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The initiation of tectonic plate subduction into the mantle is poorly understood. If 
subduction is induced by the push of a distant mid-ocean ridge or subducted slab, we expect 

compression and uplift of the overriding plate. In contrast, spontaneous subduction 

initiation, driven by subsidence of dense lithosphere along faults adjacent to buoyant 
lithosphere, would result in extension and magmatism. The rock record of subduction 

initiation is typically obscured by younger deposits, so evaluating these possibilities has 

proved elusive. Here we analyse the geochemical characteristics of igneous basement rocks 
and overlying sediments, sampled from the Amami Sankaku Basin in the northwest 

Philippine Sea. The uppermost basement rocks are areally widespread and supplied via 
dykes. They are similar in composition and age - as constrained by the biostratigraphy of 

the overlying sediments - to the 52-48 million-year-old basalts in the adjacent Izu-Bonin-

Mariana fore-arc. The geochemical characteristics of the basement lavas indicate that a 
component of subducted lithosphere was involved in their genesis and the lavas were 

derived from mantle source rocks that were more melt-depleted than those tapped at mid-
ocean ridges. We propose that the basement lavas formed during the inception of Izu-

Bonin-Mariana subduction in a mode consistent with the spontaneous initiation of 

subduction. 

 

Recycling of lithospheric plates into the mantle is a major driver of the physical and chemical 

evolution of Earth. Subduction zones mark sites of lithosphere insertion into Earth’s mantle but 

we do not have a good understanding of how these zones are initiated or the accompanying 

compositional types and style of magmatism. Of all magma types emplaced at or near the surface 

of the Earth, those associated with subduction zones most closely match the average continental 

crust1; accordingly there has been sustained interest in the genesis and evolution of island arc 



magmas, and their significance with respect to continental crustal growth. On the basis of 

assumed ages of the current major subduction systems bordering the Pacific and along the Alpine-

Himalayan Zone, McKenzie2 suggested “ridges start easily, but trenches do not.” Ignorance of 

subduction inception contrasts with our advanced understanding of oceanic crust creation from 

initial lithospheric rifting to development of a mid-ocean ridge. Gurnis et al.3 noted half of all 

active subduction zones initiated in the Cenozoic in a variety of tectonic settings including old 

fracture zones, transform faults, extinct spreading centers, and through polarity reversals behind 

active subduction zones, and concluded forces resisting subduction can be overcome in diverse 

settings accompanying the normal evolution of plate dynamics.  

Among a number of proposed hypotheses, two general mechanisms, induced or spontaneous 
3,4, seem relevant to initiation of one of the largest intra-oceanic subduction zones in the western 

Pacific, namely the Izu-Bonin-Mariana (IBM) system. Induced subduction initiation leading to 

self-sustaining descent of lithosphere into the mantle results from convergence forced by external 

factors such as ridge push or slab pull along strike of a given systeme.g. 3. The Puysegur Ridge 

south of New Zealand may be an example. Stern4 suggested the IBM system represents an 

example of spontaneous initiation wherein subsidence of relatively old Pacific lithosphere 

commenced along a system of transform faults/fracture zones adjacent to relatively young, 

buoyant lithosphere. The importance of transpressional forces in subduction initiation has also 

been emphasised5. Stern and Bloomer6 proposed the earliest stages of volcanism accompanying 

spontaneous subduction zone nucleation are rift-associated and extensive perpendicular to the 

strike of the zone, rather than comprising the archetypal chain of stratovolcanoes that dominate 

mature arcs. The initial record of subduction initiation on the overriding plate resulting from these 

competing hypotheses should be distinct: induced subduction likely results in strong compression 

and uplift shedding debris into nearby basins, whereas spontaneous subduction commences with 

basement deepening prior to rifting, and sea-floor spreading potentially analogous to a number of 

ophiolites e.g. 3, 6.  

For the IBM system, the age and composition of initial magmatism (~52 Ma) preserved in the 

forearc basement and underlying peridotite have been determined7, as has the subsequent 

magmatic evolution of the arc via study of dredged and drilled materials including ashes and 

pyroclastics recovered by ocean drilling8,9. The arc has experienced episodes of backarc spreading 

in the Mariana Trough (7 Ma to present) and Shikoku and Parece Vela basins (~30-20 Ma), 

resulting in abandonment of the Kyushu-Palau Ridge (KPR) as a remnant arc10. Understanding 

the relationship of the northern portion of the KPR to the basement underlying its western flank in 

the Amami Sankaku Basin (ASB; Fig. 1) appeared to offer the promise of a record of IBM 



inception complementary to that recovered by dredging and submersible operations in the 

forearc7. Taylor & Goodliffe10 for example, had emphasized the strike of the KPR in this region 

(and the inferred Eocene trench) is at a high angle to all major extant features such as the western 

and southern borders of the ASB, and Amami Plateau-Daito Ridge, and concluded the IBM 

subduction zone did not initiate along any part of the preexisting tectonic fabric such as a 

transform fault.  

