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Summary

1. The importance of habitat for biodiversity is well established but the two most commonly used
methods to measure habitat (field survey and remote-sensing) have seldom been explicitly compared.
2. We compare high resolution sample-based field survey (Countryside Survey) with medium
resolution remote-sensed habitat data (the highest resolution of Land Cover Map available) for Great
Britain. Variation in abundance of 60 bird species from 335 1 km squares was modelled using habitat
predictors from the two methods. Model comparisons assessed the explanatory power of (a) field
survey versus remote-sensed data and (b) coarse information on habitat areas (Broad Habitats) versus
fine grained information on Landscape Features.

3. Field survey data (combining Broad Habitat and Landscape Feature predictors) explained more
variation in bird abundance than remote-sensed data (comprising Broad Habitat predictors only) for
57 species and had significantly higher mean explanatory power, averaged across 60 species models.
The relative explanatory power of remote-sensing, as a proportion of that provided by field data, was
measured at 74%, averaged across 60 species models. Predictions from field survey Broad Habitat data
were more accurate than those from either remote-sensed Broad Habitat data, or field survey
Landscape Feature data, averaged across 60 species models.

4, High resolution data generate more reliable models of predicted local population responses to
land use change than lower resolution remote-sensing data. Collection of field data is typically costly
in time, labour and resources, making use of remote-sensing more feasible for assessment at larger
spatial extents if data of equivalent value are produced, but the cost-benefit threshold between the
two is likely to be context-specific. However, integration of field survey with remote-sensed data
provides accurate predictions of bird distributions, which suggests that both forms of data should be

considered for future biodiversity surveys.

Key-words:

Bird abundance, Broad Habitats, habitat association modelling, land use survey methods, landscape
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Introduction

Land-use is a major factor influencing biodiversity (Benton, Vickery, & Wilson 2003; Foley et al. 2005),
making land-use change (through impacts to land cover in natural and human-modified landscapes)
an important potential driver of species’ declines (Butchart et al. 2010). Identification of land-use
impacts on biodiversity requires spatially and temporally matched data on habitat and species
distributions (Kerr & Ostrovsky 2003; Turner et al. 2003; Rose et al. 2014). Biodiversity-habitat
association studies are likely to be most informative for environmental management when examining
relationships at high resolution (where the minimum area of habitat units measured is low, therefore
giving fine spatial grain), but over large geographic areas (Whittingham et al. 2007; Brambilla et al.
2009; Rose et al. 2014). Analyses of this type have the potential to reflect assemblage responses to
habitats at multiple scales (Blackburn & Gaston 2002), including scales relevant both biologically and
for management administration (Mattison & Norris 2005). Despite this, pragmatic trade-offs result in
a tendency for high resolution biodiversity-habitat analyses to cover relatively small areas
(Whittingham et al. 2005), while larger scale (hereafter meaning ‘spatial extent’) studies typically have
lower resolution (Siriwardena, Cooke, & Sutherland 2011; Rose et al. 2014). Funding limitations favour
cost-effective solutions to habitat data requirements. Improved understanding of the comparative
strengths and weaknesses of alternative forms of habitat data available at national scales would
facilitate optimal resource allocation for research (Kerr & Ostrovsky 2003; Turner et al. 2003; Rose et

al. 2014).

We compared high resolution (hereafter meaning resolution in terms of both spatial grain and habitat
classification), nationally representative field survey data for Great Britain (Countryside Survey 2000)
with lower resolution, remote-sensed data (Land Cover Map 2000), at the same spatial extent, for

assessment of bird-habitat associations. The explanatory power of field data and remote-sensed data
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in models of spatial variation in abundance of 60 bird species across Great Britain was assessed. The
design aimed to test and quantify the improvement in predictions generated by field survey data, over
and above those yielded using remote-sensed data, as a result of the higher resolution and accuracy
of habitat mapping and classification in field survey (Saveraid et al. 2001). Such comparisons are rarely
possible because field survey (habitats and birds) and remote-sensed habitat data collected at
comparable spatial and temporal scales are scarce. The relative value of the two methods for

predicting large scale patterns has yet to be assessed (Muller & Brandl 2009).

Field survey has traditionally been the main method of detailed habitat assessment (Rodwell 2006;
Fuller 2012), informing about land-use impacts on a variety of taxa (Aviron et al. 2005; Whittingham
et al. 2005). Field survey can be used to record habitat types based on plant species composition and
its resolution is limited mainly by human expertise for field measurement of habitats and the effort
required. Accurate, high resolution habitat data are produced, but typically demand considerable
resources (Kerr & Ostrovsky 2003) and may pose prohibitive logistical challenges at large scales

(Miller & Brandl 2009).

