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ABSTRACT
There has been widespread concern that neonicotinoid pesticides may be adversely
impacting wild and managed bees for some years, but recently attention has shifted
to examining broader effects they may be having on biodiversity. For example in
the Netherlands, declines in insectivorous birds are positively associated with levels
of neonicotinoid pollution in surface water. In England, the total abundance of
widespread butterfly species declined by 58% on farmed land between 2000 and 2009
despite both a doubling in conservation spending in the UK, and predictions that
climate change should benefit most species. Here we build models of the UK popu-
lation indices from 1985 to 2012 for 17 widespread butterfly species that commonly
occur at farmland sites. Of the factors we tested, three correlated significantly with
butterfly populations. Summer temperature and the index for a species the previous
year are both positively associated with butterfly indices. By contrast, the number of
hectares of farmland where neonicotinoid pesticides are used is negatively associated
with butterfly indices. Indices for 15 of the 17 species show negative associations with
neonicotinoid usage. The declines in butterflies have largely occurred in England,
where neonicotinoid usage is at its highest. In Scotland, where neonicotinoid usage
is comparatively low, butterfly numbers are stable. Further research is needed
urgently to show whether there is a causal link between neonicotinoid usage and the
decline of widespread butterflies or whether it simply represents a proxy for other
environmental factors associated with intensive agriculture.

Subjects Conservation Biology, Ecology, Entomology
Keywords Pesticides, Agricultural intensification, Neonicotinoids, Butterfly, Species declines,
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INTRODUCTION
In England, the overall population level of widespread butterflies on monitored farmland

sites declined by 58% between 2000 and 2009 (Brereton et al., 2011). This has occurred

despite conservation spending in the UK more than doubling in real terms over the same

period (JNCC, 2015), with some of this spend funding agri-environment schemes that

ought to benefit farmland biodiversity (Batáry et al., 2015). Additionally, models predict
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that moderate climate change should actually benefit most UK butterflies through warmer

summer temperatures (Roy et al., 2001; Warren et al., 2001). Although habitat deterioration

resulting from land-use change (e.g., agricultural intensification) is likely to be the most

important factor driving long-term declines of UK butterflies (Warren et al., 2001) and

weather the principle factor determining inter-annual fluctuations (Brereton et al., 2011),

the precise reasons for the recent decline are undetermined.

While the negative impact of modern, intensive agriculture on biodiversity has been

widely recognised (Donald, Green & Heath, 2001; Kleijn et al., 2009), the relative contri-

bution that agricultural pesticides make to this overall impact has rarely been examined

(Gibbs, Mackey & Currie, 2009), and never, to our knowledge, on population-level trends

in butterflies. A recent review assessing the impacts of pesticides on non-target species has

identified a clear need for studies investigating the effects of pesticides on Lepidoptera

that inhabit farmland (Pisa et al., 2015). We seek to address this by considering the

effect of neonicotinoid insecticides on population trends of widespread UK butterflies.

Neonicotinoid insecticides were introduced in the mid-1990s and are now widely used

in arable farming both in the UK and globally. They are most commonly used as a seed

dressing on oilseed rape and cereals (Elbert et al., 2008), with the intention that the active

ingredient is absorbed by the seedling and spreads systemically through the crop tissues.

Studies into the effects of neonicotinoids on non-target species have mainly focussed on

bees as concentrations ranging from 0.6 to 51 parts per billion (ppb) have been found in

the nectar and pollen of treated crops (Cresswell, 2011; Blacquière et al., 2012; Pisa et al.,

2015). Neonicotinoids have been found to have a range of sublethal effects on honeybees

and bumblebees, including impaired navigation and learning, reduced colony growth,

impaired immunity and reduced queen production (Cresswell, 2011; Henry et al., 2012;

Whitehorn et al., 2012; Gill, Ramos-Rodriguez & Raine, 2012; Di Prisco et al., 2013), but field

experiments in which honeybee colonies have been exposed to plots of treated crops have

not found significant impacts on colony health (Cutler & Scott-Dupree, 2007; Pilling et al.,

2013). It remains disputed whether neonicotinods are having significant impacts on bees

in field situations (Godfray et al., 2014; Pisa et al., 2015). However, a recent field study has

shown that treated rape seeds reduce the density of wild bees, the nesting of solitary bees

and the growth of bumblebee colonies (Rundlöf et al., 2015).