 

The Amami-Sankaku Basin – a key record of IBM arc inception 

The ASB is in the northwest of the Philippine Sea plate (PSP). The PSP is bounded by subduction 

zones and transform faults (Fig. 1), and has a complex tectonic and magmatic history. Plate 

tectonic reconstructions11-13 place subduction inception at ~50 Ma in the proto-Izu-Bonin arc (i.e., 

previously assumed to be the KPR), concurrent Pacific plate motion change, cannibalizing former 

northwest-southeast–trending transform faults associated with the Izanagi-Pacific Ridge (e.g., ref 

14). Whittaker et al.12 propose subduction of the Izanagi-Pacific Ridge along eastern Asia at ~60 

Ma initiated plate reorganisation culminating in Pacific plate motion change at 50 Ma relative to 

the Eurasian plate. Since IBM inception, the PSP has migrated northward accompanied by 

clockwise rotation, mostly between 50 and 25 Ma15. At subduction inception, a Cretaceous-age 

island arc system existed on the PSP, now preserved as the Amami Plateau–Daito–Oki Daito 

ridges13 (Fig.1); arc conjugates are likely preserved in the southern PSP in Halmahera and 

southern Moluccas16. Backarc spreading behind this southern arc caused initial opening of the 

West Philippine Basin (WPB), isolating the Amami Plateau–Daito–Oki Daito ridges. Plume-

derived ocean island basalt (OIB)-like magmatism followed IBM initiation, endured from 51 to 

45Ma, and is preserved as the Benham Rise-Urdaneta Plateau-Oki Daito Rise17-19.  

The ASB floor has a simple structure comprising up to 1.5 km of sediment overlying igneous 

oceanic crust (Fig. 2). Assuming a Vp ~ 6 kms-1, the two-way travel time of nearly 2 seconds to 

Moho indicates normal oceanic crustal thickness of about 6 km (Figure S1). There is no 

indication from available seismic lines that major topography such as stratovolcanoes forms the 

ASB basement. The floor of the basin is shallower than other basins west of the KPR and the 

WPB e.g. 10. International Ocean Discovery Program (IODP) Expedition 351 targeted the ASB 

anticipating the earliest stages of arc inception and evolution of the northern IBM arc would be 

preserved in the recovered sedimentary record. The basement composition and age would 

constrain the petrological, geochemical and tectonic evolution of the arc and subduction zone 

initiation. By extrapolation of the ASB basement seismic characteristics beneath the KPR, the 

structure of the IBM arc as a whole could be determined. Prior to Expedition 351, it appeared the 



early ASB sediment and basement might be Paleogene20 or even Cretaceous in age. During 

Expedition 351, IODP Site U1438 (4700 m water depth) penetrated 1461 m of sediments and 

sedimentary rocks and 150 m of the underlying igneous basement of the ASB. In terms of 

subduction inception, the nature of the basement and immediately overlying sedimentary rocks 

are critical and presented here. The results were unexpected, and require reappraisal of the style 

of arc magmatism immediately following inception, and of the significance of the large volume of 

subduction-related basaltic crust associated with this intra-oceanic island arc.  

 

The Amami-Sankaku Basin basement and overlying sediments  

A rubbly contact is present between overlying brown laminated mudstone and underlying, 

oxidized basalt. Overall, the ASB basement comprises variably altered and veined, lava sheet 

flows of sparsely vesicular to non-vesicular, microcrystalline to fine-grained, aphyric to sparsely 

microphyric, high-Mg, low-Ti, tholeiitic basalts. Phenocrysts are present in ~50% of samples, and 

consist of plagioclase, clinopyroxene, titanomagnetite, and olivine in order of decreasing 

abundance. Several chilled flow margins are present, but few preserve glassy margins. Petrologic 

details and representative photomicrographs (Fig. S2) are given in the Supplementary 

Information.  

Bulk compositions determined shipboard by inductively coupled plasma atomic emission  

spectrometry are presented in Table S1. The basalts mostly have high-MgO (generally >8 wt%), 

low-TiO2 (0.6–1.1 wt%), low-Zr (mostly <50 ppm), high-Sc (mostly >40 ppm) and high-Cr (up to 

~400 ppm). These basalts are compositionally distinct compared with mid-ocean ridge basalts 

(MORB) but generally similar to the ~48 Ma basalts recovered at Site 1201 (Ocean Drilling 

Program Leg 195) in the West Philippine Basin21 (Fig. 1), the ~52 Ma tholeiitic basalts (termed 

fore-arc basalts; FAB) recovered from the IBM Trench slope22-25 (Fig. 1) and recently in the Izu-

Bonin forearc by IODP Expedition 35226 Fig. 4, Figs S3-4).  

The lowermost sedimentary rocks (Unit IV) overlying the basement are clearly critical in 

terms of the earliest record of adjacent volcanic edifices, such as the developing KPR. 

