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Abstract 23 

Through the production and export of their calcite coccoliths, coccolithophores form a key 24 

component of the global carbon cycle. Despite this key role, very little is known about the 25 

biogeochemical role of different coccolithophore species in terms of calcite production, and 26 

how these species will respond to future climate change and ocean acidification. Here we 27 

present the first study to determine species-specific calcite production, from samples 28 

collected in the Arctic Ocean and subarctic Iceland Basin in June 2012. We show that 29 

although the coccolithophorid Coccolithus pelagicus comprised only a small fraction of the 30 

total community in terms of abundance (2 %), it was the major calcite producer in the Arctic 31 

Ocean and Iceland Basin (57 % of total calcite production). In contrast, Emiliania huxleyi 32 

formed 27 % of the total abundance and was responsible for only 20 % of the calcite 33 

production. That C. pelagicus was able to dominate calcite production was due to its 34 

relatively high cellular calcite content compared with the other species present. Our results 35 

demonstrate for the first time the importance of considering the complete coccolithophore 36 

community when considering pelagic calcite production, as relatively rare but heavily 37 

calcified species such as C. pelagicus can be the key calcite producers in mixed communities. 38 

The response of C. pelagicus to ocean acidification and climate change is therefore likely to 39 

have a major impact on carbon cycling within the North Atlantic and Arctic Ocean. 40 

  41 
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Introduction 42 

Coccolithophores are a major group of phytoplankton, comprising up to 10% of primary 43 

production (Poulton et al. 2007), dominating pelagic calcite production and export with their 44 

calcite coccoliths (Broecker & Clark 2009), and thus forming a key component of the global 45 

carbon cycle (de Vargas et al. 2007, Ziveri et al. 2007). Marine calcifiers, including 46 

coccolithophores, face an uncertain future, as they have to contend with the effects of global 47 

warming and ocean acidification (Royal Society 2005, Winter et al. 2013). Culture 48 

experiments considering the response of coccolithophores to ocean acidification have 49 

produced conflicting results (Iglesias-Rodriguez et al. 2008, Langer et al. 2009, Hoppe et al. 50 

2011), with long term studies suggesting adaptive evolution could partly compensate for the 51 

effect of global warming and ocean acidification (Lohbeck et al. 2012, Schluter et al. 2014). 52 

Furthermore, more mechanistic understanding of coccolithophore responses to variable pH 53 

indicate that different species respond differently (Langer et al. 2009) and have different 54 

growth optimum conditions in terms of pH (Bach et al. 2015). 55 

Many of the previous studies on coccolithophores, along with the majority of the current 56 

literature, consider only a single species of coccolithophore: Emiliania huxleyi. Although E. 57 

huxleyi is considered the keystone coccolithophore species due to its global dominance and 58 

ability to form large-scale highly visible blooms (Paasche 2002), there are ~ 200 extant 59 

species of coccolithophore, which vary considerably in cell size (2 to 20 μm), and cellular 60 

calcite quota (Young et al. 2003). In this context, E. huxleyi has a relatively small cell (~ 5 61 

µm) with a relatively low cellular calcite content (0.2 – 1.1 µmol C cell-1; Paasche 2002, 62 

Daniels et al. 2014) and hence relatively low calcification rates; other larger and more heavily 63 

calcified species, such as Coccolithus pelagicus with ~ 30 times more calcite per cell than E. 64 

huxleyi (Daniels et al. 2014), have the potential to be key species in terms of upper ocean 65 

calcite production and export (Ziveri et al. 2000, Bauman et al. 2004, Daniels et al. 2014).  66 

The response of coccolithophores to ocean acidification in culture experiments appears to 67 

differ between species and strains (Langer et al. 2006, Langer et al. 2009), and culture 68 

experiments do not necessarily reflect the response of natural populations to environmental 69 

fluctuations (Smith et al. 2012). Therefore it is unlikely that E. huxleyi’s response to ocean 70 

acidification in culture can be applied to multi-species populations of coccolithophores (Bach 71 

et al. 2015). In natural communities the response to variability in pH is often secondary to 72 

effects of light, nutrient availability and growth rate (Zondervan 2007, Charalampopoulou et 73 

al. 2011, Poulton et al. 2014). To examine how a diverse coccolithophore community will 74 
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respond to environmental changes, and to assess the relative biogeochemical importance of 75 

different coccolithophore species, field studies considering the whole coccolithophore 76 

community are required. 77 

The effect of anthropogenic CO2 emissions on the Arctic Ocean is expected to be among the 78 

largest and most rapid of any region on the globe (ACIA 2004), with the Arctic already 79 

experiencing rapid warming (ACIA 2004). Ocean acidification is also expected to be 80 

particularly enhanced at high latitudes because of the increased solubility of CO2 at low 81 

temperatures. Within the Nordic Seas (Greenland Sea and Norwegian Sea) of the Arctic 82 

Ocean large natural gradients of environmental variables such as temperature and carbonate 83 

chemistry already exist; in the west, the East-Greenland Current transports cold (< 0 °C) 84 

Polar Water southwards through the Greenland Sea (Fig. 1), while in the east the Norwegian 85 

Current carries relatively warm (6 – 10 °C) Atlantic water into the Norwegian Sea 86 

(Johannessen 1986).  87 

Coccolithophores are a key phytoplankton group within the Greenland and Norwegian Sea 88 

(Samtleben & Schröder 1992). The highest species diversities are found in the Norwegian 89 

Sea (Samtleben & Schröder 1992, Baumann et al. 2000), as the more diverse North Atlantic 90 

communities are transported northwards by the Norwegian Current. The Norwegian Sea 91 

coccolithophore community is generally dominated by E. huxleyi (Samtleben & Schröder 92 

1992, Baumann et al. 2000, Charalampopoulou et al. 2011), with some species, such as 93 

Calciopappus caudatus, present throughout, while other species, such as Syracosphaera spp., 94 

are limited to Atlantic surface waters. In contrast, coccolithophore diversity is lower in the 95 

Greenland Sea (Samtleben & Schröder 1992); C. pelagicus is commonly observed along with 96 

other polar species (e.g. Papposphaera spp.). The contrast in coccolithophore community 97 

structure and diversity, coupled with the strong natural environmental gradients of the 98 

Greenland and Norwegian Seas, means that this region is an ideal location to examine the 99 

influence of both the environment and the coccolithophore community structure on calcite 100 

production. 101 

The aim of this study was to determine whether E. huxleyi was the major calcite producer in 102 

the Arctic Ocean, and if not, which coccolithophore species were. As only total community 103 

calcite production (CP) can be measured from mixed communities (e.g. Charalampopoulou et 104 

al. 2011, Poulton et al. 2014), a novel method was developed to determine species-specific 105 

calcite production (CPsp) for each individual coccolithophore species. This method 106 

incorporates species-specific cellular calcite, growth rates and abundances to partition CP. 107 
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This is the first study to determine the calcite production rates of individual coccolithophore 108 

species within a natural multi-species community. Here we present results from 19 stations 109 

within the Arctic Ocean and the subarctic Iceland Basin (Fig. 1); calcite production (CP), 110 

coccolithophore cellular abundances, carbonate chemistry parameters and other 111 

environmental variables were measured, and CPsp derived for each station. 112 

Methods 113 

Sampling 114 

Sampling was carried out in the subarctic Iceland Basin, and the Greenland and Norwegian 115 

