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Abstract 

Major periods of environmental crisis occurring throughout the past 260 million years have 

been related to episodes of continental flood basalt (CFB) volcanism1-4. However, the 

majority of the proposed causal relationships have been rather qualitative in nature, in 

particular for the effects of large emissions of magmatic sulfur to the atmosphere3,5. CFB 

provinces are typically formed by numerous individual eruptions, each lasting years to 

decades, with hiatus periods lasting hundreds to thousands of years6-8. Using a global aerosol-

climate model, we quantify the sulfur-induced environmental effects of individual decade-

long CFB eruptions representative of the 14.7 Ma Roza eruption and individual eruptions in 

the 65 Ma Deccan Traps6-8. For a decade-long Deccan-scale eruption, we calculate a decadal-

mean reduction in global surface temperature of 4.5 K. However, unless climate feedbacks 

were very different in ancient climates, surface temperatures would have recovered within 

less than 50 years after such an eruption ceased. Acid mists and fogs could have caused 

damage to vegetation in regions of prolonged exposure, such as at high elevations11. However, 

in contrast to previous studies3,5,9,10, we find that sulfur species deposited by even century-

long eruptions would not have acidified the surface ocean or soils sufficiently to cause a global 

biotic crisis because these ecosystems are strongly buffered. Based on current knowledge of 

eruption magnitudes and hiatus frequencies, we conclude that the environmental effects of 

magmatic sulfur were too localized and/or too short-lived to explain global catastrophic 

extinction losses without the occurrence of additional environmental stressors such as marine 

regressions or asteroid impacts.  
 

  



Main Text  

Typically, hundreds to thousands individual and volumetrically large (on the order of 1 

1000 km3) eruptions made up a CFB province (total volumes 0.1-4.0 million km3) emplaced over 2 

timescales of 100,000s of years11 with highly uncertain hiatus periods6-8. These eruptions far 3 

exceeded even the largest historic eruptions in terms of lava volume, duration and the amount of 4 

gases and aerosol particles emitted into the atmosphere7,8. Intriguingly, the timing of the 5 

emplacement of four out of five CFB provinces in the last 300 Myr coincides with periods of severe 6 

environmental turnover including mass extinctions events1,2,4. This striking age correlation4,11 led 7 

to the suggestion of a causal link between periods of CFB volcanism and periods of environmental 8 

turnover1-4,7. Yet after more than four decades of research this hypothesis remains equivocal and 9 

contested3,12.   10 

 11 

It is well known from observations of historic eruptions that emissions of magmatic sulfur 12 

dioxide (SO2) and its oxidation products like sulfuric acid aerosol are the main agents able to 13 

induce profound environmental change13,14. Consequently, climatic cooling and environmental 14 

acidification due to the emission and deposition of large quantities of magmatic sulfur are the two 15 

most commonly proposed causal agents for environmental turnover during periods of CFB 16 

volcanism3,5,10,15. However, no previous study took into account the buffering capacities of soils 17 

and other ecosystems when assessing the effects of acid rain, hence until now this causal link 18 

remains elusive and unquantified.  Similarly, to assess the climatic effects of CFB eruptions, 19 

previous studies either relied on extrapolations of the surface cooling caused by explosive 20 

volcanism3, or used simple relationships between the mass of sulfuric acid aerosol particles 21 

generated from SO2 and its cooling effects6. Both approaches do not account for two key factors 22 

that may reduce the aerosol-induced cooling: (i) limited oxidant availability, affecting SO2 23 

conversion to acidic aerosol, and (ii) particle growth to large sizes, reducing the particle light-24 

scattering efficiency and shortening particle lifetime in the atmosphere due to sedimentation. The 25 

relative importance of these processes has been quantified for short-lived explosive eruptions16-18, 26 

but never for CFB eruptions, which differ fundamentally in terms of eruption style, height and 27 

duration of the SO2 emissions.  28 

 29 
To constrain the environmental effects and consequences for habitability induced by 30 



magmatic sulfur emissions from individual decade- to century-long flood basalt eruptions we use 31 

numerical models including a global aerosol model, GLOMAP19, a soil and freshwater 32 

acidification model, MAGIC20 and an Earth system model, GENIE21 (Online Methods). Our model 33 

experiments are based on the well-constrained 14.7 Ma (mid-Miocene) Roza eruption emplaced in 34 

the youngest CFB province on Earth, the Columbia River Basalt Group, and individual eruptions 35 

in the 65 Ma Deccan Traps coinciding with the Cretaceous-Paleogene  36 

(K-Pg) mass extinction. The 14.7 Ma Roza eruption (total volume 1300 km3) is the only individual 37 