Remote-sensing (from satellites or airborne sensors) is developing as a method for habitat assessment
with a variety of imagery becoming available (Turner et al. 2003; Recio et al. 2013; Shirley et al. 2013).
Large scale remote-sensing data tend to be lower in resolution (Rose et al. 2014), while higher
resolution sources such as lidar are typically unavailable at national scales (Simonson, Allen & Coombes
2014). Many sources of remote-sensed imagery such as Landsat (Fuller et al. 2005; Shirley et al. 2013),
Google Earth (Hughes, Martin & Reynolds 2011) and lidar (Simonson, Allen & Coombes 2014), are
available in raster format, which requires considerable processing effort to produce vector (polygon)
formats suitable for analysis. Novel remote-sensed imagery has great potential for use in biodiversity
modelling, but methods to convert raw pixel information into usable data on habitats or management

require development (Shirley et al. 2013; Shereen, Bonthoux & Balent 2014). Here we use Land Cover
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Map 2000, which has a resolution of >0.5 ha, because bird data and field data were available for the

same period.

Remote-sensing at large scales may be more cost-effective than field survey for timely collection of
large scale habitat data (Gould 2000; Kerr & Ostrovsky 2003; Turner et al. 2003; Fuller et al. 2005), but
tends to result in lower spatial resolution than field survey, being constrained by the pixel size of the
imagery used and the lack of spectral difference between particular habitat types (Kerr & Ostrovsky
2003; Turner et al. 2003). Habitat classification by remote-sensing is indirect (based on reflectance of
lasers or light) and spectral confusion can reduce accuracy (Kerr & Ostrovsky 2003; Turner et al. 2003).
We hypothesised that field data, highly resolved in both spatial grain and habitat classification, would

better predict bird abundance than lower resolution remote-sensing.

Broad classifications of habitat at the field scale (hereafter referred to as Broad Habitats), including
land cover categories of human-modified (e.g. arable), semi-natural (e.g. dwarf shrub heath), and
natural (broadleaved woodland) landscapes, are routinely collected by both field survey and remote-
sensing (Howard et al. 2003; Morton et al. 2011). Features of habitat measured at high resolution
(referred to here as Landscape Features) including hedges and individual trees (trees outside typical
woodland habitat), are recorded by field survey but, although raster photographic data frequently
capture images of both hedges and individual trees, interpretation to identify them has yet to be done
for Great Britain (Tebbs & Rowland 2014). The inclusion of Landscape Features is one factor
contributing to the high resolution of field surveys relative to some large scale remote-sensing
products. Broad Habitats typically cover a larger proportion of land surface area than Landscape
Features (Fuller et al. 2002; Firbank et al. 2003). Broad Habitat definitions may incorporate
information on multiple habitat types, for example broadleaved woodland describes a guild of tree
species, but do not discriminate features including characteristic understory flora, woodland rides and

glades, which may be important components of a habitat matrix. Conversely, the broad habitat matrix
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may have a stronger influence on breeding birds. We hypothesised that Broad Habitats would be more
important for determining bird abundance than Landscape Features (Siriwardena, Cooke, &

Sutherland 2011).

This article tests the following hypotheses about how data perform in predicting spatial variation in
bird abundance:

1. High resolution field data will outperform lower resolution remote-sensed data, due to the
combined effects of more accurate Broad Habitat data from field survey and the inclusion of
Landscape Features as additional variables unavailable in the remote-sensed data.

2. Broad Habitats (from field data or remote-sensing) will outperform Landscape Features (from
field data).

The outcomes will provide valuable information on the advantages and constraints of the use of
different data types for objective decision making about landscape management to put against

resource and scaling considerations.

Materials and methods

DATA

Field Survey Habitats (Countryside Survey)

Field data on total land cover (including Broad Habitats and Landscape Features) were collected across
a randomly stratified sample of 569 1km squares, targeting rural land in Great Britain in 1998/1999 as
part of Countryside Survey 2000 (Howard et al. 2003). A subset of data from 335 squares, where
breeding bird surveys took place, was used for the current analysis (see Breeding bird survey and Bird
abundance response variables below). Field surveyors mapped and described land cover by
combinations of points, lines and polygons, at a scale of approximately 1:5500 (Howard et al. 2003),
identifying land cover for every parcel within the square. All features present in non-urban areas above

minimum length (<20m), area (0.04 ha) and point (individual trees diameter at breast height >5cm)
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criteria were mapped. The Broad Habitat classification was based on hierarchical nomenclature
corresponding to the Joint Nature Conservation Committee (JNCC) Broad Habitats, which

encompasses the entire range of UK habitats (Jackson 2000; Howard et al. 2003;Norton et al. 2012).

Remote-sensed Habitats (Land Cover Map)

Remote-sensed land cover data were obtained from Land Cover Map 2000, a UK-wide satellite-based
survey (Fuller et al. 2002). Land cover was derived from satellite scenes recorded during ‘winter’
(October 1997 to April 1998) and ‘summer’ (mid-May to August 1998) periods. The main sensor was
Landsat, which identified coarse segments (>0.5 ha). Interpretative work trained a computer
classification system to assign polygons to ‘22 classes based on Broad Habitats’ (Jackson 2000; Fuller
et al. 2002). Landscape Feature data were not available from remote-sensing. Data were extracted for
the 335 1km squares for which contemporaneous field data were available, allowing direct

comparison between the data sets.