Seas within the Arctic Ocean (Fig. 1) between June 4th and 30th 2012 during the UK Ocean 116 

Acidification Arctic Cruise, aboard the RRS James Clark Ross (JR271). Water samples for 117 

rate measurements, coccolithophore community structure and ancillary measurements, were 118 

collected from a single depth within the middle of the mixed layer at 19 CTD stations. 119 

Temperature and salinity were obtained from the CTD. Incidental photosynthetically active 120 

radiation (PAR), measured with ship-mounted scalar irradiance sensors (Kipp & Zonen 121 

ParLite 0348900, Skye Instruments SK3), was integrated over the incubation periods to 122 

calculate daily incidental irradiance (mol photons m-2 d-1). The vertical diffuse attenuation 123 

coefficient of PAR (Kd) in the water column was calculated from the CTD casts, with the 124 

depth of the euphotic zone (Zeup) calculated as the depth of 1 % incident irradiance. 125 

Calcite production 126 

Daily rates of calcite production were measured using the micro-diffusion technique (Paasche 127 

& Brubak 1994, Balch et al. 2000) following Poulton et al. (2014). Water samples (70 mL, 3 128 

light, 1 formalin-killed), collected from one depth within the middle of the mixed layer, were 129 

inoculated with 25 – 50 µCi 14C labelled sodium bicarbonate. Samples were incubated for 24 130 

hours in an on-deck incubator, chilled with surface seawater and the 55% incidental 131 

irradiance light depth was replicated using Misty-blue optical filters (LEETM). When the 132 

surface seawater supply was unavailable (at ice stations), samples were incubated in a 133 

constant temperature container laboratory (see Richier et al. 2014) with the temperature and 134 

photoperiod set to replicate the in situ environment. Formalin-killed blanks were prepared by 135 

addition of 1 mL of 0.2 μm triple-filtered and sodium-borate buffered formalin solution. 136 

Incubations were terminated by filtration through 25 mm 0.45 μm polycarbonate filters 137 

(NucleporeTM). Filters were secured in glass scintillation vials with a gas-tight septum and a 138 
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bucket containing a CO2 trap (Whatman GFA filter soaked with 200 µl β-phenylethylamine), 139 

acidified with a weak acid (1 ml, 1% phosphoric acid), thus releasing the acid-labile 140 

inorganically fixed carbon (CP) as 14CO2 to be absorbed by the CO2 trap. After 24 hours, the 141 

GFA filters were removed to separate scintillation vials, and the activity of the filters was 142 

determined in Ultima Gold (Perkin-Elmer, UK) and their activity measured using a Tri-Carb 143 

2100 Low Level Liquid Scintillation Counter. Spike activity was checked following Poulton 144 

et al. (2014). 145 

The average coefficient of variation of the triplicate (light) CP measurements was 27 % (3 – 146 

113 %), and the formalin-killed blank represented on average 26 % (7 – 60 %) of the CP 147 

signal, with generally higher contributions in lower CP signals. These are comparable to 148 

other studies using the same method (e.g. Poulton et al. 2010, Poulton et al. 2014). 149 

Coccolithophore community structure 150 

Water samples (100 – 250 mL) for the determination and enumeration of the coccolithophore 151 

community were collected following Poulton et al. (2014). Permanent slides were prepared 152 

on board using a low viscosity Norland Optical Adhesive (NOA 74) (Poulton et al. 2014). 153 

Coccolithophore cell counts and species identification were performed using a Leitz Ortholux 154 

polarizing microscope (x1000, oil immersion). A minimum of 54 fields of view were counted 155 

per filter for abundant species, with additional fields of view analysed for rarer species. The 156 

light microscopy species identification and enumeration were verified and supplemented 157 

using scanning electron microscopy (SEM) following Daniels et al. (2012). 158 

Species-specific calcite production 159 

The equation to determine species-specific calcite production (CPsp) was adapted from 160 

Daniels et al. (2014). CPsp is calculated as a product of the growth rate (μ), cellular calcite 161 

content (C) and abundance (N) of each species present (Eqn. 1). Species-specific calcite 162 

content was estimated from SEM images by combining derived estimates of coccolith calcite 163 

(Young & Ziveri 2000) with the number of coccoliths per cell (Table 1). The method of 164 

Young and Ziveri (2000) incorporates species-specific coccolith shape factors (ks). Of the 165 

species observed here, only 4 (E. huxleyi, C. pelagicus, A. quattrospina, Syracosphaera spp.) 166 

had a pre-defined ks. For those species with an undefined shape factor, shape factors were 167 

estimated from SEM images for C. pelagicus HOL and C. caudatus (Table 1), the ks for A. 168 

robusta was adapted from E. huxleyi (Probert et al. 2007), and a “typical coccolith” ks was 169 

used for Ophiaster sp. (Young & Ziveri 2000). 170 
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Species-specific growth rates cannot be directly determined from the measurements we made. 172 

However we can use relative growth rates to determine the fraction of calcite production per 173 

species, and multiply this by the measured total CP to obtain CPsp (Eqn. 1). Initially we have 174 

made the simplifying assumption that all coccolithophores have the same growth rate as there 175 

is little data on relative growth rates of coccolithophores in the field or from laboratory 176 

experiments (Daniels et al. 2014, Daniels et al. 2015). The influence of variable growth rates 177 

for different species on the estimates of CPsp will be examined in the discussion. 178 

Macronutrients and carbonate chemistry 179 

Macronutrients (nitrate + nitrite, NOx; phosphate, PO4; silicic acid, dSi) were determined 180 

following Sanders et al. (2007) on a Skalar autoanalyser. The relative concentration of NOx to 181 

PO4 (N*; NOx – 16 × PO4 (Moore et al. 2009)) and the relative concentration of dSi to NOx 182 

(Si*; dSi - NOx (Bibby & Moore 2011)) were also determined. 183 

Samples for total dissolved inorganic carbon (CT) and total alkalinity (AT) were collected into 184 

250 mL borosilicate glass bottles and poisoned with 50 µL of saturated mercuric chloride 185 

solution following (Dickson et al. 2007). Using a VINDTA 3C instrument (Marianda, 186 

Germany), CT was measured by coulometric titration, and AT by potentiometric titration and 187 

calculated using a modified Gran technique (Bradshaw et al. 1981). The results were 188 

calibrated using certified reference material (batch 117) obtained from A.G. Dickson (Scripps 189 

Institution of Oceanography, USA). Measurement precision was ± 3.8 and ± 1.7 µmol kg-1 190 

for CT and AT respectively. Calcite saturation state (Ωc), pH on the Total scale (pHT) and 191 

seawater partial pressure of CO2 (pCO2
sw) were calculated using version 1.1 of the CO2SYS 192 

program for MATLAB (Van Heuven et al. 2011) using the carbonic acid dissociation 193 

constants of Lueker et al. (2000), the boric acid dissociation constant of Dickson (1990b), the 194 

bisulfate ion acidity constant of Dickson (1990a), and the boron:chlorinity of Lee et al. 195 