CFB eruption with a constraint on both duration and emission fluxes of about 1200 Tg of SO2 per 38 

annum for a decade or two6. Individual eruption volumes in the Deccan Traps also reached volumes 39 

in excess of 1000 km38, but individual eruption durations are unknown. Plume rise modeling for 40 

basaltic fissure eruptions suggests rise altitudes of 9-13 km22,23, corresponding to the upper 41 

troposphere/lower stratosphere. We simulate a ‘Roza-scale’ eruption by emitting 1,200 Tg of SO2 42 

per year into 9-13 km altitude at 120°W, 45°N, and a ‘Deccan-scale’ eruption by emitting 2,400 43 

Tg of SO2 per year at 135°E, 21°S. The latter is considered an upper bound for the SO2 emitted, 44 

assuming either greater mean lava discharge rates or that more than one flow field had been active 45 

at any one time (Online Methods, Extended Data Table 1).  46 

 47 

We find that the net climate effect of magmatic sulfur emitted by individual CFB eruptions 48 

is to reduce surface temperatures (Figure 1), resulting from the combined climatic effects of acidic 49 

aerosol particles and SO2. The increase in acidic aerosol particles exert a negative radiative forcing 50 

acting to cool the climate via the aerosol direct forcing and the aerosol indirect forcing (due to 51 

changes in cloud reflectance caused by changes in cloud droplet concentrations). In contrast, any 52 

unoxidized SO2 acts as a greenhouse gas and absorbs ultraviolet radiation, which warms climate 53 

(positive forcing). We show that the relationship between the amount of SO2 emitted and the 54 

magnitude of these two opposing climate forcings is highly non-linear. For example, a 20-fold 55 

increase in SO2 release leads to less than a 6-fold increase in negative forcing (Extended Data 56 

Table 4). This non-linearity is caused by the combination of limited aerosol production and 57 

differences in particle growth with increasing SO2 emissions, but also the striking saturation of the 58 

aerosol indirect forcing, and the offset of the negative aerosol forcings by the positive forcing from 59 

SO2 (Extended Data Table 4). For instance, we find that for a Roza-scale eruption only 60% of the 60 

emitted SO2 eventually forms volcanic aerosol (~1,490 Tg of sulfuric acid aerosol per year) due to 61 



the sustained depletion of atmospheric oxidants, in particular the hydroxyl radical, OH (Extended 62 

Data Table 2). The saturation of the indirect forcing is caused by increasing aerosol concentrations 63 

effectively decreasing the sensitivity of cloud reflectance to changes in aerosol loading19. A 64 

previous study on super-eruptions also suggested that the forcing from volcanic SO2 may offset 65 

the aerosol cooling17. However, the greenhouse gas forcing by SO2 is not normally considered in 66 

climate model simulations of volcanic eruptions or their geo-engineering analogues. Yet we show 67 

that for a Deccan-scale eruption the SO2 forcing (+1.4 W m-2) offsets about 8% of the global mean 68 

aerosol forcing (-17.6 W m-2; Extended Data Table 4). 69 

 70 

Our simulations show that the tempo, frequency and duration of individual eruptions as 71 

well as hiatus periods strongly affect the severity and longevity of the climatic effects of CFB 72 

eruptions. For the most probable individual eruption duration of a decade, the upper limit of global 73 

mean surface temperature reduction is 6.6 K (90% confidence interval of -7.66 K to  -5.74 K) by 74 

the end of year 10 for Deccan-scale eruptions (Figure 1 and Online Methods). For context, 75 

simulations of the 74 ka Toba eruption suggest peak global mean temperature changes of between 76 