Habitat Predictor Variables

A subset of habitat variables were considered for inclusion in models based on a priori knowledge of
habitats predicted to influence breeding birds (Siriwardena, Cooke, & Sutherland 2011). The subset
comprised 15 out of 27 classes based on Broad Habitats available in both field data and remote-
sensing: broadleaved/mixed woodland, coniferous woodland, arable and horticulture, improved
grassland, neutral grassland, calcareous grassland, acid grassland, bracken, dwarf shrub heath, fen
marsh swamp, bog, standing open water and canals, montane habitats, inland rock, built up areas and
gardens (Table S1). Two Broad Habitats were not considered: ‘boundary and linear features’ (due to
lack of data and inconsistencies in recording) and ‘rivers and streams’ (remote-sensed data for this
category could not be distinguished from the Broad Habitat ‘standing open water’). The habitat
classification ‘sea’ was used as a proxy for any of the ten coastal habitat classifications to make the

study tractable. The Landscape Features considered were drawn from the variables available in the
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field data, where these matched habitats described as important for birds in the literature (Table S1
displays the variables used for 60 species analyses). To avoid inclusion of large numbers of predictor
variables for which sample sizes were low, Landscape Features were considered for inclusion only if
they were present in 10% or more of the 335 squares sampled. Landscape Features considered
included linear (bank, ditch, dry stone wall, fence, stream, woody linear feature) and point (pond,
scrub, tree) features. Three Landscape Feature composites, ‘woody linear feature’ (hedges, lines of
trees, and belts of trees), ‘ditch’ (roadside ditches and other ditches) and ‘bank’ (stone and earth

banks), were considered (see 'Hypotheses' below, Cramp and Simmons 2006).

For subsequent use as model covariates, habitat and landscape feature variables were summed at the
1km square level as: area of cover in m? (Broad Habitat areas); the sum of length in metres (linear
features); and counts (point features). These values are likely to reflect habitats potentially used by
many bird species breeding in the square, given the mobility of birds and typical territory sizes; a 1 km
square could be occupied by multiple breeding pairs for the majority of the bird species considered.
Potential model covariates, as listed above, were centred by subtracting the sample mean and scaled

by dividing by the sample standard deviation (Schielzeth 2010).

Breeding Bird Surveys

Breeding bird surveys were carried out between April and June 2000 on the sample of 335 1km squares
for which habitat data was measured (Wilson & Fuller 2002). Bird counts were recorded along
transects in three distance bands by skilled contract workers or volunteers (Gregory & Baillie 1998;
Wilson & Fuller 2002). Four separate transects were covered per square on each of two visits (April to
mid-May and mid-May to June), giving representative coverage of habitats in each square that was
more intensive than the two-transect method used in the BTO/JNCC/RSPB Breeding Bird Survey
(Wilson & Fuller 2002). Bird data and habitat data were collected as far as possible within a year of

one another. Difficulties in obtaining complete imagery in any one year (due to cloud) made
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mismatches in timing unavoidable. Habitats in some polygons will have changed between years
(Norton et al. 2012), particularly in arable areas, but crop rotations are likely to limit changes at the

1km square scale.

Bird Abundance Response Variables

Response variables were individual bird species counts (60 species total, Table 3) for each 1km square.
Bird species selected for analysis had the highest non-zero counts for the 335 survey squares, omitting
managed species (e.g. ring-necked pheasant Phasianus colchicus) and highly colonial species (e.g. rook
Corvus frugilegus). Carrion crow Corvus corone counts included hooded crow Corvus cornix counts.
Counts were summed across all four transects and distance bands, omitting birds in flight. The
maximum count across visits was selected as the observed value for each species at each square (Table
S1), aiming to capture breeding numbers at peak detectability for early and late breeders. Relative
abundance (observed counts) was modelled, not absolute abundance or density, so not adjusting for
imperfect detection. Only one bird dataset was used, the two habitat datasets differed little in gross
habitat measures (Fuller et al. 2002) and the focus was not on differences between species. Therefore,
accounting for detection rather than modelling relative abundance was not expected to change the
results (all models for each species would be adjusted by approximately similar constants), but would
add unnecessary complexity which can have drawbacks, especially for large scale analyses (Banks-Leite

et al. 2014).

Some zero counts may occur where range-restricted bird species do not occur in all regions. To avoid
such uninformative (with respect to land-use relationships) zeroes, 1 km squares were excluded from
analyses if they occurred in a 10 km national grid square within which no individual of a given species
was recorded as present in the 1988-91 breeding bird atlas (Gibbons, Reid, & Chapman 1993). The

number of squares used for each species-specific analysis therefore varied (Table 3).
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ANALYSES

Hypotheses

For each bird species, an a priori hypothesis regarding habitat influences on abundance was
formulated by examining habitat preferences (see Cramp and Simmons 2006). This identified variables
to be included as potential predictor variables for each species (see ‘Habitat predictor variables’, Table
S1). All models included a categorical variable assigning lowland or upland squares, based on

Environmental Zones (Wilson & Fuller 2002).

