1 Quantifying the impact of riverine particulate dissolution in seawater on

2 ocean chemistry

- 3 Morgan T. Jones¹, Sigurður R. Gislason², Kevin W. Burton³, Christopher R. Pearce⁴, Vasileios
- 4 Mavromatis⁵, Philip A.E. Pogge von Strandmann⁶ & Eric H. Oelkers^{2,6,7}
- ⁵ ¹ Centre of Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway
- ⁶ ² Institute of Earth Sciences, University of Iceland, Sturlugata 7, Reykjavík, Iceland
- 7 ³ Department of Earth Sciences, Durham University, Durham, UK
- ⁸ ⁴ School of Ocean and Earth Science, National Oceanography Centre, Southampton University,
- 9 European Way, Southampton, UK
- ⁵ Graz University of Technology, Institute of Applied Geosciences, Rechbauerstraße 12, 8010

11 Graz, Austria

- ⁶ Institute of Earth and Planetary Sciences, University College London and Birkbeck College
 London, Gower Street, London, WC1E 6BT, UK
- ⁷ GET-Université de Toulouse-CNRS-IRD-OMP, Toulouse, France
- 15

16 Abstract

- 17 The quantification of the sources and sinks of elements to the oceans forms the basis of our
- 18 understanding of global geochemical cycles and the chemical evolution of the Earth's surface.
- 19 There is, however, a large imbalance in the current best estimates of the global fluxes to the
- 20 oceans for many elements. In the case of strontium (Sr), balancing the input from rivers would

21 require a much greater mantle-derived component than is possible from hydrothermal water flux 22 estimates at mid-ocean ridges. Current estimates of riverine fluxes are based entirely on 23 measurements of dissolved metal concentrations, and neglect the impact of riverine particulate dissolution in seawater. Here we present ⁸⁷Sr/⁸⁶Sr isotope data from an Icelandic estuary, which 24 25 demonstrate rapid Sr release from the riverine particulates. We calculate that this Sr release is 26 1.1-7.5 times greater than the corresponding dissolved riverine flux. If such behaviour is typical 27 of volcanic particulates worldwide, this release could account for 6-45 % of the perceived marine 28 Sr budget imbalance, with continued element release over longer timescales further reducing the 29 deficit. Similar release from particulate material will greatly affect the marine budgets of many 30 other elements, changing our understanding of coastal productivity, and anthropogenic effects 31 such as soil erosion and the damming of rivers.

32

33 **1. Introduction**

- 34 <u>Continental weathering and erosion is the primary control on the transport of material from the</u>
- 35 <u>continents to the oceans, and a major component of the cycles of many elements on the Earth's</u>
- 36 <u>surface. The riverine flux of material from continental weathering is the dominant input of many</u>
- 37 elements to the oceans. Ocean chemistry is commonly modelled as a combination of these
- 38 riverine fluxes, hydrothermal exchange at mid-ocean ridges, and sedimentation coupled to burial

39 (<u>Riley & Chester, 1971</u>). Strontium is among the best constrained of the global element cycles

- 40 over geologic time due to the facility of measuring its isotopic composition, its significant
- 41 temporal isotope variations, and its preferential incorporation into marine carbonates. <u>The ratio</u>
- 42 between the radiogenic 87 Sr (a product of the decay of 87 Rb) and stable 86 Sr isotopes increases
- 43 with the age of the rock substrate. The 87 Sr/ 86 Sr isotope composition and Sr concentrations of

44	the open oceans is currently homogenous at ~0.7092 (Elderfield, 1986) and ~7.85 mg/L (Bernat
45	et al., 1972), respectively, as the residence time of Sr greatly exceeds the rate of ocean mixing
46	(Broecker & Peng, 1982). This value reflects a balance in inputs and outputs between radiogenic
47	Sr derived from the continents and unradiogenic Sr from mantle-derived material. While
48	spatially homogenous at current levels of precision, seawater ⁸⁷ Sr/ ⁸⁶ Sr has varied significantly
49	over geological time (e.g. Veizer et al., 1999). These changes to seawater ⁸⁷ Sr/ ⁸⁶ Sr have been
50	used to infer changes in inputs and outputs to the oceans in response to climatic and/or tectonic
51	forcings over geological time (e.g. McArthur et al., 2001); although this is contentious (Palmer &
52	Edmond, 1992; Oliver et al., 2003). Strontium isotope compositions have also been used as
53	tracers of inputs from different river catchments into intra-continental seas (Andersson et al.,
54	<u>1991).</u>
55	
56	Seawater ⁸⁷ Sr/ ⁸⁶ Sr has been increasing at a rate of 0.000054 Myr ⁻¹ in the Neogene and
56 57	<u>Seawater ⁸⁷Sr/⁸⁶Sr has been</u> increasing at a rate of 0.000054 Myr ⁻¹ in the Neogene and <u>Pleistocene (Henderson et al., 1994; Hodell et al., 1989)</u> . <u>There is a current discrepancy in our</u>
56 57 58	<u>Seawater ⁸⁷Sr/⁸⁶Sr has been</u> increasing at a rate of 0.000054 Myr ⁻¹ in the Neogene and <u>Pleistocene (Henderson et al., 1994; Hodell et al., 1989)</u> . <u>There is a current discrepancy in our</u> <u>scientific understanding of the global Sr cycle, as m</u> ass balance calculations indicate that the
56 57 58 59	<u>Seawater ⁸⁷Sr/⁸⁶Sr has been</u> increasing at a rate of 0.000054 Myr ⁻¹ in the Neogene and <u>Pleistocene (Henderson et al., 1994; Hodell et al., 1989).</u> <u>There is a current discrepancy in our</u> <u>scientific understanding of the global Sr cycle, as mass balance calculations indicate that the</u> current input of radiogenic Sr from the continents, <u>assumed to only be transported in dissolved</u>
56 57 58 59 60	<u>Seawater ⁸⁷Sr/⁸⁶Sr has been</u> increasing at a rate of 0.000054 Myr ⁻¹ in the Neogene and <u>Pleistocene (Henderson et al., 1994; Hodell et al., 1989).</u> <u>There is a current discrepancy in our</u> <u>scientific understanding of the global Sr cycle, as m</u> ass balance calculations indicate that the current input of radiogenic Sr from the continents, assumed to only be transported in dissolved form to the oceans, cannot be balanced by unradiogenic Sr originating from hydrothermal
56 57 58 59 60 61	Seawater ⁸⁷ Sr/ ⁸⁶ Sr has been increasing at a rate of 0.000054 Myr ⁻¹ in the Neogene and <u>Pleistocene (Henderson et al., 1994; Hodell et al., 1989)</u> . <u>There is a current discrepancy in our</u> <u>scientific understanding of the global Sr cycle, as m</u> ass balance calculations indicate that the current input of radiogenic Sr from the continents, <u>assumed to only be transported in dissolved</u> <u>form to the oceans</u> , cannot be balanced by unradiogenic Sr originating from hydrothermal exchange with oceanic crust to satisfy <u>the</u> observed rate of ⁸⁷ Sr/ ⁸⁶ Sr change. <u>The global average</u>
 56 57 58 59 60 61 62 	Seawater ⁸⁷ Sr/ ⁸⁶ Sr has been increasing at a rate of 0.000054 Myr ⁻¹ in the Neogene and Pleistocene (Henderson et al., 1994; Hodell et al., 1989). There is a current discrepancy in our scientific understanding of the global Sr cycle, as mass balance calculations indicate that the current input of radiogenic Sr from the continents, assumed to only be transported in dissolved form to the oceans, cannot be balanced by unradiogenic Sr originating from hydrothermal exchange with oceanic crust to satisfy the observed rate of ⁸⁷ Sr/ ⁸⁶ Sr change. The global average dissolved riverine ⁸⁷ Sr/ ⁸⁶ Sr input is approximately 0.7136 (Allègre et al., 2010) while Sr liberated
 56 57 58 59 60 61 62 63 	<u>Seawater ⁸⁷Sr/⁸⁶Sr has been</u> increasing at a rate of 0.000054 Myr ⁻¹ in the Neogene and <u>Pleistocene (Henderson et al., 1994; Hodell et al., 1989).</u> <u>There is a current discrepancy in our</u> <u>scientific understanding of the global Sr cycle, as m</u> ass balance calculations indicate that the current input of radiogenic Sr from the continents, assumed to only be transported in dissolved form to the oceans, cannot be balanced by unradiogenic Sr originating from hydrothermal exchange with oceanic crust to satisfy <u>the</u> observed rate of ⁸⁷ Sr/ ⁸⁶ Sr change. <u>The global average</u> dissolved riverine ⁸⁷ Sr/ ⁸⁶ Sr input is approximately 0.7136 (Allègre et al., 2010) while Sr liberated <u>during hydrothermal exchange has a ratio of 0.7029 (Albarède et al., 1981)</u> . To balance the input
 56 57 58 59 60 61 62 63 64 	Seawater ⁸⁷ Sr/ ⁸⁶ Sr has been increasing at a rate of 0.000054 Myr ⁻¹ in the Neogene and Pleistocene (Henderson et al., 1994; Hodell et al., 1989). There is a current discrepancy in our scientific understanding of the global Sr cycle, as mass balance calculations indicate that the current input of radiogenic Sr from the continents, assumed to only be transported in dissolved form to the oceans, cannot be balanced by unradiogenic Sr originating from hydrothermal exchange with oceanic crust to satisfy the observed rate of ⁸⁷ Sr/ ⁸⁶ Sr change. The global average dissolved riverine ⁸⁷ Sr/ ⁸⁶ Sr input is approximately 0.7136 (Allègre et al., 2010) while Sr liberated during hydrothermal exchange has a ratio of 0.7029 (Albarède et al., 1981). To balance the input from the world's rivers, the hydrothermal flux would need to be 4-20 times higher than <u>current</u>
 56 57 58 59 60 61 62 63 64 65 	Seawater ⁸⁷ Sr/ ⁸⁶ Sr has been increasing at a rate of 0.000054 Myr ⁻¹ in the Neogene and Pleistocene (Henderson et al., 1994; Hodell et al., 1989). There is a current discrepancy in our scientific understanding of the global Sr cycle, as mass balance calculations indicate that the current input of radiogenic Sr from the continents, assumed to only be transported in dissolved form to the oceans, cannot be balanced by unradiogenic Sr originating from hydrothermal exchange with oceanic crust to satisfy the observed rate of ⁸⁷ Sr/ ⁸⁶ Sr change. The global average dissolved riverine ⁸⁷ Sr/ ⁸⁶ Sr input is approximately 0.7136 (Allègre et al., 2010) while Sr liberated during hydrothermal exchange has a ratio of 0.7029 (Albarède et al., 1981). To balance the input from the world's rivers, the hydrothermal flux would need to be 4-20 times higher than current estimates (Davis et al., 2003; Hodell et al., 1989; Palmer and Edmond, 1989; Vance et al., 2009).