(2010). 196 

Data availability and statistical analysis 197 

All data included in the paper are available from the British Oceanographic Data Centre 198 

(BODC). Multivariate statistics were used to examine spatial variability in the 199 
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coccolithophore species composition and CPsp (biotic data) and the environment (abiotic 200 

data). Bray-Curtis similarity resemblance matrices were calculated from the standardised 201 

biotic data to determine changes in species composition and CPsp. The abiotic data 202 

(temperature, salinity, ΩC, pHT, N*, Si*, daily PAR and Zeup) were normalised, and a 203 

Euclidean distance resemblance matrix calculated to determine changes in the environmental 204 

variables. The species composition of samples via the Bray-Curtis similarity index was then 205 

used to cluster samples into groups using non-metric multi-dimensional scaling (NMDS). The 206 

species typical of each hydrographic region were identified using a breakdown of similarity 207 

percentages (SIMPER routine), calculated in E-PRIMER (Clarke 1993). Spearman’s rank 208 

correlation (BEST routine) were calculated in E-PRIMER (Clarke 1993) to identify which 209 

environmental variables explained most of the variation in the coccolithophore community 210 

and CPsp. 211 

Principal component analysis (PCA) of normalised environmental variables was performed 212 

using MATLAB, and Pearson product-moment correlations were carried out between the 213 

calculated principal components (PC) and coccolithophore community composition and CPsp 214 

to further examine the relationship between the biotic and abiotic data. 215 

Results 216 

General Oceanography 217 

A wide variety of hydrographic environments were sampled during the cruise, throughout the 218 

Iceland Basin and the Nordic Seas (Greenland Sea and Norwegian Sea) of the Arctic Ocean 219 

(Fig. 1, Table 2), with two major fronts dividing the regions; the Norwegian Sea was 220 

separated from the Iceland Basin by the Iceland-Faroes Front, while the East Greenland Front 221 

separated the Greenland Sea from the Norwegian Sea (Cottier et al. 2014). The Iceland Basin 222 

was characterised by the warmest (10 – 10.6 °C) and most saline (35.2 – 35.3) waters of the 223 

study. The Greenland Sea, with the influence of the East Greenland Current, had the coldest 224 

(1 – 3.5 °C) and freshest (34.7 – 35.0) waters sampled. The Norwegian Sea lay between the 225 

two extremes of the Iceland Basin and the Greenland Sea, in terms of both temperature (3.1 – 226 

7.8 °C) and salinity (34.8 – 35.2).  227 

Macronutrient concentrations of NOx (0.5 – 10.6 mmol N m-3), PO4 (0.11 – 0.77 mmol P m-3) 228 

and dSi (1.3 – 6.1 mmol Si m-3) were highly variable and no clear spatial patterns were 229 

observed (Table 2). The values of N* were negative at all sites (-3.0 to -0.3) indicating that, 230 
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assuming Redfield stoichiometry (Redfield, 1958), NOx was low relative to PO4. The values 231 

of Si* ranged from -2.9 to 6.5. While generally positive, indicating high residual dSi 232 

concentrations, four stations exhibited a negative Si*, indicating depleted dSi relative to NOx. 233 

No clear spatial patterns in N* or Si* were identified between sampling sites. 234 

Euphotic zone depth (Zeup) ranged from 15 to 50 m, and daily incidental PAR varied from 10 235 

to 53 mol photons m-2 d-1, with both showing variability within and between regions. As the 236 

cruise occurred in mid-summer, the stations in the Nordic Seas experienced a 24 hour 237 

photoperiod, while the Iceland Basin stations experienced a shorter photoperiod (~ 18 hours). 238 

The effect of this on daily PAR is not clear, suggesting a stronger influence through varying 239 

cloud cover. Values of pHT varied from 8.07 to 8.29 and ΩC varied from 2.65 to 4.46, with 240 

the low ΩC particularly in the Greenland Sea. 241 

Coccolithophore community structure 242 

Total coccolithophore abundance was highly variable, ranging from 5 to 932 cells mL-1. The 243 

most commonly observed coccolithophore species were Emiliania huxleyi (0 – 425 cells mL-244 
1), Coccolithus pelagicus (0 – 33 cells mL-1) and the holococcolithophorid (HOL) life stage 245 

of Coccolithus pelagicus (0 – 223 cells mL-1) (Fig. 2). 246 

Other species present included Acanthoica quattrospina, Algirosphaera robusta, 247 

Calciopappus caudatus, Ophiaster sp. and Syracosphaera spp. (Fig. 2). While each species 248 

has been considered individually in determining CPsp and in the environmental analysis, for 249 

the purpose of graphical representation, species other than E. huxleyi, C. pelagicus and C. 250 

pelagicus HOL were grouped into one category (termed ‘others’, Fig. S1) as they were minor 251 

contributors to regional calcite production. Scanning electron microscopy identified 252 

Syracosphaera spp. as including: S. borealis, S. corolla, S. dilata, S. marginaporata and S. 253 

molischii. The cellular calcite content of the Syracosphaera genus however are not well 254 

constrained (Young & Ziveri 2000), thus we have not considered these species individually 255 

and have used a “small Syracosphaera” coccolith calcite (Young & Ziveri 2000) estimate for 256 

calculating their cellular calcite. The different coccolithophore species had varying spatial 257 

distributions (Fig. S1, Table S1). Emiliania huxleyi was most abundant in the Iceland Basin 258 

and Norwegian Sea, C. pelagicus HOL was present in the highest latitude stations, while 259 

Syracosphaera spp. were restricted to the Iceland Basin. 260 

To account for the large variability in coccolithophore abundances between stations, the 261 

stations were grouped into the three distinct regions (Iceland Basin, Greenland Sea and 262 
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Norwegian Sea, Fig. 1, Table S2), as defined from the characteristic hydrography of each 263 

station. Coccolithophore abundances, aggregated over these regions, and over the entire study 264 

area (Fig. 3A) showed that E. huxleyi represented 27 % of the total coccolithophore 265 

abundance, with a relatively consistent contribution across all regions (19 – 30 %, Fig. 3A). 266 

In contrast, Coccolithus pelagicus formed only a small component of the coccolithophore 267 

community in terms of abundance (1 – 4 %, Fig. 3A) in all regions sampled. The Iceland 268 

Basin community was dominated by C. caudatus (43 %) and Syracosphaera spp. (24 %), the 269 

Norwegian Sea by C. caudatus (43 %), and the Greenland Sea by C. pelagicus HOL (77 %, 270 

Fig. 3A). 271 

Species-specific calcite production 272 

The total community calcite production was highly variable throughout the study (from 2 to 273 

202 μmol C m-3 d-1), with rates similar to those measured previously in the North Sea and the 274 

Arctic Ocean (< 1 – 300 μmol C m-3 d-1, Charalampopoulou et al. 2011), and in the subtropics 275 

(0.4 – 102 μmol C m-3 d-1, Poulton et al. 2006), but generally lower than those previously 276 

measured on the north-west European shelf (2 – 825 μmol C m-3 d-1, Poulton et al. 2014). 277 