Immediately above basement is a 4 m-thick section of dark reddish mudstone and sandstone 

passing upwards to fine to coarse tuffaceous rocks, and then fine to medium to coarse 

sandstone and breccia-conglomerate. The lithologic and paleontologic details are given in the 

Supplementary Information. A summary biostratigraphic- and paleomagnetic-based age-depth 

plot for the sediments at Site U1438 is shown in Figure 3. Based on the biostratigraphic data, 

the calculated average sedimentation rate for the lowermost 70 m of the supra-basement 

sediments is between 2 to 14 mm/ka without considering compaction. Allowing for a 



compaction factor ranging from 3 to 5, the average sedimentation rate would be between 6 to 

69 mm/ka. On that basis, the minimum age of the uppermost basement is inferred to be 

between 51 to 64 Ma, with a probable age around 55 Ma.  Consistent with the biostratigraphic 

constraints, in situ downhole temperature measurements and thermal conductivity 

measurements on core material to 85 m depth beneath the sea floor give a calculated heat flow 

of 73.7 mW/m2 (Fig. S3), implying a thermal age for the underlying lithosphere of 40–60 

Ma27.  

 

Subduction inception and earliest magmatism of the IBM arc 

Prior to Expedition 351, we expected ASB basement rocks to be 10s of millions of years older 

than the IBM arc inception date (52 Ma according to forearc exposures23), and potentially 

bounded on the western margin of the ASB by an old transform fault. Two other assumptions 

prevailed: (1) the tectonic setting of the basement was assumed to be non-arc related, given its 

depth relative to nearby inter-ridge and backarc basins, and relatively smooth morphology (Fig. 

1); (2) the strike of the KPR stratovolcanic edifices (proto-IBM arc) is subparallel to the nascent 

IBM trench and at an angle to the bounding features of the ASB or neighbouring Cretaceous-aged 

arcs, suggesting a locus for initial arc magmatism independent of the immediate ASB basement 

origins or tectonic setting10.  

Drilling results at Site U1438 have defied expectations, and none of these assumptions 

now appear valid. There is marked geochemical and petrological equivalence of the igneous 

basement at sites U1438, 1201 and the FAB of the present-day IBM forearc 21-24, 26, 28. Compared 

with MORB29, Site U1438 basalts are notable for the presence of phenocryst clinopyroxene (cf. 

pyroxene paradox30,31), high MgO/FeO, markedly low TiO2, low Zr, and high Sc abundances. The 

tholeiitic basalts in both present-day forearc and ASB were likely derived from upper mantle 

sources more strongly depleted in terms of magmaphile trace elements than those typically tapped 

beneath mid-ocean ridges. The critical distinctive characteristics of these basalt types compared 

with MORB are their low Zr/Y and Ti/V (Fig. 4). These characteristics relate to the tapping of a 

more refractory (prior melt-depleted) mantle source and presumably more oxidized melting 

conditions than those beneath mid-ocean ridges33-36. It is noteworthy however, that the Ti/V of 

FAB from the IBM forearc are lower than those of Site U1438 and 1201, and overlap those of 

Site A (Fig. 1) in the fore-arc (Fig. S4), possibly indicative of decreasing mantle wedge oxidation 

from trench-proximal to distal across the strike of the nascent IBM arc.  While there is muted 

development of Pb and other fluid-mobile, lithophile trace element spikes 23,24, the involvement of 

subducted slab-derived fluids in the genesis of FAB is implicated by: (1) the “spoon-shaped” rare 



earth element abundance patterns compared with mid-ocean ridge basalts29; (2) the presence of 

clinopyroxene phenocrysts relating to relative suppression of plagioclase saturation resulting from 

elevated H2O contents; and (3) depleted character of the mantle source(s), plausibly requiring 

fluid fluxing for melting. Basalts from Site 447 (Fig. 1; on magnetic anomaly 22, ~ 44Ma) in the 

West Philippine Basin have a depleted character similar to FAB32, but also normal olivine-

plagioclase phenocryst assemblages characteristic of MORB, and lack clinopyroxene, plausibly 

reflecting low dissolved H2O contents. The important point is the specific ensemble of petrologic 

characteristics of FAB is unequivocally related to subduction zone magmatism, albeit at an early 

stage of development in any given arc setting. We note tholeiitic basalts derived from refractory 

mantle sources equivalent to those tapped during FAB genesis are being erupted in some active 

rear arc settings. For example, those of the Fonualei Rifts adjacent to the northernmost Tonga Arc 

have strikingly low Zr/Y and Ti/V 10<20 equivalent to those of FAB37, but are also characterized 

by more strongly elevated Pb/Ce and other indicators of a larger slab-derived, large ion lithophile-

enriched fluid component in their genesis than FAB.  