- 67 <u>possibility is</u> a deglacial weathering pulse that has yet to decay, which means that current
- 68 dissolved riverine measurements would not be representative of the average over a time period
- 69 greater than glacial/interglacial cycles (Vance et al., 2009). Potential missing fluxes of
- 70 <u>unradiogenic Sr include</u> groundwater inputs from volcanic terrains (Allègre et al., 2010) and off-
- 71 axis exchange with oceanic crust (Elderfield and Gieskes, 1982), with the latter considered to be
- 72 of insufficient magnitude to play a considerable role (Davis et al., 2003).
- 73

Recent estimates suggest that rivers transport between 15-20 Gt yr⁻¹ of suspended material to the 74 75 ocean each year (Peucker-Ehrenbrink et al., 2010; Walling, 2006), considerably greater than the 76 dissolved riverine and aeolian fluxes combined (Oelkers et al., 2011; 2012). Traditionally it has 77 been assumed that this particulate material undergoes little additional weathering in seawater, 78 because dissolution rates are reduced at low temperatures and because burial is thought to rapidly 79 isolate sediment. Nevertheless, some dissolution of riverine particulate material in the oceans is 80 inevitable, depending upon the saturation states of minerals in seawater, particulate surface area, 81 temperature, and prior weathering history. Experimental determinations of basalt dissolution 82 rates covering the pH and temperature range of modern seawater suggest that ~ 0.05 % of basaltic 83 particulate material could dissolve in seawater each day, with potentially profound impacts on 84 seawater chemistry (Gislason et al., 2006). More recently, laboratory experiments have shown 85 that there is substantial release of both soluble elements (such as Sr) and insoluble elements 86 (such as Nd) from riverine particulates to seawater over a timescale of days to months (Jones et 87 al., 2012a; 2012b; Pearce et al., 2013). Field evidence also indicates that the dissolution of 88 particles is a significant part of the Nd cycle (Lacan and Jeandel, 2005; Arsouze et al., 2009), 89 including large submarine fans such as from the Ganges/Brahmaputra (Singh et al., 2012). For

more soluble elements such as Ca, Mg, and Sr, it is more difficult to observe such release in
 natural environments. This is due to both their elevated concentrations in seawater, which are
 several orders of magnitude greater than in the water arriving from estuaries, and the effects of
 contemporaneous precipitation of secondary minerals and ion-exchange as river-transported
 particles attempt to equilibrate with their new surroundings (Jones et al., 2012a).

Here we present Sr elemental and isotope $({}^{87}\text{Sr})$ data for riverine particulates from a basaltic 96 97 catchment, tracing their pathway from the Hvítá River into the Borgarfjörður Estuary in western 98 Iceland (Fig. 1). This catchment is well suited for the study of seawater-particulate interaction as 99 it has sparse vegetation, poorly developed soils, a stable climate, and a relatively homogenous 100 basaltic geology (c.f. Gislason et al., 1996). High physical erosions rates result in the delivery of 101 readily weathered material with a high surface area. The estuary is < 2 m deep over the first 5 102 km from the river mouth and is consequently tidally-dominated and both vertically and 103 horizontally well mixed. The shallow depth results in a high particulate-water ratio, maximizing 104 both the likelihood of continued particulate weathering, and a detectable chemical response in 105 the estuarine waters. The estuary has a natural narrowing, enhanced by Borgarfjörður Bridge at 106 Borgarnes (Fig. 1); consequently sediment input from outside the catchment is minimal. 107 Previous work on this catchment has demonstrated a distinct difference between the particulate 108 and dissolved compositions of several isotopes and elements including Sr (Jones et al., 2012a; 109 Pearce et al., 2010; 2013; Pogge von Strandmann et al., 2008). Crucially, Li isotope data 110 indicates that the river-derived particulates have experienced weathering in this estuary, 111 including both primary phase dissolution and secondary phase precipitation (Pogge von 112 Strandmann et al., 2008).

114 This study focuses on particle dissolution in a volcanic estuary for a number of reasons. 115 Estimates suggest that humid, young, and mountainous regions account for 40% of the global 116 dissolved flux and >60% of the suspended particulate flux, despite comprising just 14\% of the 117 global drainage area (Milliman and Farnsworth, 2011). Proportionally, volcanic terrains exert a 118 much greater global influence on particulate fluxes to the oceans than expected from their 119 geographical extent, due to the combined effects of high relief, high runoff, the presence of 120 rapidly weathered volcanic rocks, and the absence of sedimentary traps (Milliman and Syvitski, 121 1992). The dissolution rates of primary basaltic minerals are, generally, an order of magnitude 122 or more rapid than those of granitic, metamorphic, or recycled sedimentary minerals (Dupré et 123 al., 2003; Gislason and Oelkers, 2003; Wolf-Boenisch et al., 2004; Gudbrandsson et al., 2012). 124 Moreover, particulate material delivered from volcanic islands typically undergoes little 125 weathering during riverine transport due to rapid transit to the oceans, so they are particularly 126 susceptible to dissolution once they arrive in coastal waters. Hence, elemental release from 127 basaltic particles could potentially account for the imbalances identified in the global cycles of a number of elements. For strontium, the ⁸⁷Sr/⁸⁶Sr isotope composition of basaltic particulates is 128 129 less radiogenic than seawater, and thus may potentially account for at least part of the apparent 130 shortfall in the marine Sr budget.

