lost their usual response to ABA and no longer had stomatal control when 334 

exposed to extreme  drought.  The natural variation in species cover and composition 335 

of the mesocosms means that further work would be required to further explore this 336 

relationship and test the hypothesis that the change in methane emissions seen 337 

following exposure to elevated background ozone is because of increased senescence 338 

present on aerenchymatous vascular plants. 339 

As a recent review by Rinnan et al., (2013) concludes; methane and carbon dioxide 340 

fluxes from peatland systems are under the control of many different factors including 341 

temperature, water table height and fluctuation and light availability meaning that 342 

there are many ways the impact of elevated tropospheric ozone on these carbon gas 343 

fluxes may be masked.  This study has provided a potential explanation for the 344 

seemingly contradictory methane emissions from previous studies but further 345 

investigation of the interactions between the factors that affect methane emission 346 

would increase our understanding of the effect of ozone exposure on methane 347 

emissions.  We have shown that peatland ecosystems have the potential to be changed 348 

by relatively low accumulations of tropospheric ozone, when considered over the 349 

period of a growing season.  Increases in plant senescence may affect the long-term 350 

viability of sensitive peatland plants, and, although biomass was unaffected by 351 



elevated background ozone over one growth season, it is possible that the increased 352 

resources needed by the plants to replenish damaged tissue may have longer-term 353 

implications for plant health and carbon sequestration by wetlands.  354 

 355 

Conclusions: 356 

Our results have shown that peatland plants are sensitive to increasing background 357 

ozone concentrations, which adds new knowledge to previous published work 358 

showing that peaks in tropospheric ozone also damage wetland plants.  The gas 359 

exchange measurements made during this study suggest that methane fluxes from 360 

wetlands can be very sensitive to relatively small changes in background ozone 361 

concentrations, and that the results from five separate studies on the impacts of 362 

elevated ozone on methane fluxes fit within the pattern found in our study.  We 363 

hypothesize that there is a relationship between plant senescence resulting in changes 364 

in methane fluxes (P = 0.08 in our study).  Further work carrying out more intensive 365 

gas exchange sampling from peatlands would indicate whether the effects we have 366 

seen occur on a wider scale.  Further understanding of the mechanism for how 367 

changes in plant growth following ozone exposure are resulting in changes in methane 368 

fluxes and the interactions between the factors that affect methane emission and 369 

tropospheric ozone exposure are needed to fully assess the implications of 370 

tropospheric ozone increases for global greenhouse gas budgets. 371 
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Figure 1a: Vascular plant senescence against AOT0 ppm h through the 16 week experimental 
period. P < 0.05, R2 = 0.509, F stat = 8.30.  Error bars show the standard error of the mean for 
each data point with AOT0 meaned per 20 ppm h intervals. 

  
Figure 1b: Vascular plant senescence at the end of the 16 weeks of ozone exposure period.  
See Table 2 for statistical relationships. 



 
Figure 2: Methane flux plotted against AOT0 ppm h accumulated throughout the 16 week 
experimental period.  P < 0.01, R2 = 0.719, F stat = 8.93.  Values are shown as the mean ± SE 
and where SE bars are not present variation was within the size of the points on the plot.   
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