 We conclude on the basis of available age constraints, probable sheet lava flow 

morphology, petrology, and key geochemical characteristics that the basement of the ASB is 

equivalent to the FAB exposed in the trench slope of the IBM arc. We recognize that radiometric 

dating of the ASB basement is required, and may temporally have preceded the FAB exposed in 

the present-day fore arc. Reconstruction of the nascent IBM arc then implies an across arc-strike 

extent for FAB and basement of the ASB of at least ~250 km, after accounting for backarc 

extension. The multiple feeder dike systems of FAB observed in the trench slope are all consistent 

with an origin for these basalts in a tectonic environment characterized by sea floor spreading. 

The seismic structure of the KPR indicates the igneous basement at sites 120138 and U143839 

continues beneath the Ridge, and there is an absence of the thick (>5km) middle crustal layer with 

Vp ~6 kms-1 (plausibly dioritic) that characterizes the active IBM arc40. Sediments overlying the 

ASB basement contain an increasing volumetric input from adjacent arc edifices, inferred to be 

the developing stratovolcanoes of the KPR but possibly from activity on adjacent Daito ridges 

and Amami Plateau. The KPR volcanoes have no apparent or simple relationship with any of the 

observable tectonic features of the basement upon which they are superimposed. Similar 

indifference with respect to basement features is manifest globally by many island and continental 

arc chains of volcanoes. The assumption that the strike of the KPR precludes models of 

subduction initiation along a preexisting zone of weakness is erroneous because the local ASB 

basement (lava flows) was not formed prior to the development of subduction. In fact, the ASB 

basement has either blanketed any preexisting basement or if formed through seafloor spreading, 



represents 100% new crust. The evidence that the western boundary of the ASB is a N-S-striking 

transform fault is not proven, and could postdate at least in part formation of the ASB.  

An important corollary is much of the areally extensive, basaltic crust of the earliest IBM 

arc was constructed by subduction-related processes rather than at a pre-~52 Ma mid-ocean ridge. 

The limited presence of Jurassic (159 Ma) arc-type tholeiites in the IBM trench slope23 is an 

indication that the ~52 Ma-old crust developed in rifted older arc basement. Previous attempts at 

calculating volumetric fluxes in the IBM system have deducted a basement crustal thickness 

equivalent to that of ordinary, mid-ocean ridge-generated crust41; this potentially results in 

underestimation of the volumetric flux for the early IBM arc, which may have been equivalent for 

a few million years of early arc growth to that of mid-ocean ridges (~1000 km3 km-1 Ma-1). 

Clearly, our general conceptions of the earliest stages of intra-oceanic arc development 

need substantial modification. Suggestions e.g. 6 that the post-FAB sequences of boninite 

pillow lava and dyke outcrops at the type locality at Chichijima and at ODP Site 786 (both in 

the IBM forearc) developed in an extensional environment with no localization of archetypal 

stratovolcano edifices, are confirmed and amplified by the identification of widespread 

preceding eruptions of tholeiitic basalts. The latter formed the basement on which a restricted 

across-strike distribution of individual stratovolcanoes was developed, preserved in the 

remnant arc of the KPR. The apparent absence of boninite lithologies at Site U1438 may 

reflect a trenchward-restriction and focusing of wedge melting as the arc developed. 

Overall, it appears major motion changes of the Pacific plate following subduction of the 

Izanagi-Pacific Ridge along East Asia led to reorganization of equatorially-located networks 

of island arc systems in the region between the Australian and Asian plates42. The Philippine 

Sea plate developed in this region, and experienced trench roll-back at one or more of its 

bounding plate margins (~60Ma). Subduction initiation at ~52Ma at the future site of the IBM 

system, triggered rifting and seafloor spreading of the overriding plate, forming an extensive 

basaltic arc crust, both along- and across-strike. Localization of a defined chain of 

stratovolcanoes atop this basement later formed a volcanic front. Areally extensive basaltic 

crust with unequivocal subduction zone-related petrological and geochemical signatures is 

consistent with a spontaneous subduction initiation mechanism6 but not at a pre-existing 

fracture zone (e.g, ref 10).  

It is still possible the ASB formed through spreading in a marginal basin associated with 

subduction earlier than IBM inception, but structural relationships of the basin with 

surrounding ridges do not clearly indicate such an association.  Rather than across-strike 

variation in mantle processes, the additional geochemical data indicate potential along-strike 



influences. Closure of the Shikoku Basin shows the ASB and site U1438 are conjugate to site 

A in the IB fore-arc (Fig. 1) whereas Site B, Expedition 352, and the Bonin (forearc) Ridge 

are conjugate to the Daito and Oki-Daito ridges; a greater subduction-related influence on the 

mantle prior to IBM inception may be expected for these latter sites, consistent with their 

lower Ti/V. 

Finally, we note a forced subduction initiation is not altogether precluded because while 

evidence for a pre-subduction initiation basement is not widespread, it may exist. These 

uncertainties require resolution by detailed multidisciplinary studies of samples recovered by 

the triplet of IODP expeditions (350-352) to the IBM system. 