Model structure

Species-specific analyses modelled bird counts as a function of habitat predictors in Generalized Linear
Models, with a Poisson error structure and log link function, as is typical of analysis for breeding bird
survey data (Siriwardena, Cooke, & Sutherland 2011). Negative binomial errors were not used as they
sometimes resulted in extremely high predicted values for certain bird species in squares with high
density of hedges or trees. Five models were generated per species, each of which corresponded to
one of five ‘Model Sets’ differing in the type of habitat predictors and their data set of origin (Table 1).
This allowed comparison of separate models including field data and/or remote-sensed data, and also
Broad Habitats and Landscape Feature predictors, as well as the two in combination (hereafter,
‘Combined Habitats’). Broad Habitats were available in both data sets, while Landscape Features were
available only in field data, so the number of variables compared between models was sometimes
unequal. Explanatory power was measured as the percentage of deviance explained. The focus was on
specific quantities of deviance explained by variables from different datasets or groupings, and not on
parsimony, which was favoured deviance over a possible alternative Akaike’s Information Criterion.

Predictive power was assessed through cross-validation (see below).

Bootstrapped model comparisons

To determine whether there was an overall significant difference in explanatory power between

10
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‘Model Sets’ across all 60 species, a bootstrapping procedure was adopted. Comparisons between any
two ‘Model Sets’ was assessed by calculating the within-species difference in explanatory power
(defined by percent deviance explained), then taking the mean of these differences across all species.
This provided a clear test statistic which bootstrap-based samples could be compared against. Under
the null hypothesis that the two model sets show no difference in power, the observed differences
across the 60 species were randomly sampled with replacement and then randomly assigned to be
negative or positive with equal probability, thus simulating from the null distribution. From this
sample, the test statistic was re-calculated by taking the mean across the 60 values and stored. The
whole process was repeated 1000 times in order to obtain 1000 values of the test statistic under the
null hypothesis which the observed test statistic can be compared to. P-values were calculated as the
proportion of occurrences of re-sampled mean difference estimates that exceeded the test statistic,

thus measuring the probability that the true value of the test statistic was larger.

Goodness-of-fit and cross validation

Practical implications of differences between field data and remote-sensing in prediction were
assessed by comparing fitted and observed values for the ‘Field Data Combined Habitats’ and ‘Remote-
sensed Broad Habitat’ model sets, the sets comprising all available field data and remote-sensed data
respectively (Table 3). Mean Absolute Error (MAE) between fitted and observed values was calculated
for each species. This was chosen over Mean Square Error because it provides a more easily
interpretable output (i.e. birds per 1km?). A cross-validation procedure assessed the predictive
performance of the datasets. For each species, data were partitioned into a randomly selected training
dataset of 80% of squares (rounded to the nearest integer) and a testing dataset comprising the
remainder of the squares. Models were fitted to the training data and then used to predict bird counts

with for the testing dataset and MAE was recalculated.

Results

11
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MODEL PERFORMANCE

Figure 1 displays the mean explanatory power (% deviance explained) across all 60 species for the five
‘Model Sets’ differing in habitat predictors (Table 2). Mean explanatory power was lowest for species
models derived from Landscape Features from field data alone (14%). Broad Habitats explained
intermediate amounts of deviance (remote-sensed 24%, field data 28%) but this increased when they
were combined with Landscape Features from field data (remote-sensed data 29%, field data 33%))
(Figure 1). Figure 2 shows the explanatory power for 60 individual bird species separated into the five

‘Model Sets’.

FIELD DATA VERSUS REMOTE-SENSED DATA

In a comparison of all data available, field data outperformed remote-sensed data in predicting bird
abundance. ‘Field Data Combined Habitats’ had higher explanatory power than ‘Remote-sensed Broad
Habitats’ for 57 of 60 species (Fig. 2) and significantly higher mean explanatory power across all species
(Table 2, Fig. 1). When considering Broad Habitat data alone, field data had higher explanatory power
than remote-sensed data for 49 of 60 species (Fig. 2) and significantly higher mean explanatory power
across all species (Table 2, Fig. 1). The superior performance of Broad Habitats from field data was
enhanced by inclusion of Landscape Features to form Combined Habitats models (Table 2). ‘Field Data
Combined Habitats’ had higher explanatory power than ‘Remote-sensed Combined Habitats’ for 49 of
60 species (Fig. 2) and significantly higher mean explanatory power across all species (Table 2, Fig. 1).
The mean improvement in explanatory power of field data over remote-sensed data was greater for
Combined Habitats than for Broad Habitats alone (mean difference in percent deviance averaged

across 60 species models: Combined Habitats = 3.82, Broad Habitats = 3.76, Table 2).