131

132 **2. Methods**

133 2.1 Sampling

134 Three field excursions were conducted in the Borgarfjörður/Hvítá catchment in 2003, 2008, and 135 2011. Samples were collected in transects along the estuary across the mixing zone of fresh and 136 saline water at high tide (see Fig. 1). The sampling methods from the 2003 field excursion are 137 summarized in Pogge von Strandmann et al. (2008). This sample suite, collected from the 138 Hvítárvellir Bridge to beyond the estuary mouth, represents a range in salinity from riverine 139 water to close to that of pure seawater. Fluid, suspended particles, and some colloid samples 140 were collected. The 2011 transect also started at Hvítárvellir and collected a higher density of 141 samples across the mixing zone, finishing at the bridge at Borgarnes. Surface water samples 142 were collected at a depth of 30 cm, with the exception of sample Bo8b, which was taken using a 143 Niskin sampler at a depth of 2 m (bottom water at this location). Conductivity and temperature 144 were measured on location. The samples were brought to the laboratory the same day and 145 filtered using a peristaltic pump through a 0.2 μ m cellulose acetate membrane filter. The 146 samples were then subdivided prior to analysis. The filters were rinsed through with de-ionized 147 water, dried then weighed to estimate the suspended fraction concentration.

148

149 The 2008 transect collected bedload material that has been the focus of previous investigations 150 (Jones et al., 2012a; Pearce et al., 2013). The sample locations matched that of the locations in 151 2003. In the shallow parts of the river and estuary, samples were collected from exposed 152 sandbanks or using a corer to collect material from the top 20 cm of the sediment. In deeper 153 water, samples were collected using a weighted bucket dragged behind the boat over a distance 154 of ~10 m. Repeat passes were conducted to collect sufficient material, which were then 155 homogenized prior to splitting into sample containers. All samples were dried at 40 °C 156 immediately after collection but no other processing was performed.

158 2.2 Chemical Analyses

159 The filters and particulate material were flushed with 1L of de-ionized water and dried at 40 °C

- 160 <u>before digestion</u> in 20 ml savillex® containers at 120 °C for 72 hours using 2 ml 15M HNO₃.
- 161 After digestion, samples evaporated to dryness at 75 °C and re-diluted to 2 % HNO₃ prior to
- 162 elemental analyses. <u>The elemental compositions of these samples after digestion were measured</u>
- 163 in a Thermo Finnigan® ELEMENT XR at the GET in Toulouse, France. An In Re spike was
- 164 used for calibration purposes, and <u>the total blank contributions</u> (including blank filters) were
- 165 negligible <u>for the elements presented in here</u> compared to sample concentrations. Dissolved
- 166 concentrations of major elements and cations in collected fluid samples were conducted on an
- 167 ICP-SFMS in ALS laboratories, Sweden. Anion concentrations in these samples were measured
- 168 using ion chromatography techniques using a Dionex® ICS-2000 in Reykjavík, Iceland.
- 169

The ⁸⁷Sr/⁸⁶Sr ratios of each sample were measured using a VG Sector 54 thermal ionization mass 170 171 spectrometer (TIMS). Liquid and pre-digested solid samples were evaporated, taken up in 3M 172 HNO₃ and run through Sr-spec columns. The purified Sr was then loaded onto outgassed Ta filaments. The samples were run at ⁸⁸Sr beam potentials of 2V and 100 ratios were collected 173 using a multi-dynamic peak jumping routine. Resulting ⁸⁷Sr/⁸⁶Sr ratios were normalized to an 174 ⁸⁶Sr/⁸⁸Sr ratio of 0.1194. Six analyses of the NBS 987 standard yielded an average ⁸⁷Sr/⁸⁶Sr of 175 0.710243 ± 0.000010 (2 SD). Individual errors did not exceed $\pm 0.000012 {}^{87}$ Sr/ 86 Sr. Total 176 177 blanks for Sr were found to be negligible compared to the Sr amounts from the samples.

178

179 2.3 Mixing Calculations

185
$$\begin{vmatrix} \left(\frac{s\tau_{ST}}{sv_{ST}}\right)_{zcomp} = \left(F_{river} \times \left(\frac{s\tau_{ST}}{sv_{ST}}\right)_{river}\right) + \left((1 - F_{river}) \times \left(\frac{s\tau_{ST}}{sv_{ST}}\right)_{x}\right)$$
 (1)
186 where $\left(\frac{s\tau_{ST}}{sv_{ST}}\right)_{zcomp}$ refers to the isotopic ratio expected in the samples based on 2-component
187 mechanical mixing, $\left(\frac{s\tau_{ST}}{sv_{ST}}\right)_{river}$ refers to the isotopic ratio of the Hvítá river end-member
188 (0.70459) , and $\left(\frac{s\tau_{ST}}{sv_{ST}}\right)_{x}$ refers to the isotopic value of non-riverine derived Sr, which in this case
189 is equal to the isotopic ratio of seawater $(s^{3}Sr)s^{8}s_{Trw} = 0.709198)$. f_{river} refers to the fraction of
190 dissolved riverine-derived Sr in the water, calculated from dissolved CI concentrations:
191
192 $f_{river} = \left(\frac{|C||est - |C||_{sw}}{|C||_{river} - |C||_{sw}}\right) \times \left(\frac{|C||_{river}}{|C||_{set}}\right)$ (2)
193 where the suffixes *est*, *sw* and *river* refer to the estuarine sample, the river end-member, and the
194 seawater end-member, respectively. The first part of the equation calculates the relative masses
195 of the two water bodies, which is effectively ~1 in the low salinity mixing zone. The degree to
196 which the Sr composition of Borgarfjördur estuarywater is consistent with the mechanical
197 mixing of the dissolve Sr in the river and the seawater will be assessed in detail below.
198
199 **3. Results**

200	The measured element concentrations and ⁸⁷ Sr/ ⁸⁶ Sr ratios of <u>all collected fluids</u> are shown in
201	Table 1. The variation of estuary water Sr concentrations are plotted against the corresponding
202	Cl concentrations in Fig. 2. The solid line in this figure illustrates the mechanical mixing line
203	between river and sea water. Both sample sets plot close to the mechanical mixing line, with a
204	slight suggestion of a net removal of Sr in the low-salinity part of the mixing zone. Note that
205	<u>there</u> is a consistent difference in both elemental concentrations and 87 Sr/ 86 Sr <u>ratio</u> between the
206	2003 and 2011 samples at Hvítárvellir, which may indicate a greater input of sea-spray derived
207	Sr into the catchment in the 2003 samples.
208	
209	The measured estuary fluid ⁸⁷ Sr/ ⁸⁶ Sr ratios are plotted as grey circles a function of the
210	corresponding aqueous Cl concentrations in Fig. 3. The solid curve in this figure illustrates the
211	Sr isotope compositions consistent with the mechanical mixing between river and estuary water
212	as calculated using Eqns. 1 and 2. Although the estuary water total Sr concentrations plotted in
213	Fig. 2 suggest close to conservative mixing of river and sea water, their ⁸⁷ Sr/ ⁸⁶ Sr ratios deviate
214	markedly from simple two-component mixing (Fig. 3). These same ⁸⁷ Sr/ ⁸⁶ Sr ratios are plotted as
215	a function of the fraction of river water component in the estuary water in Fig. 4. The
216	distribution of the symbols shows a clear deviation from the two component mixing line. The
217	difference between the observed and calculated two-component mixing ⁸⁷ Sr/ ⁸⁶ Sr values are
218	consistently more than an order of magnitude greater than the measurement error of ± 0.000012 ,
219	indicating that this is a robust and sizeable deviation from simple mixing. The difference
220	between the measured estuary water ⁸⁷ Sr/ ⁸⁶ Sr ratios and those estimated from a two component
221	mixing model are shown as a function of the corresponding Cl concentrations in Fig. 5. This
222	⁸⁷ Sr/ ⁸⁶ Sr deviation is evident from a Cl concentration of approximately 50 mg/L. At its