 

Methods 

All data generated during IODP Expedition 351 will be publicly accessible from 31 July 2015 

via the IODP-JOIDES Resolution Science Operator website (www.iodp.tamu.edu). 
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Figure captions 

Figure 1. Location of the Amami Sankaku Basin and the Kyushu-Palau Ridge. General 

setting and bathymetry (blue deep, red shallow) of the bounding trenches, basins, and ridges 

comprising the Philippine Sea Plate, boundary outlined with a dashed white line. Locations of 

IODP Site U1438, ODP Site 1201, and DSDP Site 447 are shown by pink stars. Locations of 

Shinkai submersible dives in the IBM forearc are noted as A22, B23, and D24. Location of 

DSDP Site 458 is noted as C25.  Pink-bounded box is shown in detail in Figure 2.  

 

Figure 2. Detailed bathymetry of the Amami Sankaku Basin, IODP Site U1438, and 

seismic survey lines. Bathymetry of the Amami Sankaku Basin, neighboring Kyushu-Palau 

Ridge, and nearby Cretaceous-aged arcs of the Amami Plateau and Daito Ridge. Site U1438 

is located at the intersection of the two multichannel seismic survey lines D98-A and D98-8 



(a). Seismic reflection images (b) at Site U1428 showing in the two upper subpanels, the 

multichannel seismic line D98-8 (upper) and interpreted major reflectors (lower). Lower two 

subpanels show multichannel seismic line D98-A (upper) and interpreted major reflectors 

(lower). 

 

Figure 3. Graphic lithologic summary, biostratigraphic- and paleomagnetic-based age-

depth plot for IODP Site U1438. Abbreviations are: mbsf = metres below sea floor; Cl = 

clay, Si = silt, Vfs-fs = very fine sand–fine sand; Ms-vcs = medium sand–very coarse sand, 

Gr = gravel; Pleist.=Pleistocene, Plio.=Pliocene, Paleoc.=Paleocene. Fossil occurrences are 

described in the Supplementary Material. 

 

Figure 4. Comparative geochemical plots of mid-ocean ridge and subduction-related basalts. 

Comparison of samples from Site U1438 with global MORB29, Izu-Bonin-Mariana fore-arc 

basalts (FAB)23,24, IODP Expedition 352 FAB and boninite26, Site 120121, and global MORB 

averages, with abbreviations: D, depleted; N, normal; E, enriched43. Y vs Zr abundances in 

basalts, noting High Y/Zr is indicative of derivation of basalt from highly depleted upper mantle 

sources (a). V vs Ti abundances in basalts. Most MORB have 20< (Tippm/1000)/Vppm <50 

whereas tholeiitic basalts in island arcs, including FAB, have (Tippm/1000)/Vppm<2036. Some 

boninite from the Izu-Bonin-Mariana arcs have (Tippm/1000)/Vppm<1026 (b). Additional data 

shown in Figures S3 and S4. 
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S1 Seismic cross-sections 

The two-way travel times recorded by seismic reflection for the crossing lines D98-A and 

D98-08 (Fig. 2) through Site U1438 are shown in Figure S1.  

 

Figure S1. Details of the multi-channel seismic profiles (see Fig. 2 for location) that 

intersect at Site U1438. An estimate of the sediment-igneous basement interface and 

Moho location is indicated by yellow dashed lines. The vertical axis is two-way travel 

time in seconds. 

 

S2 Petrology of Unit 1 

The majority of phenocrysts in basalts of Unit 1, which comprises the Amami Sankaku 

Basin basement and lowermost lithostratigraphic unit of Site U1438, range in size from 

0.2 to 4 mm. Plagioclase phenocryst abundances range from 0% to 30%, although 0–5% 



is predominant. The phenocrysts tend to be blocky and sometimes zoned. Clinopyroxene 

phenocrysts occur more rarely and tend to be smaller (0.2 mm) than plagioclase. The 

occurrence of olivine either as phenocrysts or in the groundmass is difficult to estimate 

due to strong alteration. Some olivine pseudomorphed by chlorite is recognizable by 

shape and the presence of small, partially translucent, reddish chrome spinel inclusions. 

The visible alteration consists predominantly of patchy chlorite and oxides replacing 

phenocrysts and groundmass, chlorite and carbonate filling sparse vesicles, and veins 

filled with chlorite + carbonate ± sulfides and/or oxides. Vesicles are present in 

approximately one-third of the studied rocks but are usually sparsely distributed within 

each. The groundmass of the basalts is mostly holocrystalline and is composed primarily 

of plagioclase, clinopyroxene, and titanomagnetite. Glass can be significant in the 

groundmass (up to 85%; average = 25%), but is entirely altered mostly to chlorite. 

Representative photomicrographs are shown in Figure S2. 