Differences between field data and remote-sensing for prediction were further assessed by comparing
observed and fitted values for the ‘Remote-sensed Broad Habitats’ and ‘Field Data Combined Habitats’

model sets (Table 3). Mean absolute error between fitted and observed values (MAE) averaged across

12
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squares demonstrated a closer fit for field data (MAE lower for 53/60 species, MAE averaged across
60 species = 2.74) compared to remote-sensed data (MAE lower for 7/60 species, MAE averaged across
60 species = 2.92, Table 3). This result was robust to cross-validation, out-of-sample predictions were
closer to observed values for field data (MAE lower for 46/60 species, MAE averaged across 60 species
= 2.92) compared to remote-sensed data (MAE lower for 12/60 species, MAE averaged across 60

species = 3.12, MAE equal for 2/60 species, Table S2).

BROAD HABITATS VERSUS LANDSCAPE FEATURES

Comparing the two components of the field data set demonstrated that Broad Habitats outperformed
Landscape Features in prediction of bird abundance. ‘Field Data Broad Habitats’ had higher
explanatory power than ‘Field Data Landscape Features’ for 55/60 species, while ‘Remote-sensed
Broad Habitats’ had higher explanatory power than Landscape Features for 53/60 species (Fig. 2).
Broad Habitats from both field data and remote-sensed data had significantly higher mean
explanatory power than Landscape features (mean difference in percent deviance averaged across 60
species models: +13.87 for field data Broad Habitats, +10.11 for remote-sensed Broad Habitats Table

2, Fig. 1).

Discussion

Our results support the hypothesis that national-scale field survey data outperform remote-sensed
equivalents as predictors of spatial variation in bird abundance, providing more accurate models of
breeding bird counts (Figs 1 & 2, Table 2). The explanatory power of remote-sensed data alone, as a
percentage of that provided by the Field Data Combined models (which generally had the highest
explanatory performance), was 74% (Table 2). The extent to which increases in explanatory power
produce better predictions of bird numbers is a key issue. Measures of observed versus fitted values
suggest that more reliable predictions of bird numbers are likely to be obtained from field survey data

than from remote-sensed data. Examples of more accurate predictions resulting from field data ranged

13
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in magnitude from small errors for species such as wheatear Oenanthe oenanthe (mean observed
count per square = 1.06, MAE = 0.01 counted birds averaged across 86 squares), to errors of nearly
two individual birds for species such as meadow pipit Anthus pratensis (mean observed count per
square = 13.31, MAE = 1.99 counted birds averaged across 319 squares, Table 3). This result was robust
for sites not used to train the models (cross-validation) across the majority of bird species (Table S2),
indicating that biodiversity-habitat associations produced without detailed habitat data may result in
significantly suboptimal recommendations for environmental management. Potential implications of
the disparity in assessment accuracy extend to further applications such as predictions of effects of
climate (Foley et al. 2005), policy change (Mattison & Norris 2005) and Environmental Impact

Assessments (Treweek 1996).

Widespread declines in biodiversity (Butchart et al. 2010) and growing pressures on land use (Foley et
al. 2005) are increasing demand for large scale data on land-use and biodiversity for policy and
environmental management. The strength of our analyses relates to the novel combination of large
geographic scale with fine-grained observation of Landscape Features and national monitoring
methods for estimating bird populations from an unbiased random sample of countryside. The results
of this study suggest that investment in future analyses should consider the scale and detail required
to optimise understanding of biodiversity-habitat associations, and produce better-informed
environmental management. The results offer a baseline against which performance of remote-
sensing can be assessed as advances in technology improve the resolution (in terms of spatial grain

and habitat classification) and accuracy of the data produced.

Broad Habitats provided more reliable predictions than Landscape Features, across the 60 species
tested. This may be because Broad Habitats integrate multiple habitat characteristics over larger areas
(Benton, Vickery & Wilson 2003), while Landscape Features reflect more specific habitat features as

well as being correlated with basic land cover (Siriwardena, Cooke, & Sutherland 2011). Models
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combining both Broad Habitats and Landscape Features performed better than either set alone,
regardless of the source (field survey or remote-sensing) of Broad Habitat data. This suggests
possibilities for enhancement of national monitoring of breeding birds. Wildlife surveys collecting
additional detail on landscape features (length of linears, count of points), for combination with
available remote-sensed data may benefit understanding of large scale biodiversity-habitat
associations. Although Broad Habitats were found to outperform Landscape Features, no attempt was
made to control the number of input variables from the two sets that were included in any given
model. Overall, a mean of 6.07 Broad Habitat predictors were included per species, higher than the
mean of 3.13 Landscape Feature predictors included per species (Table S1). Studies focussed on the
roles of these two habitat variable types should test their relative benefits explicitly with adequate

controls (Siriwardena, Cooke, & Sutherland 2011).