223	maximum, the dissolved 87 Sr/ 86 Sr ratio in the mixing zone is 690 (± 135) and 3460 (± 920) ppm
224	(10^{-6}) lower than that predicted by conservative mixing in 2011 and 2003, respectively. <u>Note the</u>
225	considerably larger errors for the 2003 dataset are due to the inherent uncertainties of using a
226	riverine end-member from a different spot-sample set. Experimentally derived dissolution rates
227	of basaltic particulates from Icelandic catchments in seawater have shown both bedload and
228	suspended sediment from Icelandic river catchments react to change the seawater ⁸⁷ Sr/ ⁸⁶ Sr
229	without a contemporaneous change in Sr concentrations over a period of days to months (Jones
230	et al., 2012a; 2012b). These laboratory dissolution rates after 1 to 4 days are shown as an
231	expected deviation from pure mechanical mixing in Fig. 5. Both the 2003 and 2011 sample sets
232	approach the calculated offset after just one day, the minimum residence time of suspended
233	particles in the estuary.
234	
235	The concentration and Sr content of the suspended particulate load are summarized in Table 1.
236	The suspended load concentration is relatively constant and ranges from 492-650 mg/L in the
237	estuary. The Sr concentrations of this suspended particulate load also remain close to constant in
238	the mixing zone and ranges from 146-228 mg/kg. The ⁸⁷ Sr/ ⁸⁶ Sr ratios of these suspended
239	particles are illustrated as a function of the Cl concentration of their adjacent fluid in Fig. 3. In
240	contrast with the total concentration of the particles and their total Sr concentration, the ⁸⁷ Sr/ ⁸⁶ Sr
241	ratios of the suspended particles show a dramatic shift towards seawater values in the estuary.
242	
243	The chemical composition of the bedload samples collected during 2008 are listed in Table 2.
244	The ⁸⁷ Sr/ ⁸⁶ Sr ratios of these bedload samples are illustrated as a function of the Cl concentration
245	of their adjacent fluid in Fig. 3. The bedload sample ⁸⁷ Sr/ ⁸⁶ Sr ratios follow a similar trend as the

suspended particles but exhibit less of a seawater Sr isotope signal than the corresponding
suspended particulate material. The Sr concentrations in the bedload increase away from the
river mouth due to the presence of carbonate minerals (Jones et al., 2012a). That study
concluded from mass balance equations that up to 14.9 % of the original basaltic Sr has been
removed from the non-carbonate bedload.
4. Discussion
4.1 Estimation of the Sr fraction inputted to the estuary waters from particulate material
the degree to which Sr originating from particulate phases influences the estuarine water
chemistry can be estimated from mass balance calculations. By substituting
$$\left(\frac{97Sr}{10ST}\right)_{2 \text{ comp}}$$
 for
 $\left(\frac{97Sr}{10ST}\right)_{x} = \frac{\left(\frac{97Sr}{10ST}\right)_{xample} - \left(\frac{Fruer \times \left(\frac{97Sr}{10ST}\right)_{river}}{1 - Fruer}$ (3)
The difference between $\left(\frac{87Sr}{10ST}\right)_{x}$ and $\left(\frac{87Sr}{10ST}\right)_{xw}$ originates from a Sr source other than the
conservative mixing of river and sea water. It is assumed in this study that this difference occurs
from the conservative transfer of Sr from particulates to the fluid phase, and from the fluid to the
particulates. Taking account of this assumption, the fraction of the Sr present in the estuarine
water samples originating from particulate weathering (f_{pure}) can then be obtained from:
264

265
$$f_{part} = \frac{\binom{w_{sy}}{w_{sy}} \binom{w_{sy}}{w_{sy}}}{\binom{w_{sy}}{w_{sy}} \binom{w_{sy}}{w_{sy}}}_{sw}$$
(4)
266 where the subscript *part* designates the value of the particulate material, where the measured
267 $\binom{w_{sy}}{w_{sy}}_{part} = 0.703294$. The total amount of Sr released from the particles to the fluid is attained
268 by multiplying the dissolved Sr in the water by f_{part} ; the results of this calculation are provided in
269 Supplementary Table 1. Note that the quantification of the particulate material release is
260 severely hampered by the difference in element concentrations between the fresh and saline
271 water. Consequently, the calculations either induce high errors at very low salinity levels, or are
272 swamped by the seawater signature in high salinity areas. As such f_{part} values are only reported
273 over the 100 < Sr < 1000 μ g/L concentration range. In this mid-mixing zone, measured $\frac{4^{3}Sr}{8^{3}}$ for $\frac{4^{3}Sr}{8^{3}}$
274 compositions require that an average 3.98 (± 2.7) μ g/L of Sr be transferred from the particulates
275 into the water. As these samples were collected at high tide, this Sr must have been liberated
276 from the particulates to the seawater in a matter of minutes to hours.
277
278 Similarly, mass balance calculations can be used to validate if the compositions of the suspended
280 Sr required to balance the Sr composition of the estuary water. Taking account of mass balance
281 constraints, the fraction of Sr in the particles originating from seawater (f_{ps}) can be calculated
282 from:
283
284 $f_{sw} = \frac{\binom{w_{sy}}{w_{sy}}}_{\frac{w_{sy}}} - \binom{w_{sy}}{w_{sy}}_{becalt}}_{constraints}_{constraints}_{becalt}}_{constraints}_{becalt}_{constraints}_{becalt}}_{constraints}_{becalt}_{constraints}_{becalt}_{constraints}_{becalt}_{constraints}_{becalt}_{constraints}_{becalt}_{constraints}_{becalt}_{constraints}_{becalt}_{constraints}_{becalt}_{constraints}_{constraints}_{constraints}_{constraints}_{constraints}_{constraints}_{constraints}_{constrain$

285	where the subscripts sample, basalt, and sw refer to values for suspended particles in the estuary,
286	the basaltic Hvítá river end member, and the isotopic composition of seawater, respectively. As
287	the Sr concentrations in the particles are close to constant, the total mass of Sr transferred to the
288	estuarine waters from the particles (m _{Sr released}) is approximately:
289	
290	$m_{\rm Sr \ released} = \boldsymbol{f}_{sw} \times m_{\rm Sr \ particles} \tag{6}$
291	where m _{Sr particles} refers to the mass of Sr present in the particles. This assumes that the
292	provenance of the suspended material in the mixing zone is dominantly of terrestrial origin.
293	Therefore, these calculations were only performed up to sample Bo12 (64°34' N, 021°50' W).
294	The depth at Bo12 is <2 m and well within the confines of the estuary, which supports the
295	assumption that the overwhelming majority of suspended particulates in this part of the estuary
296	originate from the Hvítá catchment. This is also the final sample site used for estimating f_{part}
297	above. The seawater component (f_{sw}) is expressed as a percentage in Supplementary Table 1 and
298	Fig. 6 to provide a comparison with the estimates generated from the estuarine water
299	compositions.
300	
301	The 87 Sr/ 86 Sr composition of the suspended load <u>samples from 2011</u> indicates that <0.1 % of the
302	Sr in the suspended particles originated from seawater in the Hvítá River, but 86 % of the Sr in
303	suspended particles has a seawater signature at the Borgarfjörður Bridge. This observation
304	indicates that the transformation of the Sr isotopic compositions of the particles begins at very
305	low salinity levels (Fig. 6). Note that part of the isotopic evolution could be an artefact due to
306	contamination from residual salts on the filter, even after rinsing with deionized water.
307	However, the dramatic Sr isotopic evolution observed in the particulate material collected from

308	the low salinity mixing zone, confirms that this effect is not an artefact of contamination.
309	Logically, one would expect that if there was any deviation from the dissolved mechanical
310	mixing line in the fjord, the particles would be more unradiogenic than their host water due to
311	resuspension through tidal action.
312	
313	The change in ⁸⁷ Sr/ ⁸⁶ Sr in the suspended particles while maintaining a near constant total Sr
314	concentration indicates the two way transfer of material from and into the particles. In total, the
315	calculations presented above, based on the composition of the suspended particles collected in
316	2011, indicate that 9-27 μ g/L of Sr is transferred from the particles to the estuarine waters in the
317	mixing zone. This mass is 2.5-7.5 times greater than the input to seawater by dissolved riverine
318	transport and approximately 10-30 % of the total particulate Sr concentrations. Nevertheless,
319	these values are substantially greater than the corresponding estimates based on the analysis of
320	the concentrations of the estuary waters. The most likely reasons for this are a longer residence
321	time of particulates in the mixing zone compared to river water, and the formation of, and
322	exchange with Sr-bearing phases within the estuary. Nevertheless, the dramatic compositional
323	change in the suspended material demonstrates that the particulate fraction is the major
324	contributor of Sr to estuarine waters through dissolution and/or exchange of Sr. The larger
325	estimated Sr release deduced from the suspended material compositions compared to that
326	indicated by the estuarine water compositions (1.1 times greater than the dissolved flux) may
327	reflect the larger residence time of the particulates in the mixing zone.
328	