 

Figure S2. Whole thin section and detailed photomicrographs of Site U1438E Unit 1 

basalts showing different textural types: a) fine-grained basalt with ophitic texture (351-

U1438E-78R-2); b) aphyric microcrystalline basalt (351-U1438E-77R-3); For a and b, 



views on the left are in plane polarized light and on the right are cross-polarized light. 

Horizontal dimension of the fields in all images except in bottom right panel is shown by 

the scale bar in  (left).  c) fine- to medium-grained basalt with ophitic texture, 

clinopyroxene (cpx) and altered olivine phenocrysts (ol) (351-U1438E-80R-1) on left, 

and details of same thin section on right with cross-polarized (left) and plane polarized 

(right). Scale bar is for both left and right of this image pair. 

 

S3 Analytical Techniques for Shipboard ICP-AES 

Thirty-seven samples from the Unit 1 basalts were collected (Cores U1438E-70R to 

88R) and analyzed for major and trace elements by inductively coupled plasma–

atomic emission spectroscopy (ICP-AES; Table S1). The majority of these samples 

are high-MgO (mostly >8 wt%), low-TiO2 (0.6–1.1 wt%) tholeiitic basalts.  

Samples (~2-8 cm
3
) were cut from the core with a diamond saw blade with cut 

surfaces ground on a diamond-impregnated disk. The samples were cleaned 

ultrasonically in a beaker containing trace-metal-grade methanol (15 min), followed 

by deionized water (10 min), and then Barnstead deionized water (18 MΩ·cm; 10 

min). The cleaned pieces were dried for 10–12 h at 110°C and then crushed  (<1 cm 

chips) between two Delrin plastic disks in a hydraulic press. The chips were ground to 

a fine powder using a SPEX 8515 Shatterbox with a tungsten carbide lining. An 

aliquot of sample powder was weighed (1000.0 ± 0.5 mg) and then ignited (700°C for 

4 h) to determine weight loss on ignition (LOI). Ignited powders for each sample and 

standard were weighed (100.0 ± 0.2 mg; Cahn C-31) and mixed with LiBO2 flux 

(400.0 ± 0.5 mg; pre-weighed on shore). Weighing errors were estimated as ±0.05 mg 

under relatively smooth sea surface conditions. Aqueous LiBr solution (10 mL of 

0.172 mM) was then added to the flux and powder mixture as a non-wetting agent. 

Samples were fused individually in Pt-Au (95:5) crucibles for ~12 min at a maximum 

temperature of 1050°C in an internally rotating induction furnace (Bead Sampler NT-

2100). The beads were transferred into high-density polypropylene bottles, dissolved 

in a solution of 10% HNO3 and 10 ppm Ge (50 mL), and shaken on a Burrell wrist-

action shaker (1 h).  Solution increments (20 mL) were passed through a filter 

(0.45 µm) into a clean high-density polypropylene bottle.  From the filtered solution, 

1.25 mL was pipetted into a scintillation vial and diluted with 8.75 mL of a 



dissolution solution containing 10% HNO3. The final solution-to-sample dilution 

factor is 4000:1. 

Major (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, and P) and trace (Sc, V, Cr, Sr, Y, 

Zr, Ba) element concentrations of samples and standards were measured on a 

Teledyne Leeman Labs Prodigy ICP-AES instrument using multiple wavelengths 

commonly selected for silicate rocks, and instrument-specific start-up and peak search 

routines.  Data were acquired using Gaussian peak fitting; each sample and standard 

was analyzed in quadruplicate within a given sample run. A 10% HNO3 rinse solution 

was used (90 sec) between analyses. Thirteen certified rock standards (AGV-2, BCR-

2, BHVO-2, GSP-2, JB-2, JG-2, JG-3, JP-1, JR-1, JR-2, Nod-A-1, STM-1, VS-N) 

were used. Standard JB-2 is from the Izu-Bonin Arc, so it was analyzed as an 

unknown. Each run consisted of the standards interspersed with blanks and the 

samples in quadruplicate. Standard JR-2 was analyzed at the beginning and end of 

each run and interspersed in the sequence for instrument drift correction. Measured 

raw-intensities were corrected offline for instrument drift using the shipboard “ICP 

Analyzer” software. A linear calibration line for each element was calculated using 

the standards from which element concentrations in the samples were determined 

from relevant calibration lines. Calibration standards were analyzed in quadruplicate 

and yielded a precision of Al < 0.4%, Ca < 0.6%, Fe < 0.5, K < 0.6%, Mg < 0.5%, 

Mn < 0.6, Na < 1.5, Si < 0.4%, and Ti < 0.5%, Ba < 1.5%, Cr < 6.6%, Sr < 0.9%, Sc 

< 1.6%, V < 9.7%, Y < 1.0%, and Zr < 1.7%. For major elements, data were rejected 

if volatile-free weight percentages totals were outside 100±5 wt% and are reported 

normalized to 100 wt% total. Blank solutions aspired during each run were below 

detection limits for all elements. 