Studies investigating the impacts of neonicotinoids on butterflies are completely lacking

and urgently required (Pisa et al., 2015). Butterflies could be exposed to neonicotinoids

via nectar from crops but also through contamination of non-crop plants and habitats.

There are two routes by which seed-dressing neonicotinoids could contaminate farmland

habitats such as field margin vegetation (Goulson, 2014). Firstly, dust produced during

drilling of dressed seeds can contain high concentrations of neonicotinoid, which drifts

onto surrounding vegetation (Krupke et al., 2012; Girolami et al., 2013; Bonmatin et al.,

2015). Secondly, neonicotinoids are water soluble and have a half-life in soil which can

exceed 1,000 days (Baskaran, Kookana & Naidu, 1999; De Cant & Barrett, 2010; Goulson,

2013). When used as a seed dressing, only 1.6–20% of the active ingredient is taken up by

the crop, the remainder leaching into soil water (Sur & Storl, 2003). Recent studies show
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that concentrations of up to 9 ppb can be found in field margin plants near seed-treated

crops (Krupke et al., 2012; Stewart et al., 2014). If these levels are typical, then we might

predict considerable direct mortality in herbivorous insects feeding on field margin

vegetation, as concentrations of 5–10 ppb are sufficient to control insect pests (Castle et

al., 2005). The transportation of neonicotinoids by water courses means that butterflies

feeding in other habitats could also be similarly affected.

Datasets investigating persistence of neonicotinoids within plants are very sparse.

However, vines treated in spring maintain levels of imidacloprid sufficient to control

pests throughout the growing season (Byrne & Toscano, 2006), and similarly levels of

imidacloprid and thiamethoxam in citrus trees remained sufficient to suppress pests for 5

months (Castle et al., 2005). A single application of imidacloprid to maple trees protected

them against insect pests for 4 years (Oliver et al., 2010). It is thus reasonable to propose

that applications of neonicotinoids in adjacent crops could result in significant mortality of

non-target invertebrates feeding in field margins for much of the spring and summer, and

perhaps throughout the year. In the Netherlands, declines in insectivorous birds have been

found to be associated with the amount of imidacloprid in surface water (Hallmann et al.,

2014). This study concludes that the impacts of neonicotinoids on non-target invertebrates

are causing the declines in insectivorous birds. Here we extend previous models (Roy et al.,

2001) of the UK population indices of 17 species of widespread butterflies that commonly

breed and forage on farmland with the addition of the number of hectares within the UK

treated with neonicotinoid pesticides as a new explanatory variable.

MATERIALS AND METHODS
The data
We only selected widespread, resident species that routinely breed in any field or field

margin habitats (Table 2), although all of the species also breed in other habitats. The

indices for each species were derived from the UK Butterfly Monitoring Scheme (UKBMS)

for the period 1984–2012 (Brereton et al., 2011). This dataset contains counts of butterflies

from sites in a wide range of different habitats from across the UK. We included the full

dataset for each species. The chosen period extends ten years before the introduction of

neonicotinoid pesticides. Climatic data (total spring, total summer and total autumn

rainfall, and mean spring and mean summer temperature) were obtained for the same

period from the Met Office online database (Met Office, 2014). We used the climate data

that has previously been found to affect UK butterfly populations (Roy et al., 2001) and

which has been proposed to have played a role in the 2000–2009 decline (Fox et al., 2011).

Usage of neonicotinoids in the UK (acetamiprid, clothianidin, imidacloprid, thiacloprid

and thiamethoxam) was determined from Defra’s (2014) online PUS STATS database. A

single total of the number of hectares treated with neonicotinoids was calculated for each

year from 1994 (when they were first introduced) to 2012.
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Data analysis
The data were analysed using a linear mixed effect random slope model (Gelman & Hill,

2007) using the R 3.1.2 package lme4 (R Project, 2015). As the predictors were on very

different scales all continuous predictors were transformed to Z-scores prior to analysis.

