nerc.ac.uk

Climate forcing for dynamics of dissolved inorganic nutrients at Palmer Station, Antarctica: An interdecadal (1993-2013) analysis

Kim, Hyewon; Doney, Scott C.; Iannuzzi, Richard A.; Meredith, Michael P.; Martinson, Douglas G.; Ducklow, Hugh W.. 2016 Climate forcing for dynamics of dissolved inorganic nutrients at Palmer Station, Antarctica: An interdecadal (1993-2013) analysis. Journal of Geophysical Research: Biogeosciences, 121 (9). 2369-2389. 10.1002/2015JG003311

Before downloading, please read NORA policies.
[img]
Preview
Text
Copyright American Geophysical Union
Kim_et_al-2016-Journal_of_Geophysical_Research__Biogeosciences.pdf - Published Version

Download (3MB) | Preview

Abstract/Summary

We analyzed 20 years (1993–2013) of observations of dissolved inorganic macronutrients (nitrate, N; phosphate, P; and silicate, Si) and chlorophyll a (Chl) at Palmer Station, Antarctica (64.8°S, 64.1°W) to elucidate how large-scale climate and local physical forcing affect the interannual variability in the seasonal phytoplankton bloom and associated drawdown of nutrients. The leading modes of nutrients (N, P, and Si empirical orthogonal functions 1, EOF1) represent overall negative anomalies throughout growing seasons, showing a mixed signal of variability in the initial levels and drawdown thereafter (low-frequency dynamics). The second most common seasonal patterns of nitrate and phosphate (N and P EOF2) capture prolonged drawdown events during December–March, which are correlated to Chl EOF1. Si EOF2 captures a drawdown event during November–December, which is correlated to Chl EOF2. These different drawdown patterns are shaped by different sets of physical and climate forcing mechanisms. N and P drawdown events during December–March are influenced by the winter and spring Southern Annular Mode (SAM) phase, where nutrient utilization is enhanced in a stabilized upper water column as a consequence of SAM-driven winter sea ice and spring wind dynamics. Si drawdown during November–December is influenced by early sea ice retreat, where ice breakup may induce abrupt water column stratification and a subsequent diatom bloom or release of diatom cells from within the sea ice. Our findings underscore that seasonal nutrient dynamics in the coastal WAP are coupled to large-scale climate forcing and related physics, understanding of which may enable improved projections of biogeochemical responses to climate change.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1002/2015JG003311
Programmes: BAS Programmes > BAS Programmes 2015 > Polar Oceans
ISSN: 0886-6236
Additional Keywords: nutrient drawdown, phytoplankt0n bloom, climate variability, the Western Antarctic Peninsula, Palmer LTER. biogeochmistry
Date made live: 14 Nov 2016 11:44 +0 (UTC)
URI: http://nora.nerc.ac.uk/id/eprint/512468

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...