329 The question remains as to whether the Sr released from particulates is sourced by the

330 dissolution of <u>or exchange from</u> primary igneous minerals, secondary weathering phases, or even

331	colloids. Data from Hvítárvellir suggests that the Sr concentration of riverine colloids is far too
332	low (0.06 ng/g) for their flocculation to impact seawater chemistry. However, the Sr
333	concentration in Fe-Mn oxyhydroxides (1.8-2.4 μ g/g) suggests that these phases may be a
334	significant source, consistent with the observed effects on $^{234}U/^{238}U$ activity ratios (Pogge von
335	Strandmann et al., 2008). Therefore, at least part of the two-way transfer of Sr between the
336	particulate and fluid phases could stem from adsorption-desorption processes, as shown by Li
337	isotopes (Pogge von Strandmann et al., 2008). Further insight into the mechanism responsible
338	for the reincorporation into the solid phase can be gained from Fig. 7, which illustrates the Sr/Al
339	ratio against the Ca/Al ratio for the bedload particulate material. These concentration ratios plot
340	as a near linear function of one another with a slope of 0.028. This dependence suggests that the
341	re-incorporation of Sr into the solids is due to its co-precipitation with Ca as the particulate
342	material interacted with seawater in the estuary. It seems likely that this precipitating phase is
343	calcite, given its high concentrations in these sediments (Pearce et al., 2013). The fact that this
344	linear correlation is offset from the origin by 0.6 Ca/Al implies that a substantial fraction of Sr in
345	the particulate material is hosted by non-carbonate phases (such as silicates).
346	
- · -	

347 *4.2 Global Implications*

348 These findings have far-reaching implications for the global element cycles. On a catchment

349 scale, the Hvítá River has a mean discharge of 89 m^3s^{-1} , with an annual particulate suspended

- 350 flux of 200,600 tons and a dissolved Sr flux of 9.54 tons yr⁻¹, based on monthly monitoring
- 351 (Eiriksdottir et al., 2011). The results <u>described</u> here indicate that a further 10.4-71.5 tons yr^{-1} of
- 352 Sr will be transferred to the estuarine waters from particulates, assuming a linear covariance
- 353 <u>between the dissolved and suspended flux throughout the year</u>. In this case, the overall ⁸⁷Sr/⁸⁶Sr

354	composition delivered to the ocean (both riverine dissolved and that from particulate dissolution)
355	is calculated to be between 0.70345 and 0.70391, rather than the value of 0.70459 of the riverine
356	dissolved signal alone. If this behaviour is typical for volcanic particulates worldwide, then
357	consideration of the geographic extent of volcanic islands and basaltic terrains (as defined by
358	Allègre et al., 2010 and Dessert et al., 2003) suggests from 42 and 291 x 10 ⁹ g yr ⁻¹ of Sr could be
359	released in this way. This release could account for between 6 and 45% of the current perceived
360	imbalance in the marine Sr budget, which is of comparable magnitude to the contribution from
361	hydrothermal exchange (Davis et al., 2003). Estimations of annual fluxes based on summer spot
362	sampling from this catchment gave the dissolved Sr flux from Hvítá as 37 tons yr ⁻¹ (Pogge von
363	Strandmann et al., 2008), underlining the sensitivity of these calculations to the conditions at the
364	time of sampling. Crucially, these calculations only take into account the initial release of Sr in
365	the estuary; whereas reworking of the sediments is likely to continue to react over much longer
366	periods (e.g. Aller 1998), as exhibited by the experimental evidence (Jones et al., 2012a; 2012b;
367	Pearce et al., 2013).

369 While these results are conclusive field evidence of 'proof of process', there is some degree of 370 uncertainty associated with the magnitude of this flux, especially when scaled up to a global 371 process. Therefore, these may not necessarily be a fair reflection on the annual fluxes. There are 372 considerable climatic differences between Iceland and other basaltic provinces and outcrops 373 worldwide, which would result in varying degrees of weathering, soil formation, and denudation. 374 Moreover, Iceland hosts several sub-glacial volcanoes that lead to the formation of significant 375 amounts of easily-weathered hyaloclastite (hydrated tuff-like breccia that is rich in volcanic 376 glass, formed through water-lava interaction). Each of these variables would affect the partition

of Sr between the solid and fluid phases. Moreover, the relative contributions of mineral and oxyhydroxide dissolution need to be more accurately quantified before firm flux estimates can be made. Despite these uncertainties, the magnitude of these deviations in ⁸⁷Sr/⁸⁶Sr from a two component mixing curve is clear evidence that the reactions of particulate material upon arrival in coastal waters are a major contributor to the global cycle of Sr.

382

383 **5. Conclusions**

384 These results represent the first direct evidence that the weathering of riverine particulate 385 material upon arrival in coastal areas makes a significant contribution to the overall Sr chemistry of seawater over geological timescales. This is significant as marine ⁸⁷Sr/⁸⁶Sr values are a 386 387 default tool for estimating weathering rates over geological time. Moreover, this evidence 388 demonstrates that we may have underestimated the elemental mass of material being transferred 389 from the continents to the oceans. The feedback between climate and weathering is commonly 390 quantified based upon the mass of the alkali earth metals Ca and Mg transferred from the 391 continents to the oceans during weathering, which consume atmospheric CO_2 both during 392 chemical weathering and the precipitation of carbonates (e.g. Walker, et al., 1981; Berner et al., 393 1983; Berner, 2004; Berner and Kothavala, 2001; Wallmann, 2001). If Ca and Mg behave in a 394 similar fashion to Sr, then the feedback between climate and weathering is stronger than 395 previously presumed (Eiriksdottir et al., 2013). 396 As the overwhelming mass of sparingly soluble bio-limiting nutrients such as Fe and P are 397

398 brought to the oceans in particulate form, the dissolution of these particulates in seawater could

399 provide a new stronger link between continental weathering and marine primary productivity.

400 Experimental and field studies demonstrate that elements such as Nd are similarly released from 401 particulate material into seawater, despite its preference for the solid phase (e.g. Pearce et al., 402 2013; Singh et al., 2012). Such observations suggest that particulate weathering in estuaries is a 403 major contributor of these and other elements to seawater, lending weight to the "Boundary 404 Exchange" hypothesis where sediment-seawater reactions in shelf environments are a significant 405 source of the dissolved constituents in seawater (Jeandel, 1993; Lacan and Jeandel, 2005; 406 Jeandel et al., 2007; 2011; Siddall et al., 2008; Arsouze et al., 2009; Horikawa et al., 2011; Cater 407 et al., 2012; Wilson et al., 2012). These findings also add weight to previous studies, where 408 current land-to-ocean fluxes are proposed to be out of equilibrium following a recent 409 deglaciation (Vance et al., 2009). As glacial retreats expose substantial quantities of finely 410 ground material, the reactions of the particles in seawater provide an efficient mechanism for the 411 enhanced global weathering rates in addition to changes in the dissolved transport. 412 Anthropogenic changes to sediment fluxes through soil erosion and the damming of rivers are 413 likely to affect elemental and nutrient fluxes to coastal waters to a much greater extent than has 414 been previously considered, which may have deleterious consequences for coastal ecosystems. 415

416 Acknowledgments

417 We are indebted to Jérôme Gaillardet and another anonymous reviewer for thorough and

418 <u>constructive reviews.</u> We extend our thanks to Björgunarsveitin Brá, Emily Jones, Eydis

419 Eiriksdóttir, Haraldur Rafn Ingvason, Olivia Jones, Pierre Brunet, Rósa Ólafsdóttir, and Snorri

- 420 Guðbrandsson and for sampling and technical assistance. M.T.J. was supported by a Marie Curie
- 421 Intra-European Fellowship (PIEF-GA-2009-254495).