These were used to model the butterfly indices for the period 1985–2012 for all 17 species

combined using the following explanatory variables: mean spring temperature of the

previous year, total spring rainfall in the previous year, mean summer temperature of

the previous year, total summer rainfall in the previous year, total autumn rainfall in the

previous year, mean spring temperature of the current year, total spring rainfall in the

current year, mean summer temperature of the current year, total summer rainfall in the

current year, year, population index for each species in the previous year, the number of

hectares treated with neonicotinoids in the UK for the previous year. The previous year’s

climate data were included in the models as the adult population in a particular year may

be influenced by the climatic conditions experienced by the previous (parent) generation

during the breeding period and during the immature stages of their own lifecycle. Previous

years’ climate was found to be important in earlier models (Roy et al., 2001; Brereton et al.,

2011). We used spring (March–May) and summer (June–August) weather as these are the

main periods during which larvae and adults are active and were found to be important

in previous models of UK butterfly population indices (Roy et al., 2001; Brereton et al.,

2011). Autumn (September–November) rainfall in the previous year was included as an

additional climatic variable as this is the period when neonicotinoids are generally used

in the UK and rainfall is a likely mechanism by which they could be transported into the

wider environment. Neonicotinoid usage the previous year was used for the same reason;

most treated seeds are sown in autumn so it is the previous year’s application which is

most likely to affect the current year’s butterfly population indices. Species was included

as the only random effect. An interaction term between species and neonicotinoid usage

the previous year was also included. All predictor variables were tested for collinearity,

however none were considered to be correlated, with all Pearson correlation coefficients

being less than 0.3. We used the dredge function of the MuMIn package (version 1.15.1) to

identify the best models. The model coefficients and P-values were determined using the

model.avg function of the MuMIn package including all models whose cumulative weight

summed up to a total of 0.95. The relative contribution of each model was weighted by

their relative weight score. After the minimum AIC mixed model was identified, random

slope models including an interaction term between species and predictors maintained

in the minimum AIC model were generated. The best model was again chosen using the

dredge function. The ranef function was used to get the best linear unbiased predictions for

the random effects.

Neonicotinoid use started in the mid-90s but the rapid expansion in their use occurred

in the early part of the 21st century (Defra, 2014). Furthermore a recent study has

suggested that concentrations need to reach a threshold level before negative effects

occur on non-target species (Hallmann et al., 2014). Consequently the dataset was

divided into two periods by year (1985–1998 and 1999–2012) to determine if there was a
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Table 1 Model of the impact of neonicotinoids on butterfly population indices. The parameter esti-
mates for the fixed effects included in the averaged linear mixed effect random slope models of butterfly
indices for the 17 species, where species was included as a random effect and an interaction term was
included between species and neonicotinoid usage the previous year. All other variables were included as
fixed effects.

Fixed effect Parameter
estimate

Standard
error

T-value P-value

Intercept 3.597 4.518 0.795 0.425

Population index (PY) 0.067 0.008 8.36 <0.001

Neonicotinoid usage (PY) −0.064 0.019 3.30 <0.001

Summer temperature 0.064 0.008 8.30 <0.001

Spring rainfall (PY) −0.026 0.007 3.58 <0.001

Summer rainfall (PY) 0.020 0.009 2.13 0.033

Spring temperature (PY) −0.017 0.009 −1.95 0.05

Spring temperature 0.014 0.008 1.88 0.061

Spring rainfall −0.010 0.008 1.31 0.191

Summer temperature (PY) −0.009 0.010 0.83 0.404

Year −0.002 0.003 0.70 0.485

Notes.
PY refers to previous year.

difference in the patterns of widespread butterfly indices before and after the introduction

of neonicotinoids. The separation point was chosen as 1999 because 1998 was when

neonicotinoid usage exceeded 100,000 hectares in the UK for the first time (and never

dropped back below this level) which also resulted in each group containing the same

number of years. A linear mixed effects model with year as a fixed effect and species as a

random was applied to each half of the dataset.

RESULTS
In keeping with previous studies, our linear mixed effect random slope model revealed

strong positive associations between butterfly population index and both the previous

year’s index and summer temperature (Table 1). However, a strong negative association

with the previous year’s usage of neonicotinoids was also revealed. The pattern of

association with neonicotinoid usage varied considerably between butterfly species (Fig. 1)

but is associated with declines in most of the species (Table 2). The favoured habitat

appears to be grassland for those species that exhibit the strongest negative associations

with neonicotinoid usage.

A linear mixed effects model with year as a fixed effect and species as a random effect

revealed that from 1985 to 1998 populations of these widespread butterflies actually

exhibited a significant increase (parameter estimate = 0.0073, 95% CI [0.0029–0.0116]).