There were no clear spatial patterns in the distribution of calcite production; the largest 278 

calcite production (202 µmol C m-3 d-1) was measured in the central Norwegian Sea (Fig. S2), 279 

with the lowest rates in the Greenland Sea (<10 µmol C m-3 d-1). 280 

At each individual station, the major calcite producers were E. huxleyi (0 – 100 %), C. 281 

pelagicus (0 – 98 %) and C. pelagicus HOL (0 – 100 %). However, there was significant 282 

variability between the stations (Table S3, Fig. S3), and when considering each station 283 

individually, E. huxleyi was the largest contributor at 6 stations, C. pelagicus at 10 stations 284 

and C. pelagicus HOL at 3 stations. Of the other species present, Syracosphaera spp. were 285 

also a significant source in the Iceland Basin (0 – 27 %), and C. caudatus was generally a 286 

small source (0 – 12 %) except at station 20 in the Norwegian Sea where it contributed 37 % 287 

of the total calcite production. When present, A. robusta was a minor contributor to calcite 288 

production in the Norwegian Sea (3 – 16 %).  289 

Considering the percentage calcite production of each species on a per station basis however 290 

does not account for the high variability in the measured total calcite production. 291 

Incorporating total calcite production and aggregating over the three regions and the entire 292 

cruise reveals that C. pelagicus was the major calcifier, responsible for 57 % of the total 293 

calcite production (Fig. 3B), with a higher contribution in the Nordic Seas (59 – 61 %) than 294 
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in the Iceland Basin (44 %). In contrast, E. huxleyi represented only 20 % of the total calcite 295 

production (Fig. 3B), with a much smaller contribution in the Greenland Sea (6 %) than in the 296 

Norwegian Sea (26 %) and Iceland Basin (25 %). Coccolithus pelagicus HOL was a 297 

significant calcite producer in the Greenland Sea (28 %), but less so in the other regions, 298 

resulting in a total contribution of only 12 % (Fig. 3B). The contribution of the other species 299 

to calcite production was greatest in the Iceland Basin (29 %), of which Syracosphaera spp. 300 

(19 %) and C. caudatus (7 %) were the major calcifiers. In the Arctic, C. caudatus (2 – 5 %) 301 

and A. robusta (0 – 7 %) were the largest calcite producers of the other coccolithophore 302 

species present.  303 

Coccolithophore species composition, CPsp and environmental variables 304 

In order to explore the relationship between the environmental variables and the species 305 

composition of the coccolithophore community and their contribution to CPsp, a PCA was 306 

carried out using normalised environmental variables (temperature, salinity, ΩC, pH, N*, Si*, 307 

daily PAR and Zeup). The first principal component (PC-1) explained 40.1 % of the variance 308 

between stations in terms of the environmental conditions, while the second principal 309 

component (PC-2) explained a further 33.3 % of the variance. Therefore, the combination of 310 

PC-1 and PC-2 explained 73.4 % of the total environmental variability.  311 

Eigenvalues from the PCA (Table 5) indicate the relative weight of the environmental 312 

variables in influencing each of the PCs. Pearson moment correlations showed that PC-1 was 313 

strongly related to ΩC, pH and Si* and Zeup while PC-2 was related to temperature, salinity 314 

and N* (Table 5). Correlated with latitude (r = 0.68, p < 0.005, n = 19), PC-2 essentially 315 

describes the north-south environmental gradient, with warmer, more saline and high N* 316 

waters in the south. Correlations between PCs, coccolithophore composition and CPsp found 317 

significant correlations (p < 0.005) between PC-1 and the contribution of E. huxleyi and C. 318 

pelagicus HOL to species composition, and between PC-1 and the percentage contribution to 319 

CPsp by E. huxleyi (p < 0.005) and C. pelagicus HOL (p < 0.05). PC-2 was significantly 320 

correlated (p < 0.005) with the composition and percentage contribution to CPsp of 321 

Syracosphaera spp., A. quattrospina and Ophiaster sp. These species were found only in the 322 

Iceland Basin samples, further demonstrating the link between PC-2 and the north-south 323 

environmental gradient. 324 

To visualise the multivariate patterns in similarity between the individual stations in terms of 325 

community composition, non-metric multi-dimensional scaling (NMDS) analysis was applied 326 
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to both species composition data (Fig. 6A) and CPsp (Fig. 6B). The stress values of the 2-327 

dimensional NMDS plots were low (< 0.08), thus indicating that they are a good 328 

representation of the high-dimensional patterns (Clarke 1993). The NMDS plots reveal 329 

different patterns of similarity between the stations whether species composition or CPsp are 330 

considered. To examine the underlying factors driving the similarity between stations, 331 

individual species contributions to community composition (Fig. 6B-D) and CPsp (Fig. 6F-H) 332 

where overlaid on to the NMDS plots. In terms of species composition, the spatial pattern 333 

was generally explained by the contributions of E. huxleyi (Fig. 6B) and C. pelagicus HOL 334 

(Fig. 6D) to community composition. The majority of Greenland Sea samples clustered 335 

distinctly away from other stations (Fig. 6A), with their coccolithophore communities 336 

comprised of a large contribution from C. pelagicus HOL and a small contribution from E. 337 

huxleyi. 338 

The dissimilarities in species contribution to community composition between stations in the 339 

different hydrographic regions were tested statistically using a SIMPER analysis. The high 340 

dissimilarity between stations in the Greenland Sea and those in both the Iceland Basin 341 

(average dissimilarity = 85.6 %) and the Norwegian Sea (average dissimilarity = 82.3 %) was 342 

driven by C. pelagicus HOL (43 – 44 % of dissimilarity) and E. huxleyi (26 – 27 % of 343 

dissimilarity), as observed in the NMDS plots. The spatial patterns in the CPsp NMDS plots 344 

contrasted that of species composition (Fig. 6E), being influenced by E. huxleyi (Fig. 6F), C. 345 

pelagicus (Fig. 6G) and C. pelagicus HOL (Fig. 6H). The Greenland Sea stations did not 346 

cluster separately in this case, as they did for analysis of their coccolithophore community 347 

composition; SIMPER analysis found that that the hydrographic regions were more similar in 348 

terms of CPsp (average dissimilarity < 71 %) than in terms of species composition. 349 

To determine which environmental variables best explain the patterns in species composition 350 

and CPsp, Spearman’s rank correlations (rs) were calculated between resemblance matrices of 351 

abiotic and biotic data (Clarke 1993). The variability in species composition between stations 352 

was best explained by temperature, ΩC, and N* (rs = 0.55, p < 0.01, Table 6), while the single 353 

variable that explained most of the variability was ΩC (rs = 0.55, p < 0.01). The variability in 354 

CPsp was best correlated with ΩC (Table 6) though the relationship was slightly weaker (rs = 355 

0.37 p < 0.01) than for species composition. 356 

Discussion 357 

Coccolithus pelagicus as a key calcifier 358 
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Calculating CPsp reveals that C. pelagicus is the major calcifier in this Arctic study, 359 

responsible for 57 % of the calcite production in the Arctic Ocean and sub-polar Iceland 360 

Basin, despite forming only 2 % of the total coccolithophore community abundance (Fig. 3). 361 