In addition to the data presented in Figure 4, we show equivalent plots (Figs 

S3 and S4) incorporating previously published analytical data for samples recovered 

by De Bari et al.
22

, at location A on Figure 1 (proposed to be equivalent to FAB
24

), 

and the 159 Ma samples recovered at location B on Figure 1
23

. 



 

Figure S3. Comparison of Zr vs Y concentrations for samples from De Bari et al.
22

 

and 159 Ma basalts from the IBM forearc
23

 with global MORB
29

, Izu-Bonin-Mariana 

fore-arc basalts (FAB)
23,24

, Site 1201
21

, Site U1438, IODP Expedition 352 FAB and 

boninite
26

. 



 

Figure S4. Comparison of V vs Ti concentrations for samples from De Bari et al.
22

 

and 159 Ma basalts from the IBM forearc
23

 with global MORB
29

, Izu-Bonin-Mariana 

fore-arc basalts (FAB)
23,24

, Site 1201
21

, Site U1438, IODP Expedition 352 FAB and 

boninite
26

. Most MORB have 20< (Tippm/1000)/Vppm <50 whereas tholeiitic basalts 

in island arcs, including FAB, have (Tippm/1000)/Vppm<20
36

. Some boninite from 

the Izu-Bonin-Mariana arcs have (Tippm/1000)/Vppm<10
26

. 

 

Table S1. Analytical results for samples from Unit 1, Site U1438 

 

S4 Details of Unit IV lithology and paleontology  

The lithology at Site U1438 consists of sediments, sedimentary rocks, and 

igneous rocks (Fig. 3). Sediments and sedimentary rocks at Site U1438 were 

recovered from the seafloor to 1461 meters below seafloor (mbsf) and are divided into 

four lithostratigraphic units. Unit I (160.3 m thick) is recent to latest Oligocene in age 

and the sediments are primarily terrigenous, biogenic, and volcaniclastic mud and 

ooze with interspersed discrete ash layers. Unit II (139.4 m thick) is Oligocene in age 

and the sedimentary rocks are tuffaceous mudstone, siltstone, and fine sandstone with 



localized slumping-induced deformation features. The mudstone to sandstone 

intervals are typically normally-graded beds with sharp lower boundaries to the 

sandstone bases, as well as moderately to strongly bioturbated mudstone caps. Unit III 

(1046.4 m thick) is Oligocene to Eocene in age; the sedimentary rocks are generally 

coarser grained than those of Unit II and include tuffaceous mudstone, tuffaceous 

sandstone, tuffaceous medium to coarse sandstone with gravel, and tuffaceous 

breccia-conglomerate with volcanic and sedimentary clasts commonly up to pebble 

and (rarely) cobble size. At the largest scale, Unit III comprises five intervals of 

coarser clastic sedimentary rocks, separated by intervening mudstone-dominant 

intervals lacking discrete breccia-conglomerate beds. Unit IV (99.7 m thick) and is 

Eocene in age. It is composed of radiolarian-bearing mudstone underlain by medium 

to coarse sandstone, breccia-conglomerate, and tuffaceous siltstone and mudstone. 

The centimeter- to decimeter-scale layers of sandstone range in color from dark 

greenish gray to very dark gray, and exhibit normal grading, lamination, and cross 

lamination. These intervals consist of common to abundant volcanic rock fragments 

exhibiting microlitic to vesicular to pumiceous textures, in addition to rounded to 

subangular grains of plagioclase, pyroxene, amphibole, and opaque minerals. There 

are some black, tachylitic glass fragments with plagioclase microlites. 

Siltstone/mudstone fragments are rare. The feldspar, ferromagnesian minerals, and 

volcanic grains are variably altered to zeolites and clay minerals (which also occur as 

cementing phases), although clinopyroxene grains are mostly unaltered. Alteration 

minerals include chlorite-clay, zeolite, hematite, and titanite. In the sandstones 10 m 

above basement, laminae are unusual in that they are crystal-rich (predominantly 

plagioclase and green amphibole) with amphibole-bearing, felsic groundmass 

volcanic fragments. Three high-Na basaltic andesite sills intrude the sediments 

between 49–55 m above the basement. The sills are sparsely phyric, with 3%–5% 

phenocrysts and microphenocrysts of clinopyroxene (0.2–1.0 mm) set in a 

groundmass of devitrified glass with microlites of plagioclase and pyroxene. The sole 

presence of clinopyroxene phenocrysts distinguish the sills from basalts of the 

underlying basement. There is no evidence in the oldest sediments for a large 

component of clastic material derived from uplifted subjacent basement as expected 

from induced subduction. There is also no evidence for any intense regional 

deformation of the sediments other than some minor faulting. Unit IV is underlain by 

igneous basement rocks comprising Unit 1 (See Section S1 for characteristics).  