Landscape Features (e.g. woody linear features, individual trees, scrub, rivers, streams, stone walls,
ditches, fences, banks, ponds) can have important effects (positive or negative) on many species by
providing sources of food, nest sites or protection from/exposure to predators (Fuller 2012). As such,
measures of Landscape Features are important from the perspective of applied management. Habitats
impact bird abundance at multiple scales simultaneously and the context within which a given habitat
occurs may influence suitability for breeding birds (Benton, Vickery & Wilson 2003). Broad Habitats
may determine basic breeding suitability of an area for a given species (e.g. yellowhammer Emberiza
citrinella — arable specialist), while Landscape Features may provide resources making them an
important determinant of breeding abundance of a species within the habitat matrix (e.g.
yellowhammer - trees and hedges, Whittingham et al. 2005). Therefore, to predict land-use impacts
on biodiversity, simultaneous understanding of all habitat effects is required. Field survey, but not
remote-sensing, recorded Landscape Features in the present study (Fuller et al. 2002; Howard et al.
2003), but their impact on model performance suggests that future surveys aiming to inform

biodiversity-habitat associations, both field survey and remote-sensing, should aim to record both
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Broad Habitats and Landscape Features. Where pragmatism favours collection of either Broad Habitat
or Landscape Feature data but not both (due to limits on survey complexity or time, e.g. as part of
‘citizen science’ data protocols), Broad Habitats should typically be prioritised. Remote-sensed Broad
Habitat data may often be relatively accessible (Shirley et al. 2013; Shereen, Bonthoux & Balent 2014)
and under such circumstances field survey efforts might best prioritise Landscape Features to be used
in combination. This may change in the future if remote-sensed Landscape Feature data are developed
(Tebbs & Rowland 2014). Combinations of remote-sensed data and field survey have previously
yielded important results in attempts to identify land use impacts on biodiversity (Fuller et al. 1998;
Nagendra & Gadgil 1999; Saveraid et al. 2001). While the best performance was yielded by the using
both Broad Habitats and Landscape Features from field survey, our results suggest that the
performance benefits lost by using remote-sensed Broad Habitats combined with field survey
Landscape Features might be outweighed by potential cost reductions under some circumstances (Fig.

1, Fig. 2, Table 2).

The extra performance yielded by field data may be due to greater resolution (in terms of both spatial
grain and habitat classification) and accuracy compared with remote-sensing. Broad Habitat areas
were more accurately mapped by field survey (minimum mappable unit 20 m?) than by remote-sensing
(pixel-based measures interpreted from satellite images, pixel size 25 m?, minimum mappable unit >
50 m?) and Broad Habitat classification was more accurate by field survey (survey based on plant
species composition) than remote-sensing (computer-based interpretation of satellite land cover
image reflectance) (Fuller et al. 2002; Howard et al. 2003). Remote-sensing technology has developed
since the data were collected, with resolution, scale, accuracy and availability of data increasing (Recio
et al. 2013, Shirley et al. 2013); for example, the Land Cover Map for 2007 incorporates an Ordnance
Survey polygon framework to improve habitat mapping (Morton et al. 2011). However breadth of
habitat classification and pixel size, key differentials with field data, remain the same. The ability of

remote-sensed data to predict bird abundance is likely to improve with technological advancements.
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Addressing the relative costs of field survey and remote-sensing methods is an important issue.
Countryside Survey 2007 field survey cost £4.1m for a randomly stratified sample of squares, whilst
Land Cover Map 2007 cost £1.8M for all GB squares. Field data benefits therefore come at an increased
cost of approximately 128%. However, cost measurement for either field survey or remote-sensing is
not straightforward. For field survey, mapping comprises just one element of the survey (besides soils,
freshwaters and extensive vegetation sampling. For remote-sensing, many development costs involved
in early surveys may not be incurred in the future. Therefore, these costs do not necessarily represent

the scale of costs for future surveys.

Technological developments are increasing data quality yielded by both field survey and remote-
sensing whilst reducing costs. Advances in field data collection efficiency have occurred in parallel with
those in remote-sensing and we estimate it to take an average of 2 person days to collect detailed field
data from a 1 km square using Countryside Survey field protocols, which are then available for
immediate analysis. Methods such as lidar offer possibilities for improving the resolution of remote-
sensed data, but costs associated with this method are considerably higher than those of acquiring
satellite data and processing costs for data at national scales are currently likely to be prohibitive
(Mason et al. 2003; Turner et al. 2003, Miller & Brandl 2009). The remote-sensed data in this study
recorded land cover for the whole of Great Britain while the field survey was limited to sample 1 km
squares. One important consequence of this extra spatial coverage from remote-sensing is that it
allows out-of-sample predictions beyond bird survey areas. As the area of interest for a study
increases, the cost of field survey would increase relative to the cost of remote-sensing and at some
threshold outweigh any benefit (given that funding of field surveys of the entire land surface of Great
Britain seems implausible) (Blackburn & Gaston 2002). The threshold scale at which this shift occurs
may be reduced if developments in the resolution and cost efficiencies of remote-sensing outstrip

equivalent developments in field survey. As the resolution, accuracy and relative costs of remote-
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sensing and field survey methods develop, further comparisons should be made to measure progress
in biodiversity-habitat associations to inform policy decision regarding allocation of research funding.
Such comparisons should consider a range of taxa due to the varying importance of resolved

information for different organisms.
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Table 1. Five ‘Model Sets’ differing in the origin of habitat predictors used
Five ‘Model Sets’ (each applied to all 60 bird species) were produced. ‘Model Sets’ varied based upon inclusion of predictors from Broad Habitats, Landscape Features

or Combined Habitats (both Broad Habitats and Landscape Features) and also based on the data source of Broad Habitats (field data or remote-sensed). Landscape