The influence of C. pelagicus on calcite production is further confirmed by a significant 362 

correlation between C. pelagicus abundance and total calcite production (r = 0.55, p < 0.02, n 363 

= 19); no other species correlated significantly with total calcite production. That C. 364 

pelagicus is able to dominate calcite production at such low relative abundances is due to its 365 

significantly higher cellular calcite quota compared to the rest of the coccolithophore species 366 

present in the community (Table 1). This potential to dominate community calcite production 367 

has been previously identified in a simplified two species model of C. pelagicus and E. 368 

huxleyi (Daniels et al. 2014). Although the natural communities in our samples are more 369 

complex and species-rich, C. pelagicus still has at least a 20 fold greater cellular calcite quota 370 

than the rest of the community (Table 1). Thus, when present C. pelagicus usually dominates 371 

coccolithophore calcite production. 372 

The dominance of C. pelagicus in our study is not dependent on any single station. Removing 373 

the station (CTD 58) which has the highest rate of calcite production (202 μmol C m-3 d-1), 374 

and therefore the largest influence over CPsp, does not change the overall result. Although 375 

removing this station from the analysis results in a reduction of C. pelagicus-derived calcite 376 

production from 57 % to 43 %, C. pelagicus remained the single species with the largest 377 

source of calcite in the mixed communities of the Arctic Ocean and Iceland Basin. The effect 378 

of removing any other station from the analysis was minimal with C. pelagicus remaining the 379 

dominant calcifier. 380 

Although E. huxleyi is often perceived to be the most abundant and the keystone 381 

coccolithophore species (Paasche 2002), we found that it was neither the most abundant (27 382 

% total abundance, Fig. 3A), or the major calcifier (20 % of total calcite production, Fig. 3B), 383 

suggesting that it may not be the keystone species of coccolithophore in the North Atlantic 384 

and Arctic. However, previous studies have identified E. huxleyi as the most abundant 385 

coccolithophore in the Norwegian Sea (0 – 3000 cells mL-1), although C. pelagicus was still 386 

an important component (0 – 30 cells mL-1) of the communities studied (Baumann et al. 387 

2000, Charalampopoulou et al. 2011). This change in dominance between studies is possibly 388 

due to seasonal (Baumann et al. 2000) or interannual variability occurring within the 389 

coccolithophore community. However, an increase in the abundance of E. huxleyi, coupled 390 

with a reduction in the abundance of other species such as C. caudatus and A. robusta, would 391 
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be unlikely to change the overall result observed here, as C. pelagicus is the key calcifier (57 392 

%) despite forming only a small fraction (2 %) of the coccolithophore community. 393 

Despite dominating calcite production in this study, C. pelagicus is unlikely to be a globally 394 

dominant calcite producer, as its global distribution is constrained to the Arctic Ocean and 395 

sub-polar regions of the North Atlantic and North Pacific (McIntyre & Bé 1967, Ziveri et al. 396 

2007). While other heavily calcified species (e.g. Calcidiscus leptoporus, Helicosphaera 397 

carteri) are more widely distributed (Ziveri et al. 2007) and thus have the potential to 398 

dominate calcite production (Daniels et al. 2014), here we show the biogeochemical 399 

importance of holococcolith bearing coccolithophores (i.e. C. pelagicus HOL) and relatively 400 

weakly calcified but highly abundant coccolithophore species (i.e. C. caudatus). Further 401 

research into these lesser-studied species is required in order to improve our understanding of 402 

the role of different species in calcite production. 403 

A robust measure of species-specific calcite production? 404 

As CPsp cannot be directly determined, its calculation requires assumptions with associated 405 

potential errors. The two main sources of error are the estimates of both cellular calcite and 406 

growth rates. With the natural variability in coccolith size and shape, the error in determining 407 

cellular calcite is estimated to be ~30 to 50 % (Young & Ziveri 2000, Daniels et al. 2012). 408 

We have minimised this error by using species-specific shape factors together with 409 

measurements of coccolith length in SEM images, and our estimates of cellular calcite for C. 410 

pelagicus (15.2 pmol C cell-1) and E. huxleyi (0.52 pmol C cell-1) are comparable to literature 411 

values (16.6 pmol C cell-1 and 0.22 – 1.1 pmol C cell-1 respectively, (see Paasche 2002, 412 

Daniels et al. 2014)). Although E. huxleyi is perceived to be a fast growing coccolithophore 413 

species relative to other species (Paasche 2002, Tyrrell & Merico 2004), little data exists 414 

concerning relative in situ growth rates of coccolithophores in mixed communities. 415 

Furthermore, recent culture experiments (Daniels et al. 2014) and time series field data 416 

(Daniels et al. 2015) suggest that E. huxleyi may not be a relatively faster growing species in 417 

situ, with net growth rates of C. pelagicus similar to or higher than E. huxleyi in early spring 418 

North Atlantic communities.  419 

To test the influence of these assumptions on species-specific calcite production, the growth 420 

rates of the three main calcifiers, E. huxleyi (Fig. 7A), C. pelagicus (Fig. 7B), and C. 421 

pelagicus HOL (Fig. 7C) were independently varied relative to the community growth rate, 422 

such that they had a growth rate between 10 and 200 % relative to the community. This is a 423 
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similar approach to that used in Daniels et al. (2014) where growth rates and cellular calcite 424 

contents of C. pelagicus were varied to demonstrate that C. pelagicus was of potential 425 

biogeochemical importance when growing significantly slower and/or at lower relative 426 

abundances. In the resulting scenarios of our Arctic analysis, C. pelagicus remains the major 427 

calcifier except when its relative growth rate was less than 15 % of the rest of the community 428 

(Fig. 7B). In a further perturbation of the community, the relative growth rate of E. huxleyi 429 

was increased to 200 % before varying the relative growth rate of C. pelagicus. In this 430 

scenario, C. pelagicus did not dominate calcite production with a growth rate less than 30 % 431 

of the total community growth rate. Even in this extreme and potentially unrealistic scenario, 432 

C. pelagicus remained a significant single species calcifier (> 20 %). Although these 433 

scenarios demonstrate the potential influence of variable growth rates on CPsp, and that 434 

further research is required to constrain both cellular calcite quotas and coccolithophore 435 

growth rates, C. pelagicus remained the dominant calcifier in the Arctic Ocean in all but the 436 

most extreme scenarios.  437 

How does Coccolithus pelagicus dominate Arctic community CP? 438 

It is well established that C. pelagicus is commonly found in the Arctic Ocean, but forms 439 

only a small component of the overall coccolithophore community (Samtleben & Schröder 440 

1992, Baumann et al. 2000, Charalampopoulou et al. 2011), as observed here. Yet, the 441 

importance of C. pelagicus as a calcite producer has not previously been recognised. That C. 442 

pelagicus is a disproportionately larger contributor to calcite production than abundance is 443 

due to the significantly higher cellular calcite content of C. pelagicus than other 444 

coccolithophore species. However, how is it able to dominate calcite production - is it due to 445 

the absence of E. huxleyi or is it due to C. pelagicus being present in relatively high enough 446 

cellular abundances? Furthermore, what environmental characteristics determine these two 447 

factors? 448 

To examine these competing factors we can compare and contrast the compositional analysis 449 

based on species composition in terms of cell abundances and in terms of species-specific 450 

calcite production. The NMDS plots of species composition show that the relative abundance 451 

of E. huxleyi in the community is a major driver of the variability in species composition 452 

between stations (Fig. 6B), whereas C. pelagicus has little influence (Fig. 6C). This is due to 453 