The same model from 1999 to 2012 revealed a highly significant decline in butterfly

populations (parameter estimate = −0.0145, 95% CI [−0.0187–−0.0102]). A linear mixed

model including year and period as fixed effects and species as a random effect and an

interaction term between year and period revealed that there was a significant difference
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Figure 1 Fitted values for each butterfly species plotted against neonicotinoid usage. The fitted model
values for the population indices for each species of butterfly plotted against the number of hectares
applied with neonicotinoids the previous year from the linear mixed effect random slope model of
butterfly indices, where species was included as a random effect and an interaction term was included
between species and neonicotinoid usage the previous year. The index for each species is a log collated
index scaled to have an average score of 2 across its entire time series (Brereton et al., 2011).

in the slope of change in butterfly population indices for these two periods (parameter

estimate = −0.0219, 95% CI [−0.0285–−0.0147]).

DISCUSSION
The analysis carried out in this study extended previous models of UK butterfly population

indices (Roy et al., 2001; Warren et al., 2001; Brereton et al., 2011) to include the number

of hectares of UK farmland treated with neonicotinoid insecticides. A strong negative

correlation was revealed between the populations of a group of widespread butterfly

species characteristic of UK farmland and neonicotinoid usage. These findings are
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Table 2 Ten year trends and parameter estimates for the 17 butterfly species. The UKBMS ten year population trends for 2000–2009 (Fox et al.,
2011) and parameter estimates for each species from the averaged random slope linear mixed effect models for each of the 17 butterfly species,
where species was included as a random effect and an interaction term was included between species and neonicotinoid usage the previous year. The
habitat preferences for each species are also provided from Oliver et al. (2009) (G, grassland; HeMo, hedgerow and mosaic habitats; DW, deciduous
woodland). The favoured habitat is given first and the number in parentheses denotes the proportion of the UK population found in that habitat
(Oliver et al., 2009).

Species Effect of
neonicotinoid
usage on
population index

10 year
population
trend (2000–2009)

Habitat preference

Wall Brown, Lasiommata megera −0.135 −37% G (0.45) HeMo DW

Small Skipper, Thymelicus sylvestris −0.133 −62% G (0.53) HeMo DW

Essex Skipper, Thymelicus lineola −0.131 −67% G (0.53) HeMo DW−

Small Tortoiseshell, Aglais urticae −0.129 −64% G (0.49) HeMo DW

Gatekeeper, Pyronia tithonus −0.069 −23% G (0.45) HeMo DW

Small White, Pieris rapae −0.068 −26% G (0.40) HeMo DW

Large Skipper, Ochlodes sylvanus −0.066 −35% G (0.46) HeMo DW

Large White, Pieris brassicae −0.064 −34% HeMo (0.38) G DW

Common Blue, Polyommatus icarus −0.061 −30% G (0.58) HeMo DW

Peacock, Aglais io −0.058 −24% G (0.38) HeMo DW

Green-veined White, Pieris napi −0.049 −9% HeMo (0.40) G DW

Small Copper, Lycaena phlaeas −0.048 −24% G (0.54) HeMo DW

Meadow Brown, Maniola jurtina −0.037 −8% G (0.55) HeMo DW

Marbled White, Melanargia galathea −0.034 −21% G (0.60) HeMo DW

Orange-tip, Anthocharis cardamines −0.022 −8% HeMo (0.39) G DW

Comma, Polygonia c-album 0.007 +34% HeMo (0.42) DW G

Ringlet, Aphantopus hyperantus 0.009 +25% G (0.42) HeMo DW

correlative rather than causal and neonicotinoid usage may simply represent a proxy

for other environmental factors associated with intensive agriculture. The parameter

estimates from the model suggest that the strength of effect of neonicotinoids on butterfly

population indices is equivalent to (albeit in the opposite direction from) the effect of the

most important climatic variable, mean summer temperature. Neonicotinoid insecticide

use has increased dramatically since it was first introduced to the UK in 1994, while the

populations of many of the butterfly species have declined over the same period. Our

model also included year as a fixed effect and revealed that, although the analysis is purely

correlative, the recent declines in butterfly populations are much better explained by

neonicotinoid usage than a linear decline over time. All 14 species which the model

identified as being most negatively affected by neonicotinoid usage exhibited 10-year

declines during the first decade of the 21st century (Fox et al., 2011) when neonicotinoid

usage was increasing at its fastest rate (Table 2).

The explanatory strength of the neonicotinoid predictor in our models is all the more

notable, and unexpected, as our focal group of 17 widespread butterflies typically found

in arable farmland landscapes all occur in a wide variety of other habitats. The UKBMS

population data used in our study are compiled from sites representing many different
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Figure 2 Neonicotinoid usage by region. The area in thousands of hectares treated with neonicotinoids
in 2010 in different regions of England and Scotland. Data from Defra (2014).

habitats. Indeed, UKBMS sites usually comprise semi-natural habitats managed, at least

in part, for biodiversity conservation. Thus, the strong correlation between neonicotinoid

usage and national butterfly trends is remarkable given that relatively few of the monitored

butterfly populations would be from arable farmland.