Features were sourced from field data only. NA = Not applicable.

Model Set Name Landscape Feature Data Source Broad Habitat Data Source
Field Data Landscape Features Field Data NA

Remote-sensed Broad Habitats NA Remote-sensed

Field Data Broad Habitats NA Field Data

Remote-sensed Combined Habitats Field Data Remote-sensed

Field Data Combined Habitats Field Data Field Data
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Table 2. Summary of seven comparisons between ‘Model sets’ testing two main hypotheses of habitat data performance in prediction of bird abundance

Hypothesis (the hypothesis of interest), Comparison (the ‘Model set’ comparisons aimed at testing each hypothesis), Model set 1 & 2 (the two ‘Model Sets’ being
compared, see Table 2), Best performance (the result of the comparison, which of the two sets being compared performed best in prediction of bird abundance),
Test Statistic (estimated mean difference in explanatory power, measured as percent deviance explained, across 60 bird species). C.I. (bootstrapped 95 % Confidence

Interval), p (bootstrapped p-value), Lower model % (explanatory power of the lower performing model from the comparison as a percentage of the explanatory

power of the better performing model from the comparison).

Hypothesis Model Set1 ModelSet2 Best Performance Test Stat. C.l. 2.5% C.1. 97.5% p Lower model %
Field Data versus Remote-sensed Field Data Combined Habitats Remote-sensed Broad Habitats Field Data 861 -2.80 277 <0.00174
Field Data Broad Habitats Remote-sensed Broad Habitats Field Data 3.76 -1.79 1.84 <0.00186

Field Data Combined Habitats Remote-sensed Combined Habitats Field Data 382 -1.62 164 <0.00188
Broad Habitats versus Landscape Features Field Data Broad Habitats Field Data Landscape Features Broad Habitats 13.87 -4.13 4.45 <0.00150

Remote-sensed Broad Habitats Field Data Landscape Features Broad Habitats 10.11 -3.40 3.38 <0.00158
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Table 3 Comparison of error between fitted and observed values for models based on field data and remote-sensing

Comparing Field Data Combined Habitats (combining Broad Habitat + Landscape Feature predictors) and Remote Sensed Data (Broad Habitat predictors only). Sample
size = number of 1km squares used for species-specific analysis. Zeros = number of squares with zero count. Max observed = maximum observed count. Mean
observed = mean observed count. MAE = mean absolute error between fitted and observed values. Scaled MAE = MAE divided by mean count for species. Values in

bold indicate smaller error for Field Data or Remote Sensed Data.

Scaled Scaled
MAE MAE MAE MAE

Sample Max Mean Field Remote  Field Remote
Species size Zeros observed observed Data Sensed Data Sensed
Blackbird 328 79 79 8.41 4.44 4.84 0.53 0.58
Blackcap 256 104 21 2.29 1.75 1.82 0.76 0.80
BlueTit 305 98 71 6.23 4.19 4.63 0.67 0.74
Bullfinch 271 202 6 0.45 0.58 0.60 1.30 1.34
Buzzard 232 99 9 1.24 1.08 111 0.87 0.89
Carrion Crow 335 80 69 6.74 7.59 8.45 1.13 1.25
Chaffinch 322 51 72 13.51 1.53 1.67 0.11 0.12
Chiffchaff 262 144 22 1.63 1.22 131 0.75 0.81
Coal Tit 297 189 21 1.15 1.63 1.80 1.42 1.56
Collared Dove 260 164 23 1.70 5.55 5.54 3.26 3.26
Cuckoo 308 208 6 0.54 0.67 0.68 1.25 1.28
Curlew 255 169 53 1.85 2.26 2.35 1.22 1.27
Dunnock 310 108 22 2.87 1.98 211 0.69 0.73
Garden Warbler 241 174 9 0.53 0.69 0.70 131 1.33
Goldcrest 295 163 23 1.91 1.70 1.83 0.89 0.96
Goldfinch 273 109 21 2.71 221 2.33 0.82 0.86
G.S. Woodpecker 255 169 7 0.58 0.56 0.62 0.96 1.06
Great Tit 305 114 40 3.27 2.18 2.26 0.67 0.69
Greenfinch 284 128 31 3.48 2.89 3.10 0.83 0.89
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Green
Woodpecker