C. pelagicus being present in all most all samples but forming only a small fraction of the 454 

community. In contrast, E. huxleyi numerically dominates at some stations, but is totally 455 
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absent from others (Table 3). This would suggest that as C. pelagicus dominates calcite 456 

production at stations where E. huxleyi is present and absent, it is the relative abundance of C. 457 

pelagicus that allows it to dominate calcite production. 458 

The pattern in the NMDS plots of CPsp however, with E. huxleyi (Fig. 6F) and C. pelagicus 459 

(Fig. 6G) both strongly influencing variability in CPsp, suggest that C. pelagicus is 460 

responsible for a greater proportion of calcite production when the contribution of E. huxleyi 461 

is low. The difference between species composition and species contribution to calcite 462 

production between stations suggest that the dominance of C. pelagicus in terms of 463 

calcification is a combination of both the relative abundance of C. pelagicus compared to all 464 

other species of coccolithophore, and the relative absence of E. huxleyi, particularly from 465 

stations within the Greenland Sea (Fig. 6). Therefore species composition has a significant 466 

impact on calcite production and which species dominate calcification in the Arctic Ocean. 467 

In terms of understanding variability in calcite production in the Arctic Ocean, it is then 468 

important to determine what drives the variability in species composition throughout the 469 

Arctic. Variability in the physicochemical environment is clearly recognised as influencing 470 

the biogeography of coccolithophores (e.g. Charalampopoulou et al. 2011, Poulton et al. 471 

2013). However, the relationship between species composition and environmental variables is 472 

complex and difficult to directly elucidate. Other studies have linked variability in 473 

coccolithophore community composition and calcite production to carbonate chemistry 474 

(Charalampopoulou et al. 2011, Smith et al. 2012), irradiance (Poulton et al. 2010, 475 

Charalampopoulou et al. 2011, Poulton et al. 2014), and nutrient availability (Poulton et al. 476 

2011, Poulton et al. 2014). 477 

Using the same multivariate statistical approach as used by Charalampopoulou et al. (2011) 478 

on the data collected in this study, Spearman’s rank correlations identified temperature, ΩC, 479 

and N* as the environmental variables that could best explain species composition (Table 6). 480 

This contrasts with the results from Charalampopoulou et al. (2011) who found that pH and 481 

irradiance were the main drivers of coccolithophore species abundance along a transect from 482 

the North Sea to the Arctic Ocean. The influence of temperature and N* on species 483 

composition is likely to be due to the contrasting community composition in the warmer (> 484 

10 °C) and less nitrate depleted (N* of -0.4 to -1.3) Iceland Basin compared to the colder (< 8 485 

°C) and more nitrate depleted (N* of -1.2 to -3.0) Norwegian and Greenland Seas. That PC-2, 486 

which was related to temperature (r = 0.87, p < 0.005, n = 19) and N* (r = 0.83, p < 0.005, n 487 

= 19), and correlated with latitude (r = 0.68, p < 0.005, n = 19), correlated with those species 488 
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found only in the Iceland Basin (Syracosphaera spp., A. quattrospina and Ophiaster sp.), 489 

further confirms the role of temperature in influencing species composition. However, 490 

temperature did not significantly affect CPsp, with ΩC alone best explaining the contribution 491 

of species to CPsp. Those species limited only to the Iceland Basin, thus strongly influenced 492 

by temperature, were relatively minor contributors to calcite production (0 – 27 %) and had 493 

little impact on the variability in CPsp.  494 

That both species composition and CPsp were affected by ΩC can be further examined using 495 

the results from the PCA: PC-1, which is positively correlated to ΩC (r = 0.92, p < 0.005, n 496 

=19), is also positively correlated to the contribution of E. huxleyi to both species 497 

composition (r = 0.85, p < 0.005, n =19) and CPsp (r = 0.67, p < 0.005, n =19), but is 498 

negatively correlated to the contribution of C. pelagicus HOL to both species composition (r 499 

= -0.60, p < 0.01, n =19) and CPsp (r = -0.57, p < 0.05, n =19). This suggests that E. huxleyi 500 

represents a smaller fraction of the coccolithophore community in regions of lower saturation 501 

state, whereas C. pelagicus HOL represents a higher fraction in these conditions. This could 502 

be interpreted to suggest that the expected decline in saturation state in the future would 503 

reduce the abundance of E. huxleyi. However, our analysis does not allow us to conclude that 504 

ΩC is directly affecting species composition, but rather that within the present day Arctic 505 

Ocean, E. huxleyi forms a smaller component of the coccolithophore community in regions of 506 

lower ΩC. It should be noted that ΩC was above the saturation point at all stations and that the 507 

gradient in saturation state was much lower (2.6 – 4.2) than other environmental variables, 508 

such as the gradient in temperature (1.0 – 10.6 °C) and NOx (0.5 – 10.6 mmol N m-3). 509 

Temperature is recognised to have a significant control on coccolithophore distributions, for 510 

example, there is a well recognised 2 °C limit to the range of E. huxleyi (Holligan et al. 511 

2010), while C. pelagicus is able to persist in sub-zero temperatures (Braarud 1979). 512 

The relationship between the environment, the coccolithophore community and calcite 513 

production is likely to be more complex than presented here; we found no significant 514 

environmental influence on total calcite production (p = 0.09), or the contribution of C. 515 

pelagicus to species-specific calcite production (p = 0.1), implying that other 516 

ecophysiological and environmental interactions exist and may influence species 517 

biogeography. Furthermore, correlations of individual environmental variables with 518 

abundance and CPsp did not produce any significant results, further demonstrating the 519 

complexity of the interaction between coccolithophore abundance, calcite production, and 520 

environmental variables (Poulton et al. 2014). While the influence of some environmental 521 
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variables (e.g. temperature) on coccolithophore physiology are well established, we are only 522 

beginning to get a mechanistic understanding of the influence of carbonate chemistry; for 523 

example, calcite production appears dependent on bicarbonate as its primary substrate, and is 524 

inhibited by protons (Bach et al. 2015), with ΩC not directly affecting calcite formation (Bach 525 

2015). However, we still have very little basic understanding of coccolithophore physiology; 526 

for example, until we understand why coccolithophores calcify, and the energetic costs 527 

associated with it, we cannot fully understand how cellular calcification will respond to a 528 

changing ocean, and the impact this will have on the coccolithophore community in terms of 529 

species composition or competitive fitness. 530 

Wider Implications 531 

Research into the effect of ocean acidification and climate change on coccolithophores has 532 

been dominated by studies of E. huxleyi as it is globally abundant and forms large-scale 533 

blooms of significant biogeochemical importance (Holligan et al. 1993, Poulton et al. 2013). 534 

However, E. huxleyi can be considered an atypical coccolithophore species in terms of its 535 

genetic lineage, physiology and ecology (de Vargas et al. 2007), and therefore the response of 536 