-3.5 K and -10 K18,24. Assuming present-day, century-scale climate feedbacks and ignoring 77 

potential carbon-cycle feedbacks, the mean temperature changes during the first decade are 78 

substantial: -3 K for a Roza-scale eruption and -4.5 K for a Deccan-scale eruption. However, Earth 79 

would have remained habitable mainly because the predicted temperature changes are short-lived 80 

on geological timescales. For the temperature reductions to reach equilibrium an individual 81 

eruption would have to last far longer than 150 years or eruptions would have to occur in quick 82 

succession without hiatuses longer than a decade (Figure 1), which is less probable than decade-83 

long eruptions and longer-lasting hiatuses6-8. Our estimates are at the lower end of previous 84 

estimates of global mean surface temperature reductions for 14.7 Ma Roza6, and in good agreement 85 

with temperature reductions in the mid-Miocene25. For the K-Pg, the survival of ectothermic 86 

tetrapods at mid-latitudes (but not at high-latitudes and with the exception of lizards)12, appears to 87 

support our findings of surface temperatures potentially dropping and fluctuating significantly on 88 

decadal timescales, but prolonged or sudden drops to subfreezing temperatures are not supported 89 

by either the fossil record12 or our model simulations. 90 

 91 

A previous study suggested that the climatic impact of CFB and large explosive eruptions 92 



may be limited by the same atmospheric processes16. However, we find that the processes 93 

controlling the magnitude of climatic impacts differ fundamentally between CFB and explosive 94 

eruptions due to the difference in eruption style (Extended Data Figure 1). A sustained release of 95 

SO2 into the upper troposphere/lower stratosphere during a CFB eruption provides a sustained 96 

source of sulfuric acid vapour, albeit self-limited by oxidant availability. The sulfuric acid 97 

nucleates to form many tiny particles less than 10 nm that, following condensation and coagulation, 98 

grow to radii of between 0.15 to 0.4 µm depending on eruption scale, but further growth is limited 99 

because the high removal rates in the troposphere limit the particle lifetimes to about two weeks 100 

(Extended Data Table 2). Conversely, for large explosive eruptions that inject SO2 into the 101 

stratosphere, particles typically have time to grow to radii much larger than 0.4 µm16,18 due to 102 

differences in atmospheric circulation that result in slow removal rates in the stratosphere.  103 

Importantly, at particle radii between 0.2 µm and 0.4 µm sulfuric acid aerosol particles scatter 104 

more incoming solar radiation back to space than at larger sizes and particle removal via 105 

gravitational settling is insignificant. Hence, in relative terms, aerosol optical depth (AOD, a 106 

dimensionless measure of the degree to which the transmission of light is reduced due to absorption 107 

and scattering by aerosol particles) and therefore climate are perturbed more efficiently for CFB 108 

eruptions even though the generated aerosol burden per unit mass of SO2 emitted is lower than for 109 

explosive eruptions (Extended Data Table 3). 110 

 111 

Environmental acidification can affect ecosystems either due to direct exposure to acidic 112 

species, or indirectly through the acidification of soils and stream waters. In contrast to previous 113 

studies that all neglected the acid buffering capacities of soils and other ecosystems3,5,9,10, we find 114 

that the soil-mediated (indirect) effects due to volcanic sulfur deposition on vegetation and 115 

ecosystems are too limited in both magnitude and spatial extent to directly explain global-scale 116 

mass extinction events (Table 1, Figure 2a). Accounting for a wide range of acid-sensitive soils, 117 

soil depths and acid buffering capacities, we find that podzols are well buffered for centuries of 118 

continued deposition rates below 5 kmolc ha-1 a-1, which only occur in a small region near the 119 

volcanic vents. Localized vegetation damage due to soil acidification is likely to have occurred 120 

only in soils that are extremely acid-sensitive and highly weathered such as oxisols (Extended Data 121 

Table 5). For the K-Pg, there is no evidence of podzolization in the calcareous and smectitic 122 

paleosols found in Montana, USA10,15, which places an independent limit on the degree of soil 123 



acidification in line with our simulated Deccan-scale acid deposition rates (zonal mean of up to 124 