Grey Heron
Herring Gull
House Martin
House Sparrow
Jackdaw

Jay

Kestrel
Lapwing
Linnet

Long Tailed Tit
Magpie
Mallard
Meadow Pipit
Mistle Thrush
Moorhen
Nuthatch
Oystercatcher
Pied Wagtail
Raven

Reed Bunting
Robin

Sedge Warbler
Siskin

Skylark

Snipe

Song Thrush
Sparrowhawk
Starling

Stock Dove

Stonechat

192
296
172
292
308
280
222
304
290
264
269
240
322
319
302
239
167
199
329
163
266
322
222
179
332
244
323
277
315
235
146

132
252
125
187
156
119
155
218
214
127
180
88
193
117
160
185
117
132
143
112
205
65
170
127
102
201
105
234
156
158
96

15
92
200
417
99
107
20

71
41
22
30
31

202
11
10
24
24
10

15
49
25
13
87
35
20

380
12
12

0.72
0.73
4.84
4.06
5.65
6.90
0.65
0.35
1.97
3.80
135
3.21
2.22
13.31
1.26
0.53
0.84
2.07
1.53
0.69
0.73
7.79
1.21
1.07
6.92
0.49
2.72
0.18
10.57
0.94
1.05

0.83
0.16
6.23
5.71
5.24
7.12
0.70
0.44
2.78
3.88
1.40
2.65
2.54
9.34
1.26
0.65
0.93
2.49
1.30
0.90
0.80
4.60
1.32
1.13
5.85
0.59
1.93
0.26
11.20
1.16
0.94

0.83
0.17
7.25
5.51
5.51
7.14
0.72
0.46
2.83
3.96
1.59
2.84
2.67
11.33
1.29
0.74
0.91
2.76
1.33
0.89
0.98
5.23
1.69

6.30
0.70
2.06
0.25
10.56

1.26

1.16
0.22
1.29
141
0.93
1.03
1.08
1.29
141
1.02
1.04
0.83
1.14
0.70
1.00
1.23
1.10
1.20
0.85
1.30
1.11
0.59
1.09
1.05
0.85
1.20
0.71
1.46
1.06
1.23
0.90

0.23
1.50
1.36
0.98
1.04

1.32
1.44
1.04

0.89
1.20
0.85
1.02
1.40
1.08
1.33
0.87
1.28
1.35
0.67
1.39

0.91
1.42
0.76
1.42
1.00
1.26
1.20
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Swallow 320 91 34 5.38 3.69 4.00 0.69 0.74
Swift 267 172 120 2.74 3.56 3.66 1.30 1.34
Treecreeper 277 220 5 0.32 0.42 0.45 1.31 1.40
Tree Pipit 232 182 14 0.62 0.77 0.77 1.23 1.25
Wheatear 248 162 16 1.06 1.13 1.14 1.06 1.08
Whitethroat 262 131 20 2.00 1.77 1.89 0.89 0.94
Willow Warbler 323 104 49 6.34 4,91 5.13 0.78 0.81
Woodpigeon 309 82 108 13.72 9.86 10.01 0.72 0.73
Wren 335 48 47 10.39 5.47 6.50 0.53 0.63
Yellowhammer 260 131 20 2.39 1.88 1.98 0.79 0.83

Mean 2.74 2.92 1.02 1.08
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Figure 1. Mean explanatory power (+ 95% Confidence Interval) across 60 bird species for five ‘Model Sets’ generated from field data and remote-sensed data
‘Field Landscape’ = Landscape feature predictors from field data. ‘Remote Broad Habitat’ = Broad Habitat predictors from remote-sensed data. ‘Field Broad Habitat’
= Broad Habitat predictors from field data. ‘Remote Combined’ = Broad Habitat predictors from remote-sensed data + Landscape Features from field data, ‘Field
Combined’ = Broad Habitat predictors from field data + Landscape Features from field data. Significant differences: Field Landscape versus Field Broad Habitat/Remote
Broad Habitat/Field Combined (p < 0.001), Remote Broad Habitat versus Field Broad Habitat/Remote Combined/Field Combined (p < 0.001), Field Broad Habitat

versus Field Combined (p < 0.001), Remote Combined versus Field Combined (p < 0.001), (Table 2).
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‘Field Landscape’ = Landscape Feature predictors from field data (Countryside Survey). ‘Remote Broad Habitat’ = Broad Habitat predictors from remote-sensed data
(Land Cover Map). ‘Field Broad Habitat’ = Broad Habitat predictors from field data. ‘Remote Combined’ = Broad Habitat predictors from remote-sensed data +

Landscape Features from field data, ‘Field Combined’ = Broad Habitat predictors from field data + Landscape Features from field data.
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Supporting Information
Additional Supporting Information may be found in the online version of this article:
Table S1. Bird species, sample sizes and habitat predictors included in hypotheses

Table S2 Comparison of error between fitted and observed values for models based on field data and remote-sensing in out-of-sample prediction
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