423 **<u>References</u>**

- 424 Albarède, F., Michard, A., Minster, J., Michard, G., 1981. ⁸⁷Sr/⁸⁶Sr ratios in hydrothermal
- 425 waters and deposits from the East Pacific Rise at 21°N. Earth Planet. Sci. Lett. 55, 229426 236.
- 427 Allègre, C., Louvat, P., Gaillardet, J., Meynadier, L., Rad, S., Capmas, F., 2010. The
- 428 fundamental role of island arc weathering in the oceanic Sr isotope budget. Earth Planet.
 429 Sci. Lett. 292, 51–56.
- Aller, R. 1998. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors.
 Mar. Chem. 61, 143-155.
- Andersson, P.S., Wasserburg, G.J., Ingri, J., 1992. The sources and transport of Sr and Nd
 isotopes in the Baltic Sea. Earth Planet. Sci. Lett. 113, 459-472.
- 434 Arsouze, T., Dutay, J.-C., Lacan, F., Jeandel, C., 2009. Reconstructing the Nd oceanic cycle
 435 using a coupled dynamical-biogeochemical model. Biogeosciences 6, 1–18.
- 436 Bernat, M., Church, T., Allègre, C.J., 1972. Barium and strontium concentrations in Pacific and
- 437 Mediterranean seawater profiles by direct isotope dilution spectrometry. Earth Planet.
- 438 Sci. Lett. 16, 75-80.
- 439 Berner, R.A., 2004. The Phanerozoic Carbon Cycle. Oxford University Press, Oxford.
- 440 Berner, R.A., Kothavala, Z., 2001. GEOCARB III. A revised model of atmospheric CO₂ over
- 441 Phanerozoic time. Am. J. Sci. 301, 182-204.

442	Berner, R.A., Lasaga, A.C., Garrels, R.M., 1983. The carbonate-silicate geochemical cycle and
443	its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283,
444	641-683.

- Broecker, W.S., Peng, T.H., 1982. Tracers in the Sea (Eldigio Press, Lamont Doherty Geological
 Observatory).
- Cater, P., Vance, D., Hillenbrand, C.D., Smith, J.A., Shoosmith, D.R., 2012. The neodymium
 isotopic composition of water masses in the eastern Pacific sector of the Southern Ocean.
 Geochim. Cosmochim. Acta, 79, 41-59.
- 450 Davis, A., Bickle, M., Teagle, D., 2003. Imbalance in the oceanic strontium budget, Earth
 451 Planet. Sci. Lett. 112, 173-187.
- 452 Dessert, C., Dupré, B., Gaillardet, J., François, L.M., Allègre, C.J., 2003. Basalt weathering laws
 453 and the impact of basalt weathering on the global carbon cycle, Chem. Geol. 202, 257454 273.
- 455 Dupré, B., Dessert, C., Oliva, P., Goddéris, Y., Viers, J., Francois, L., Millot, R., Gaillardet, J.,
- 456 2003. Rivers, chemical weathering and Earth's climate. C.R. Geosci. 335, 1141-1160.
- 457 Eiriksdottir, E.S., Gislason, S.R., Snorrason, Á., Harðardóttir, J., Þorláksdóttir, S.B.,

458 Eyþórsdóttir, K.G., 2011. Efnasamsetning, Rennsli og Aurburður Straumvatna á

- 459 Versturlandi V. Gagnagrunnur Jarðvísindastofnunar og Veðurstofunnar (Science Institute
 460 Report 04, Haskóli Íslands).
- 461 Eiriksdottir, E.S., Gislason, S.R., Oelkers, E.H., 2013. Does temperature or runoff control the

462 feedback between chemical denudation and climate? Insights from NE Iceland.

463 Geochim. Cosmochim. Acta 107, 65-81.

- Elderfield, H. & Gieskes, J.M., 1982. Sr isotopes in interstitial waters of marine sediments from
 Deep Sea Drilling Project cores, Nature 300, 493-497.
- Elderfield, H., 1986. Strontium isotope stratigraphy. Palaeogeogr. Palaeoclimatol. Palaeoecol.
 57, 71-90
- Gislason, S.R., Arnórsson, S., Ármannsson, H., 1996. Chemical weathering of basalt in SW
 Iceland: Effects of runoff, age of rocks and vegetative/glacial cover. Am. J. Sci. 296, 837907.
- 471 Gislason, S.R., Oelkers, E.H., 2003. The mechanism, rates and consequences of basaltic glass
- dissolution: II. An experimental study of the dissolution rates of basaltic glass as a
 function of pH and temperature. Geochim. Cosmochim. Acta 67, 3817-3832.
- Gislason, S.R., Oelkers, E.H., Snorrason, A., 2006. Role of river-suspended material in the
 global carbon cycle. Geology 34, 49-52.
- 476 Gudbrandsson, S., Wolff-Boenisch, D., Gislason, S.R., Oelkers, E.H., 2011. An experimental
- 477 study of crystalline basalt dissolution from $2 \le pH \le 11$ and temperatures from 5 to 75 478 °C. Geochim. Cosmochim. Acta, 75, 5496-5509.
- Henderson, G.M., Martel, D.J., O'Nions, R.K., Shackleton, N.J., 1994. Evolution of seawater
 ⁸⁷Sr/⁸⁶Sr over the last 400 ka: the absence of glacial/interglacial cycles, Earth Planet. Sci.
 Lett. 128, 643–651.
- Hodell, D., Mueller, P., McKenzie, J., Mead, G., 1989. Strontium isotope stratigraphy and
 geochemistry of the late Neogene ocean, Earth Planet. Sci. Lett. 92, 165-178.
- 484 Horikawa, K., Martin, E.E., Asahara, Y., Sagawa, T., 2011. Limits on conservative behaviour of
- 485 Nd isotopes in seawater assessed from analysis of fish teeth from Pacific cores. Earth

- 486 Planet. Sci. Lett., 310, 119-130.
- Jeandel, C. 1993. Concentration and isotopic composition of Nd in the South Atlantic Ocean.
 Earth Planet. Sci. Lett. 117, 581-591.
- 489 Jeandel, C., Arsouze, T., , F., Techine, P. and Dutay, J.C. 2007. Isotopic Nd compositions and
- 490 concentrations of the lithogenic inputs into the ocean: A compilation, with an emphasis on491 the margins. Chem. Geol. 239, 156-164.
- 492 Jeandel, C., Peucker-Ehrenbrink, B., Jones, M.T., Pearce, C.R., Oelkers, E.H., Godderis, Y.,
- 493 Lacan, F., Aumont, O. and Arsouze, T. 2011. Ocean Margins: The missing term for
 494 oceanic element budgets? EOS 92, 217-219.
- Jones, M.T., Pearce, C.R., Oelkers, E.H., 2012a. An experimental study of the interaction of
- 496 basaltic riverine particulate material and seawater. Geochim. Cosmochim. Acta 77, 108-497 120.
- 498 Jones, M.T., Pearce, C.R., Jeandel, C., Gislason, S.R., Eiriksdottir, E.S., Mavromatis, V., Oelkers,
- E.H., 2012b. Riverine particulate material dissolution as a significant flux of strontium to
 the oceans. Earth Planet. Sci. Lett. 355–356, 51–59.
- Lacan, F., Jeandel, C., 2005. Neodymium isotopes as a new tool for quantifying exchange fluxes
 at the continent-ocean interface. Earth Planet. Sci. Lett. 232, 245–257.
- 503 McArthur, J.M., Howarth, R.J., Bailey, T.R., 2001. Strontium Isotope Stratigraphy: LOWESS
- 504Version 3: Best Fit to the Marine Sr-Isotope Curve for 0–509 Ma and Accompanying
- 505 Look-up Table for Deriving Numerical Age, *J. Geol.* **109**, 155-170.
- 506 Milliman, J.D., Farnsworth, K.L., 2011. River Discharge to the Coastal Ocean: A Global
 507 Synthesis. Cambridge University Press.