~5.2 kmolc ha-1 a-1).  125 

 126 

Acidification of stream waters with an equilibrium pH of 3.9 could have affected sensitive 127 

freshwater species such as molluscs26 where acid deposition rates exceed  128 

3 kmolc ha-1 a-1 for at least 50 consecutive years (Table 1), although the effects are spatially limited 129 

to an area of about 30 degrees latitude (Figure 2a). Our prediction of stream acidification occurring 130 

in limited parts of the world is supported by the vertebrate fossil record and survival patterns of 131 

pH-sensitive species such as alligators, turtles and frogs, which experienced only small reductions 132 

in their numbers at the K-Pg12,15. In fact, the survival patterns of fish and amphibians constrains 133 

the pH of freshwaters to no less than 426 in line with our findings.  134 

 135 

The impact on ocean biogeochemistry of sulfur deposition from decade-long volcanic 136 

eruptions is also negligible (Online Methods). At Deccan-scale rates, we calculate that volcanic 137 

sulfur deposition would have needed to proceed continuously for almost three millennia to drive a 138 

surface ocean pH decline comparable to the current anthropogenic perturbation of ~0.1 pH units 139 

(Extended Data Table 6). 140 

 141 

Based on our modeling results, we propose that the direct effects of acid mists and fogs on 142 

vegetation caused the most lethal and immediate vegetation damage on the timescale of years to 143 

decades, particularly at high elevations27,28. The fact that there is no soil intermediary or long-term 144 

exposure requirement (Figure 2a) and that acidity of mists is likely much greater than that of 145 

rainfall27 makes this a potent mechanism affecting some but not all parts of the world (Figure 2b). 146 

Our findings corroborate contemporary records of regional damage of susceptible vegetation 147 

following the Icelandic 1783-1784 AD Laki eruption29 – a smaller-scale flood basalt eruption that 148 

emitted at least an order of magnitude less SO2 than the annual emissions in our scenarios.  In the 149 

present-day climate the interception of cloud-water with the surface is mostly restricted to upland 150 

areas, and the presence of neutralizing species in the cloud-water (such as calcium or ammonia) 151 

can reduce the effects. Therefore, persistent and global damage from acid mists in deep times seems 152 

possible only if the cloud distribution or amount were entirely different in deep time climates. For 153 

the Roza-scale and Deccan-scale eruptions, critical levels for ground-level SO2 are not exceeded 154 



on a scale sufficient to cause severe foliar damage or to affect sensitive tree species (Online 155 

Methods), but SO2 concentrations strongly depend on the height at which volcanic SO2 is emitted.  156 

 157 

Based on current knowledge of the tempo, duration of individual CFB-scale and hiatus 158 

periods we conclude that, in isolation, environmental acidification due to magmatic emissions of 159 

sulfur is unlikely to have directly caused catastrophic global-scale extinctions. We did not account 160 

for potential increases in acidity and toxicity caused by magmatic emissions of halogens. Model 161 

simulations of magmatic halogens emitted during pulsed eruptions in the 270 Ma Siberian Traps9 162 

suggest that their effects are localized. Our calculated acid deposition rates may be underestimated 163 

30-50% assuming a SO2 to HCl ratio8 of 1:0.29 and dispersion and deposition like SO2 (Online 164 

Methods). More severe environmental acidification is expected only for CFB provinces where non-165 

magmatic halogen emissions play a role9,30, which is not the case in the Deccan Traps or for 14.7 166 

Ma Roza. We find that the climatic effects of episodic magmatic sulfur emissions could have been 167 

large enough to impair habitability only if eruption frequencies and lava discharge rates were high 168 

and sustained for centuries or longer without hiatuses. Such a longevity and intensity of individual 169 

eruptions, hence cooling of climate cannot be demonstrated convincingly for any CFB province 170 

emplaced in the Phanerozoic. In fact, if individual CFB eruptions lasted centuries or longer, then 171 

the mean magmatic gas release rate may have been lower31, resulting in lower eruption column 172 

heights23. This in turn would suggest a reduced effect from magmatic sulfur on climate and 173 

spatially even more confined and perhaps subdued environmental effects.   174 



Figures (main text) 

 