Radiolaria are present in the 4 m-thick mudstone and sandstone section above 

basement, but are nondeterminable in age. The oldest sample yielding determinable 

radiolaria is 40 m above basement (Fig. S6). The assemblage contains radiolarian 

genera characteristic of the latest Paleocene–early Eocene. Based on the presence of 

Buryella spp., Phormocyrtis spp., Podocyrtis spp., and Theocotylissa spp., the age of 

the sample is tentatively interpreted as latest Thanetian–Ypresian (RP7 [top]–9; 

56.83–48.57 Ma). A sandy sample from Section 66R-CC, 12 m above basement, 

contains two specimens of very poorly preserved, partially recrystallized planktonic 

foraminifers. One specimen probably belongs to the species Acarinina bullbrooki 

(Zones E7–E11; 50.2–40.49 Ma), or possibly Acarinina soldadoensis (Zones P4c–P9; 

57.79–44.49 Ma)
1
. 



 

Figure S5. Scanning electron microscope images of radiolarians from Unit IV of Site 

U1438 and genera ranges used to constrain the age (lower panel). Sample U1438E-

63R-1W, 23-25 cm (Early Eocene): 1 and 2. Buryella tetradica; 3 and 4. Calocycloma 

castum; 5. Lamptonium fabaeforme; 6. Phormocyrtis cf. striata exquisita; 7. 

Theocotylissa ficus; 8. Theocotyle nigrinae. Sample U1438E-63R-1W, 78-81 cm 



(latest Paleocene-Early Eocene): 9. Buryella sp.; 10. Phormocyrtis sp.; 11. Podocyrtis 

sp.; 12. Theocotylissa sp. 

 

 

Figure S6. Scanning electron microscope (upper) and reflected light (lower) images 

of Acarinina sp. from Sample U1438E-66R-CC. 

 

S5 Downhole temperature, thermal conductivity, heat flux, water depth and 

thermal age 

Successful temperature measurements were made at seven depths using the advanced 

piston corer temperature tool (APCT-3)
2
 from the mudline to 83.2 mbsf. The 

temperatures as a function of depth did not show any substantial deviation from a 

linear geothermal gradient of 77.6°C/km (Fig. S7). Thermal conductivity was 

measured using the Teka TK04 system by transient heating of the sample with a 

known heating power and geometry
3
. Changes in temperature with time during 

heating are recorded and used to calculate thermal conductivity.  At these depths, the 

sediment was poorly consolidated, so a needle probe was inserted into the sediment 

through a 2 mm hole, drilled into the plastic core liner, to measure the thermal 

conductivity. All measurements were subsequently corrected for in situ conditions 

using the method of Hyndman et al.
4
 in which the temperatures were determined from 

the interpolated APCT-3 measurements (Fig. S7a). Spurious values with ks < 0.85 

W/[m·K] from each set of three individual measurements were removed and the mean 

and standard deviation determined. Overall, there were 28 measurements of the core 

approximately evenly spaced down to 100 mbsf. The measurements did not vary 



substantially from a constant value of 0.951±0.046 W/mK (Fig. S7b). A combination 

of the temperature measurements with the thermal conductivity using Bullard-type 

analysis
5
 indicated the thermal gradient did not change with depth in the upper part of 

Site U1438 (Figure S7c). This suggests a geotherm that is undisturbed by local 

processes, such as sediment compaction, fluid flow within the porous sediments, or 

internal heat production from radioactive decay. With these measured thermal 

conductivities, the calculated heat flux is 73.7 mW/m
2
 (Figure S7d). The intersection 

of the measured heat flux with the empirical plate age-reliable heat flow relation
25

 

occurs at 50 Ma. Given the range of the individual heat flow values and uncertainty in 

basement age for each reliable heat flow value, a conservative estimate for the 

thermal age of the ASB is 40-60 Ma. This estimate is independent of the use of a plate 

model or a half space model when interpolating between reliable heat flow values. 

A preliminary estimate of the sediment load–corrected depth of the basement 

at Site U1438 gives a depth of ~5527 m. A residual depth of ~550 m is calculated 

from an expected depth of 5000 m for a 50 Ma age plate
6
. This is consistent with 

other estimates for the west Philippine Sea Plate and within the range observed for the 

Shikoku and Parece Vela basins, which have excess depths of 500–1000 m
7
. In other 

words, the entire region around Site U1438 has water depths greater than predicted by 

the average subsidence of the sea floor and is interpreted as a dynamic draw-down by 

mantle flow.  The water depths suggest that the age of the plate might be slightly 

younger than the 50 Ma thermal age, but, at a minimum, the heat flux and water depth 

give ages consistent with that inferred from biostratigraphy. 

 



 

 

Figure S7.  Temperature gradient, conductivity, thermal resistance, and Bullard plot 

for data obtained with the advanced piston corer temperature tool at Site U1438. 
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