508	Milliman, J.D., Syvitski, J., 1992. Geomorphic/tectonic control of sediment discharge to the
509	ocean: the importance of small mountainous rivers. J. Geol. 100, 525-544.
510	Oelkers, E.H., Gislason, S.R., Eiriksdottir, E.S., Jones, M.T., Pearce, C.R. and Jeandel, C. 2011.
511	The role of riverine particulate material on the global cycles of the elements. Appl.
512	Geochem. 26, S365-S369.
513	Oelkers, E.H., Gislason, S.R., Eiriksdottir, E.S., Jones, M.T., Pearce, C.R., Jeandel, C.,
514	2012. Riverine particulate material dissolution in seawater and its implications for the global
515	cycles of the elements. C.R. Geosci. 344, 646-651.
516	Oliver, L., Harris, N., Bickle, M., Chapman, H., Dise, N., Horstwood, M., 2003. Silicate
517	weathering rates decoupled from the ⁸⁷ Sr/ ⁸⁶ Sr ratio of the dissolved load during
518	Himalayan erosion. Chem. Geol., 201 (1-2), 119-139.
519	Palmer, M., Edmond, J., 1989. The strontium isotope budget of the modern ocean, Earth Planet.
520	Sci. Lett. 92, 11-26.
521	Palmer, M. R., Edmond, J. M., 1992, Controls over the strontium isotope composition of river
522	water: Geochim. Cosmochim. Acta, 56, 2099–2111.
523	Pearce, C.R., Burton, K.W., Pogge von Strandmann, P.A.E., James, R.H., Gislason, S.R., 2010.
524	Molybdenum isotope behaviour accompanying weathering and riverine transport in a
525	basaltic terrain. Earth Planet. Sci. Lett. 295, 104-114.
526	Pearce, C.R., Jones, M.T., Oelkers, E.H., Pradoux, C., Jeandel, C., 2013. The effect of
527	particulate dissolution on the neodymium (Nd) isotope and Rare Earth Element (REE)
528	composition of seawater. Earth Planet. Sci. Lett. 369, 138-147

529	Peucker-Ehrenbrink, B., Miller, M.W., Arsouze, T., Jeandel, C., 2010. Continental bedrock and
530	riverine fluxes of strontium and riverine particulate material dissolution in seawater
531	neodymium isotopes to the oceans. Geochem. Geophys. Geosy. 11, Q03016.
532	Pogge von Strandmann, P.A.E., James, R.H., van Calsteren, P., Gislason, S.R., Burton, K.W.,
533	2008. Lithium, magnesium and uranium isotope behaviour in the estuarine environment
534	of basaltic islands. Earth Planet. Sci. Lett. 274, 462-471.
535	Riley, J.P., Chester, R., 1971. Introduction to Marine Chemistry. Academic Press, London.
536	Siddall, M., Khatiwala, S., van der Flierdt, T., Jones, K., Goldstein, S.L., Hemming, S.,
537	Anderson, R.F., 2008. Towards explaining the Nd paradox using reversible scavenging in
538	an ocean general circulation model. Earth Planet. Sci. Lett. 274, 448-461.
539	Singh, S.P., Singh, S.K., Goswami, V., Bhushan, R., Rai, V.K., 2012. Spatial distribution of
540	dissolved neodymium and ϵ_{Nd} in the Bay of Bengal: Role of particulate matter and
541	mixing of water masses. Geochim. Cosmochim. Acta, 94, 38-56.
542	Vance, D., Teagle, D., Foster, G., 2009. Variable Quaternary chemical weathering fluxes and
543	imbalances in marine geochemical budgets, Nature 458, 493-496.
544	Veizer, J., Alab, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Cardena, G.A.F., Diener, A.,
545	Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., Strauss, H.,
546	1999. ⁸⁷ Sr/ ⁸⁶ Sr, ¹³ C and ¹⁸ O evolution of Phanerozoic seawater. Chem. Geol. 161, 59-88.
547	Walker, J.C.G., Hays, P.B., Kasting, J.F., 1981. A negative feedback mechanism for the long-
548	term stabilization of Earth's surface temperature. J. Geophys. Res. 86, 9776-9782.
549	Walling, D.E., 2006. Human impact on land-ocean sediment transfer by the world's rivers.
550	Geomorphology 79, 192–216.

551	Wallmann, K., 2001. Controls on the Cretaceous and Cenozoic evolution of seawater
552	composition, atmospheric CO ₂ and climate. Geochim. Cosmochim. Acta 65, 3005-3025.
553	Wilson D.J., Piotrowski, A.M., Galy. A., McCave N., 2012. A boundary exchange influence on
554	deglacial neodymium isotope records from the deep western Indian Ocean. Earth. Planet.
555	Sci. Let., 341-344, 36-47.
556	Wolf-Boenisch, D., Gislason, S.R., Oelkers, E.H., Putnis, C.V., 2004. The dissolution rates of
557	natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from
558	25 to 74 °C. Geochim. Cosmochim. Acta 68, 4843-4858.
559	
560	Legends
561	Fig. 1. A map of western Iceland, showing the sample locations in the Hvítá River and the
562	Borgarfjörður Estuary. The 2003 (black circles) and 2011 (grey circles) transects collected
563	dissolved and suspended samples. The 2003 samples correspond to A4 and C1-11 from previous
564	studies (Pogge von Strandmann et al., 2008). The 2008 transect (black triangles) collected
565	bedload samples.
566	
567	Fig. 2. A log-log comparison of dissolved [Sr] and [Cl] concentrations measured in the 2011
568	samples (grey circles) and 2003 samples (black circles). The black line represents the pure
569	mechanical mixing line between the seawater and river water end-members, with the grey shaded
570	area representing the error on this line due to uncertainties associated with the true riverine end-
571	member.
572	

573	Fig. 3. The measured 87 Sr/ 86 Sr from the dissolved (grey circles) and suspended (grey squares)
574	samples from 2011, and bedload (black triangles) fractions from 2008 against estuarine water
575	dissolved chloride concentrations. The solid curves represent the predicted ⁸⁷ Sr/ ⁸⁶ Sr from
576	mechanical two-component mixing of the riverine and seawater end-members, with associated
577	measurement and analytical errors of this line represented by the grey area within the dashed
578	lines. Errors for individual points are well within the size of the symbols.
579	
580	Fig. 4. The measured ⁸⁷ Sr/ ⁸⁶ Sr compared with the fraction of river-derived [Sr] concentrations.
581	As with Fig. 2, the black line represents the seawater – river water mechanical mixing line, with
582	the grey shaded area representing the error on this line due to analytical uncertainties.
583	
584	Fig. 5. The difference between the observed 87 Sr/ 86 Sr in dissolved field estuarine water samples
585	and the calculated ⁸⁷ Sr/ ⁸⁶ Sr ratios at a given Cl concentration, based on mechanical two-
586	component mixing (corresponding to the curve in Fig. 2). The model curves represent the
587	calculated deviations from this mechanical mixing, based on experimental release rates from
588	Hvítá bedload (Jones et al., 2012a) and suspended particulates from northeast Iceland (Jones et
589	al., 2012b) in seawater after 1-4 days.
590	
591	Fig. 6. The estimated % seawater signal between the suspended particles (based on 87 Sr/ 86 Sr) and
592	dissolved [Cl] concentrations from the same sample. [Sr] vs [Cl] concentrations are shown for
593	comparison.

595	Fig. 7. The Sr/Al concentration ratios plotted against the corresponding Ca/Al concentration
596	ratios of the bedload particulate material. The symbols correspond to measured concentrations
597	while the line represents the least squares fit of the data.
598	
599	Table 1. Location and chemical data of the water and suspended samples collected in 2011 and
600	2003. n.a. denotes "not analysed" and b.d.l. denotes "below detection limit".
601	
602	Table 2. The chemical data of the bedload samples collected in 2008. The "corresponding site"
603	labels match those used in Pogge von Strandmann et al. (2008). * denotes that all Fe is assumed
604	to be as Fe ³⁺ .
605	
606	Supplementary Information

607 Supplementary Table 1 is a summary of the analyses that calculated the relative release of Sr,

608 based on equations 1-6.

- We conducted a suite of field investigations in Borgarfjörður estuary in west Iceland.
- Dissolved, suspended and bedload ⁸⁷Sr/⁸⁶Sr values show clear Sr release from particulates.
- Magnitudes of Sr dissolution agree with experimentally derived values.
- Sr release from sediments must occur within hours of first contact with saline water.
- Global Sr flux estimates of comparable magnitude to mid-ocean ridge Sr exchange.