E. huxleyi to climate change and ocean acidification may not apply to other coccolithophore 537 

species. Few studies have examined the impact of ocean acidification on other species of 538 

coccolithophore (Langer et al. 2006, Fiorini et al. 2011, Krug et al. 2011), and very little is 539 

known about the Arctic species C. pelagicus. As a key calcifier in a region considered 540 

particularly vulnerable to ocean acidification and warming, the response of C. pelagicus to 541 

climate change and ocean acidification could have a major effect on calcite production in the 542 

Arctic and sub-polar Iceland Basin. Examination of the fossil record of C. pelagicus during 543 

the Palaeocene-Eocene Thermal Maximum (PETM), arguably the best geological equivalent 544 

of modern-day climate change, found that it was not able to maintain optimum growth during 545 

this period (Gibbs et al. 2013), and had reduced calcification rates (O’Dea et al. 2014). If C. 546 

pelagicus exhibits a similar response in the modern ocean to current perturbations, it could 547 

cause a significant reduction in calcite production within the Arctic Ocean and Iceland Basin, 548 

with a major impact on carbon cycling in the North Atlantic.  549 
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Table 1: Coccolith shape factors, coccolith calcite, coccoliths per cell and cellular calcite for the individual coccolithophore species. 723 

 724 

Species Coccolith Shape 
Factor (ks) 

Coccolith Calcite 
(pmol) Coccoliths per Cell Cellular Calcite 

(pmol) 

E. huxleyi 0.020 0.024 22 0.52 

C. pelagicus 0.060 1.218 13 15.2 

Syracosphaera spp. 0.015 0.012 35 0.40 

A. quattrospina 0.030 0.008 36 0.27 

C. caudatus 0.013 0.002 54 0.09 

Ophiaster sp. 0.035 0.001 70 0.09 

A. robusta 0.045 0.010 43 0.42 

C. pelagicus HOL 0.036 0.008 100 0.78 
 725 
  726 
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Table 2: Physicochemical features: Zeup, euphotic depth; ΩC, calcite saturation state; NOx, nitrate + nitrite; PO4, phosphate; dSi, silicic acid; N*, 727 

excess NOx relative to PO4; Si*, excess dSi to NOx. 728 

           Carbonate Chemistry  Surface Macronutrients 
(mmol m-3) 

CTD Location Lat 
(°N) 

Lon 
(°E) Date Depth 

(m) 
Temperature 

 (°C) Salinity 
Daily PAR 

(mol photons 
m-2 d-1) 

Zeup 
(m)  pCO2 

(µatm) pHT ΩC  NOx PO4 dSi N* Si* 

6 ICB 58.74 -0.86 04 Jun 9 10.0 35.3 45 40  277 8.2 4.2  0.5 0.11 1.7 -1.3 -1.2 

8 ICB 60.13 -6.71 05 Jun 10 10.4 35.4 33 48  326 8.1 3.8  6.5 0.45 4.3 -0.7 2.3 

10 ICB 59.97 -11.98 06 Jun 20 10.6 35.3 51 28  310 8.1 4.0  2.9 0.21 1.4 -0.4 1.5 

12 ICB 60.00 -18.67 07 Jun 10 10.2 35.2 41 37  340 8.1 3.7  6.1 0.4 1.7 -0.3 4.4 

17 ICB 60.59 -18.86 08 Jun 20 10.4 35.2 10 40  310 8.1 3.9  5.2 0.35 1.3 -0.4 3.9 

19 NWS 65.98 -10.72 09 Jun 24 3.6 34.8 34 23  240 8.2 3.7  0.6 0.22 2.5 -3.0 -1.9 

20 NWS 69.90 -7.58 10 Jun 15 3.1 35.0 53 36  363 8.1 2.7  9.1 0.64 6.1 -1.2 3.0 

21 GS 74.12 -4.69 11 Jun 15 1.0 34.9 40 48  308 8.1 2.8  9.8 0.7 5.7 -1.4 4.0 

27 GS 76.18 -2.55 12 Jun 20 1.5 34.9 42 50  319 8.1 2.7  9.3 0.67 4.7 -1.4 4.6 

29 GS 78.72 0.00 13 Jun 10 3.5 35.0 51 15  209 8.3 4.1  2.6 0.31 5.5 -2.4 -2.9 

40 GS 78.25 -5.55 14 Jun 15 3.1 34.9 20 25  309 8.1 3.0  8.7 0.62 5.6 -1.2 3.1 

42 NWS 78.22 -6.00 15 Jun 15 6.0 35.1 28 22  208 8.3 4.5  4.0 0.38 4.3 -2.1 -0.4 

45 NWS 77.82 -4.97 16 Jun 20 5.7 35.2 19 41  309 8.1 3.3  9.8 0.72 5.8 -1.8 4.0 

54 NWS 77.85 -1.29 17 Jun 13 7.8 35.0 24 41  320 8.1 3.5  6.0 0.49 3.8 -1.8 2.2 

56 NWS 78.99 7.98 18 Jun 15 6.7 35.2 33 31  305 8.1 3.5  6.8 0.5 5.2 -1.2 1.6 

58 NWS 76.26 12.54 19 Jun 20 5.4 35.1 35 38  316 8.1 3.2  10.6 0.77 5.7 -1.7 4.9 

60 GS 76.16 23.07 20 Jun 26 1.4 34.7 49 45  328 8.1 2.6  8.6 0.64 2.2 -1.6 6.5 

63 NWS 72.89 26.00 22 Jun 20 3.8 34.8 40 32  318 8.1 3.0  8.9 0.65 2.6 -1.5 6.3 

65 NWS 71.75 17.90 23 Jun 20 5.1 34.9 33 48  246 8.2 3.8  4.0 0.43 4.1 -2.8 0.0 
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Table 3: Coccolithophore abundances (cells mL-1) 729 

  Coccolithophore abundance (cells mL-1) 

CTD Location E. huxleyi C. pelagicus C. pelagicus HOL Syracosphaera spp. A. quattrospina C. caudatus Ophiaster sp. A. robusta 

6 ICB 31.7 - - - 1.5 - - - 

8 ICB 21.2 2.6 - 24.2 - 3.0 1.5 3.0 

10 ICB 64.1 2.3 3.0 7.9 2.4 0.6 2.4 - 

12 ICB 76.2 7.7 - 179.6 10.9 348.3 27.2 - 

17 ICB 91.2 4.2 5.4 84.4 12.2 179.6 50.3 - 

19 NWS 1.9 2.8 - - - - - - 

20 NWS - 0.6 59.9 - - 359.2 - 5.4 

21 GS - 0.4 3.8 - - - - - 

27 GS - - 6.0 - - - - - 

29 GS 17.0 0.4 0.9 - - - - 0.9 

40 GS 1.9 - 11.3 - - - - - 

42 NWS 25.2 - - - - - - - 

45 NWS 69.5 0.1 1.5 - - 1.5 - 4.5 

54 NWS 19.7 - - - - - - 4.5 

56 NWS 424.5 7.1 223.1 - - 157.8 - 119.7 

58 NWS 33.1 15.4 2.2 - - 72.8 - 47.4 

60 GS - 2.8 54.8 - - - - - 

63 NWS 20.8 32.7 - - - 274.0 - - 

65 NWS 2.8 2.9 - - - - - - 

 730 

  731 
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Table 4: Total calcite production (µmol C m-3 d-1) and species-specific calcite production (%) 732 

   % Calcite Production 

CTD Location 
Total Calcite 
Production 

(µmol C m-3 d-1) 

E. 
huxleyi 

C. 
pelagicus 

C. pelagicus 
HOL 

Syracosphaera 
spp. 