 175 
 176 

Figure 1. Global mean surface temperature change and its dependence on eruption 177 

duration and emission magnitude. (a) for a Roza-scale eruption emitting 1,200 Tg of SO2 per 178 

year at 45°N and (b) for a Deccan-scale eruption emitting 2,400 Tg of SO2 per year at 21°S. The 179 

eruption duration and hiatuses in each case are indicated by the colored bars (grey = 10 years of 180 

continuous eruption; blue = 10 years of continuous eruption followed by a 10-year hiatus followed 181 

by another 10 years of continuous eruption; and orange = 50 years of continuous eruption). The 182 

shading refers to uncertainty in surface temperature change based on 90% uncertainty range of the 183 

climate feedback parameter in CMIP5 models (Online Methods). The equilibrium temperature 184 

change including the 90% confidence interval is in the top-right corners and would require 185 

continuous SO2 emissions for longer than 150 years.  186 



 187 

Figure 2. Annual zonal mean volcanic acid deposition rates and acid mist 188 

concentrations for CFB-scale eruptions in context with standards to protect soils, vegetation 189 

and stream water ecosystems from the effects of acid deposition (‘critical loads’) and direct  190 

exposure to pollutants (‘critical levels’)26. (a) Critical loads [kmolc ha-1 a-1] for a 45°N Roza-191 

scale eruption (blue line), a 21°S Deccan-scale eruption (gray line) and a year 2000 simulation 192 

with anthropogenic emissions only for context (dashed black line). In general, in our model the 193 

atmospheric dispersion of volcanic gases and aerosol particles is largely confined to the northern 194 

hemisphere an eruption at 45°N, whereas it is global for an eruption at 21°S. For both eruption 195 

scenarios critical loads of 1 kmolc ha-1 a-1 set to protect vegetation and forest ecosystems on the 196 

century scale28 are exceeded on a hemispheric scale. We find that only very acid-sensitive soils 197 

such as Oxisols would be at risk due to deposition rates >1 kmolc ha-1 a-1, whereas Podzols are well 198 

buffered for centuries below deposition rates of 5 kmolc ha-1 a-1 (Table 1). (b) critical levels 199 

[µg(S) m-3] of acid mist concentrations for the same model experiments. The critical level of 200 

1 µg(S) m-3 at which immediate damage to vegetation occurs if low-level clouds are intercepted27 201 

is exceeded on hemispheric scales for CFB eruptions of Roza-scale and larger making this a lethal 202 

mechanism to cause immediate vegetation damage where clouds are present.   203 



Table (main text) 

 

 

Table 1. Indirect effects of volcanic sulfur deposition on soils and streams including 204 

damage threshold exceedances and their recovery timescales, accounting for the buffering 205 

capacities of these ecosystems. Orange shading indicates that thresholds to protect the ecosystem 206 

have been exceeded to a degree that harmful ecosystem effects occur. Green shading indicates the 207 

there are no threshold exceedances or harmful effects. The degree of soil acidification is too 208 

marginal for a wide range of soil parameters and different soil types (Extended Data Table 5) and 209 

spatially limited because deposition rates ≥5 kmolc ha-1 a-1 occur only in close proximity to the 210 

volcanic vent (Figure 2). Podzols are well buffered for deposition rates below 5 kmolc ha-1 a-1 and 211 

reach an equilibrium base saturation – the primary measure of soil acidification – of 6.2% at which 212 

no harmful effects are expected26. The Ca2+:Al critical load for forest soils26 and associated 213 
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vegetation is only exceeded if deposition rates ≥5 kmolc ha-1 a-1 are applied for a century or longer, 214 

and recovery timescales are comparatively fast.  In contrast to the marginal effects on soils, stream 215 

water acidification is more problematic. An equilibrium pH of 3.94 affecting sensitive freshwater 216 

species such as molluscs26 occurs for acid deposition rates ≥3 kmolc ha-1 a-1 applied for at least 50 217 

consecutive years. For deposition rates ≥5 kmolc ha-1 a-1 applied for about four decades the damage 218 

threshold for toxic inorganic monomeric aluminum (Al3+) is exceeded, harming freshwater fish 219 

and other species if the pH drops below 4.5 (increasing the solubility of Al3+)26.    220 
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