Neonicotinoid usage, which represents a recent change to the environment, may explain

the concurrent rapid decline in butterfly populations. Interestingly, a study of patterns

of declines across the UK butterflies found that generalist butterflies are not declining

in Scotland (Brereton et al., 2011) where neonicotinoid usage is much lower than it is in

England (Fig. 2; Defra, 2014). In the Netherlands, where neonicotinoids are also widely

used, major declines in populations of widespread butterflies have also been observed

(Van Dyck et al., 2009). Furthermore, the spatial pattern of decline in insectivorous birds

in the Netherlands correlates significantly with the presence of neonicotinoids in the

environment (Hallmann et al., 2014). For some butterfly species the observed effects may

partly be due to adults being exposed while nectaring on treated oilseed rape, the main

flowering crop in the UK that is treated with neonicotinoids. However, oilseed rape flowers

in April–May, before the adults of other species seemingly affected by neonicotinoids are
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on the wing. It seems probable then that any adverse effects of neonicotinoids would be

mediated primarily by contamination of larval food plants in the wider environment such

as field margins, although the declines in Pieris brassicae and P. rapae may also be explained

by the fact that they lay some of their eggs on the oilseed rape itself.

Habitat deterioration is the main candidate proposed to explain long-term declines

in distribution and abundance of butterflies in the UK during the 20th century (Warren

et al., 2001) but there is no clear evidence that habitat has continued to deteriorate in

the 21st century to the extent that it can explain the sudden crash in populations of

widespread species after a period of stability during the latter part of the 20th century,

so this hypothesis is difficult to test. Habitat deterioration is difficult to quantify at large

geographic scales and, therefore, has not been included in previous models of butterfly

trends (Roy et al., 2001; Warren et al., 2001; Brereton et al., 2011). If habitat deterioration

is the main cause of butterfly declines and agricultural intensification is playing a key role

in the loss of habitat, then neonicotinoid usage might be acting as a proxy for agricultural

intensification and therefore habitat deterioration in our models. Thus, neonicotinoid

usage could be responsible for driving butterfly declines or alternatively it could provide

the first useful quantifiable measure of agricultural intensification that strongly correlates

with butterfly population trends.

It should be noted that most UKBMS sites have not been characterised by habitat

although many comprise semi-natural habitats of relatively good quality compared

to arable farmland and thus may not be directly exposed to neonicotinoids. However

butterflies are mobile organisms and declines at UKBMS sites could occur if they

are surrounded by farmland populations that act as population sinks (Dias, 1996).

Furthermore, contamination of water by neonicotinoids, which correlates strongly with

the decline in insectivorous birds in the Netherlands (Hallmann et al., 2014), provides the

potential for rapid transport of neonicotinoids from arable farmland to other surrounding

habitats. This means that most other impacts of agricultural intensification are likely to act

on a relatively localised scale compared to neonicotinoids. As most UKBMS sites are not

in arable farmland, this favours the hypothesis that neonicotinoids are directly driving the

declines in butterflies rather than acting as a proxy for agricultural intensification.

Three areas of further research are required to elucidate the correlation we have

found between neonicotinoid use and butterfly populations. Experimental studies

to determine the toxicity of neonicotinoids to butterflies are required as a matter of

utmost urgency. Improved understanding of the levels of neonicotinoid contamination

in field margin plants and surface water are also needed to assess potential exposure.

Finally, even if widespread butterflies are being routinely exposed to harmful levels of

neonicotinoids, further evidence is required to determine if neonicotinoids are directly

responsible for declines in national butterfly populations or are acting as a proxy for other

factors associated with agricultural intensification. Further development of the UKBMS

models to incorporate land cover and habitat descriptors, as well as additional climatic

variables could add further insight into the factors playing a role in the recent declines. If

neonicotinoids are driving the decline in widespread butterflies in the UK, this begs the
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questions as to what other non-target arthropods might be similarly affected and whether

neocotinoids are playing a role in the declines in insectivorous farmland birds in the UK.
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Kleijn D, Kohler F, Báldi A, Batáry P, Concepción ED, Clough Y, Dı́az M, Gabriel D,
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