A. 
quattrospina 

C. 
caudatus 

Ophiaster 
sp. 

A. 
robusta 

6 ICB 7.25 97.6 - - - 2.4 - - - 

8 ICB 21.65 17.7 64.1 - 15.5 - 0.5 0.2 2.0 

10 ICB 7.06 44.4 47.1 3.1 4.2 0.9 0.1 0.3 - 

12 ICB 42.51 14.9 43.9 - 27.0 1.1 12.3 0.9 - 

17 ICB 13.56 27.2 37.0 2.4 19.3 1.9 9.7 2.5 - 

19 NWS 11.31 2.3 97.7 - - - - - - 

20 NWS 17.45 - 9.8 50.8 - - 36.8 - 2.5 

21 GS 1.65 - 70.0 30.0 - - - - - 

27 GS 3.54 - - 100.0 - - - - - 

29 GS 9.04 54.8 38.2 4.5 - - - - 2.5 

40 GS 29.64 10.0 - 90.0 - - - - - 

42 NWS 18.96 100.0 - - - - - - - 

45 NWS 16.69 88.6 3.5 2.9 - - 0.3 - 4.7 

54 NWS 8.61 84.2 - - - - - - 15.8 

56 NWS 63.93 38.9 19.0 30.5 - - 2.6 - 8.9 

58 NWS 201.55 6.2 83.6 0.6 - - 2.4 - 7.1 

60 GS 16.21 - 50.3 49.7 - - - - - 

63 NWS 55.87 2.0 93.2 - - - 4.8 - - 

65 NWS 29.58 3.2 96.8 - - - - - - 
733 
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Table 5: Results of the principal component analysis (PCA), including eigenvectors and 734 
Pearson correlations coefficients for the relationships between PC scores, environmental 735 
variables and individual species contributions to both species composition and CPsp. *** p < 736 
0.005, ** p < 0.01, * p < 0.05 737 

 738 

Variables Variables vs. principal components 
 PC-1 (40.1 %) PC-2 (33.3 %) 
Environmental   
Temperature  0.23 (0.41)  0.53 (0.87***) 
Salinity  0.19 (0.34)  0.53 (0.87***) 
ΩC  0.51 (0.92***)  0.21 (0.34) 
pHT  0.48 (0.87***) -0.26 (-0.42) 
N* -0.19 (-0.35)  0.51 (0.83***) 
Si* -0.50 (-0.90***)  0.12 (0.19) 
PAR -0.06 (-0.12) -0.14 (-0.22) 
Zeup -0.35 (-0.62***)  0.17 (0.27) 
   
Latitude -0.08 -0.68*** 
Longitude  0.16 -0.12 
   
Species Composition   
E. huxleyi  0.85***  0.20 
C. pelagicus  0.12 -0.43 
C. pelagicus HOL -0.60** -0.32 
Syracosphaera spp.  0.04  0.78*** 
A. quattrospina  0.24  0.66*** 
C. caudatus -0.35  0.32 
Ophiaster sp.  0.06  0.75*** 
A. robusta  0.02  0.13 
   
% CPsp   
E. huxleyi 0.67*** 0.37 
C. pelagicus -0.08 -0.12 
C. pelagicus HOL -0.57* -0.27 
Syracosphaera spp. 0.02 0.75*** 
A. quattrospina 0.22 0.66*** 
C. caudatus -0.32 0.31 
Ophiaster sp. 0.04 0.69*** 
A. robusta -0.00 0.12 

 739 
 740 
 741 
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 742 

Table 6: Spearman’s rank correlation (rs) of environmental variables with coccolithophore species composition and species-specific calcite 743 

production (CPsp).  744 

Coccolithophore species composition Species-specific calcite production (% CPsp) 

Environmental variables rs  (p < 0.01) Environmental variables rs  (p < 0.03) 

Temperature, ΩC, N* 0.553 ΩC 0.368 

Temperature, ΩC 0.553 Temperature, ΩC 0.308 

ΩC 0.546 ΩC, PAR 0.256 

 745 

 746 

 747 
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Figure Captions 748 

Fig. 1: Sampling locations in the Iceland Basin (triangles), the Norwegian Sea (black filled 749 

circles) and the Greenland Sea (white open circles). (A) Sea ice concentration (%) in June 750 

2012, taken from www.nsidc.org. (B) MODIS sea surface temperature for June 2012, 751 

overlaid with the East Greenland Current (EGC) and the Norwegian Current (NC). 752 

Fig. 2: SEM images. (A) Emiliania huxleyi. (B) Coccolithus pelagicus. (C) Coccolithus 753 

pelagicus HOL. (D) Calciopappus caudatus. (E) Syracosphaera molischii. (F) Algirosphaera 754 

robusta. Scale bars represent 1 µm. 755 

Fig. 3: The distribution of total calcite production (µmol C m-3 d-1). 756 

Fig. 4: The distribution of species-specific calcite production (µmol C m-3 d-1). (A) Emiliania 757 

huxleyi. (B) Coccolithus pelagicus C) Coccolithus pelagicus HOL D) Other coccolithophore 758 

species. 759 

Fig. 5: The percentage contribution of coccolithophore species to (A) abundance and (B) 760 

calcite production, aggregated over each hydrographic region and the entire study area. 761 

Fig. 6: Non-metric multidimensional scaling (NMDS) ordination of (A, B, C and D) 762 

coccolithophore species composition and (E, F, G and H) species-specific calcite production 763 

based on Bray-Curtis similarity. Plots (A) and (E) are labelled according to the hydrographic 764 

province of the stations. Plots (B), (C) and (D) are overlaid with bubble plots of the 765 

composition of (B) Emiliania huxleyi, (C) Coccolithus pelagicus, and (D) Coccolithus 766 

pelagicus HOL. Plots (E), (F) and (G) are overlaid with bubble plots of the species-specific 767 

calcite production of (F) Emiliania huxleyi, (G) Coccolithus pelagicus, and (H) Coccolithus 768 

pelagicus HOL. 769 

Fig. 7: The effect of varying the relative growth rate of one species on the species 770 

contribution to calcite production. The growth rates of (A) Emiliania huxleyi, (B) Coccolithus 771 

pelagicus, and (C) Coccolithus pelagicus HOL were singly varied whilst all other species had 772 

a relative growth rate of 100%. (D) The relative growth rate of Coccolithus pelagicus was 773 

varied, whilst Emiliania huxleyi had a relative growth rate of 200 % and other species 100 %. 774 

  775 



30 
 

Fig. 1  776 
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Fig. 2 779 
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Fig. 3 782 
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Fig. 4 784 
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Fig. 5 786 
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Fig. 6 789 
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Fig. 7 792 
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