Figure Click here to download high resolution image

Figure Click here to download high resolution image

Figure Click here to download high resolution image

Site	Latitude	Longitude	Date T	ime Distance fron	n Water Temp. F	H Conduct	tivity	Salinity	Suspended	Alkalinity	Cl	SO₄	Si	Na	к	Ca	Mg	Fe	AI	Mn	Li	Br	В	Sr	Dissolved ⁸⁷ Sr/ ⁸⁶ Sr	Suspended Sr	Suspended
2011 Data				kr	n °C		mS S	% of S.W.	mg/L	mea/L	mg/L	mg/l	mg/l	mg/L	mg/l	l mg/l	mg	/L mg/L	ug/L	ug/L	ug/L	mg/L	mg/L	ug/L		mg/kg	Sr/ Sr
HvA	64°36'11.0"	021°42'37.5"	25/08/2011 1	1:55 0.0	0 7.7 8	08	0.06	0.03	562	0.390	5.3	0.4	6.51	6.7	0.5	5 3.1	. 1.	1 0.022	71.5	1.67	0.18	0.014	0.005	3.6	0.704589	228.3	0.703294
HvB	64°36'11.0"	021°42'37.5"	25/08/2011 1	5:25 0.0	0 7.6 8	08	0.07	0.02	560	0.385	4.4	0.2	6.43	6.6	0.4	4 3.0) 1.	1 0.008	61.3	1.16	0.14	0.013	0.004	3.6	n.a	n.a	n.a
Bo1	64°35'36.8"	021°44'06.5"	25/08/2011 1	5:10 1.5	7 7.5 8	08	0.06	0.02	507	0.393	4.4	0.2	6.29	6.9	0.4	4 3.0) 1.	1 0.009	59.9	0.57	0.17	0.003	0.003	3.6	0.704631	177.9	n.a
Bo6	64°34'27.1"	021°48'09.7"	25/08/2011 1	7:00 5.4	3 8.6 7.	81	0.08	0.04	505	0.450	7.4	0.8	6.38	8.7	0.5	5 3.1	. 1.	4 0.013	61.0	1.95	0.23	0.014	0.005	5.7	0.706233	159.2	0.703430
Bo2	64°34'24.1"	021°48'16.7"	25/08/2011 1	5:40 5.5	4 9.5 7	80	0.07	0.16	506	0.402	30.7	5.5	6.50	21.3	1.0	3.1	. 2.	6 0.009	51.0	4.97	0.56	0.074	0.015	13.1	0.708060	180.3	n.a
Bo5	64°34'25.0"	021°48'21.2"	25/08/2011 1	5:55 5.6	0 9.8 7	81	0.14	0.11	499	0.406	21.9	3.9	6.46	16.9	0.9	9 3.1	. 2.	2 0.013	52.0	4.46	0.45	0.072	0.009	10.6	0.707776	174.9	0.703940
Bo7	64°34'22.4"	021°48'29.4"	25/08/2011 1	7:05 5.7	2 9.5 7	78	0.24	0.21	486	0.407	41.6	7.8	6.51	27.6	1.3	3 3.3	3.	2 0.010	52.1	4.29	0.74	0.123	0.018	16.3	0.708309	163.5	0.704309
Bo4	64°34'23.7"	021°48'32.2"	25/08/2011 1	5:52 5.7	3 9.5 7	81	0.13	0.11	501	0.396	20.6	3.5	6.49	16.0	0.8	3.0	2.	1 0.009	49.8	3.55	0.75	0.063	0.008	10.2	0.707751	175.2	n.a
Bo3	64°34'22.6"	021°48'39.3"	25/08/2011 1	5:50 5.8	2 9.9 7	82	0.27	0.18	505	0.460	34.0	6.1	6.41	23.9	1.1	1 3.1	. 2.	8 0.011	50.5	4.41	0.62	0.112	0.014	14.2	0.708167	180.3	0.703960
Bo8	64°34'19.6"	021°48'34.9"	25/08/2011 1	7:10 5.8	3 9.8 7	78	0.14	0.10	489	0.401	20.1	4.3	6.56	18.0	1.1	1 3.1	. 2.	4 0.020	62.4	4.51	0.84	0.077	0.010	11.1	0.707912	151.8	0.703987
Bo8-bottom	64°34'19.6"	021°48'34.9"	25/08/2011 1	7:12 5.8	3 9.6 7	77	0.13	0.10	747	0.400	20.1	3.4	6.54	15.6	0.8	3.0	2.	1 0.011	52.1	2.84	0.17	0.072	0.009	10.0	0.707705	299.0	0.703795
Bo9	64°34'16.3"	021°48'48.7"	25/08/2011 1	7:15 6.0	4 9.6 7	78	0.18	0.14	493	0.453	27.2	6.1	6.74	22.6	1.1	1 3.3	3.	1 0.019	61.0	3.26	0.82	0.104	0.012	14.8	0.708179	155.8	0.704135
Bo10	64°34'12.1"	021°49'03.2"	25/08/2011 1	7:20 6.2	6 9.6 7	77	0.93	1.28	492	0.431	247.6	24.7	6.45	131.0	5.4	4 7.4	16.	1 0.014	55.8	3.93	8.17	0.739	0.061	89.2	0.709010	151.9	0.704966
Bo11	64°34'07.5"	021°49'13.6"	25/08/2011 1	7:25 6.4	5 9.3 7	81	3.62	4.35	494	0.492	843.5	174.6	6.18	471.0	18.0	21.0	57.	4 0.010	48.5	4.14	8.39	2.622	0.213	326.0	0.709083	157.1	0.705353
Bo12	64°34'01.5"	021°49'29.4"	25/08/2011 1	7:29 6.7	4 9.5 7	84	4.14	4.92	496	0.502	954.8	183.7	6.12	578.0	20.6	5 23.9	66.	5 0.009	49.4	5.02	9.88	3.314	0.238	376.0	0.709095	145.9	0.705300
Bo13	64°33'54.2"	021°49'47.6"	25/08/2011 1	7:32 7.0	5 9.5 7	98	n.a	14.75	499	0.770	2861.2	574.4	5.37	1700.0	65.1	1 70.4	213.	0 0.005	41.8	7.86	21.10	10.427	0.715	1200.0	0.709180	202.3	0.706315
Bo14	64°33'46.4"	021°50'07.1"	25/08/2011 1	7:36 7.4	1 9.9 8	00	n.a	23.19	517	0.901	4498.2	980.1	4.62	2880.0	102.0	0 111.0	336.	0 b.d.l	36.2	8.64	54.83	17.023	1.113	1920.0	0.709161	150.1	0.706441
Bo15	64°33'23.0"	021°50'56.7"	25/08/2011 1	7:40 8.3	6 10.1 8	11	n.a	41.67	651	1.389	8084.8	n.a	3.06	5550.0	199.0	205.0	642.	0 0.005	18.1	8.00	85.64	31.602	2.179	3610.0	0.709186	146.5	0.707647
Bo16	64°32'26.0"	021°53'00.8"	25/08/2011 1	7:45 10.7	4 10.6 8	12	n.a	53.92	n.a	1.623	10460.9	n.a	2.08	7450.0	268.0	278.0	861.	0 b.d.l	12.0	7.32	109.19	43.646	3.019	4920.0	0.709197	143.9	0.708104
Bo17	64°31'59.6"	021°53'31.2"	25/08/2011 1	7:52 11.5	7 10.5 8	08	n.a	58.78	n.a	1.836	11402.8	n.a	1.50	8460.0	306.0	315.0	977.	0 b.d.l	10.6	6.95	111.30	48.553	3.620	5610.0	0.709198	139.1	0.708359

Site	Latitude	Longitude	Date	Time	Distance from Hvítávellir	Temp.	pH Condu	ctivity	Salinity	Suspended Fraction	Alkalinity	TDS	CI	SO₄	Na	к	Ca	Mg	Li	Sr	Dissolved ⁸⁷ Sr/ ⁸⁶ Sr	Suspended Sr	Suspended ⁸⁷ Sr/ ⁸⁶ Sr	Colloid Sr	Colloid ⁸⁷ Sr/ ⁸⁶ Sr	Suspended Fe-Mn Leachate Sr	Suspended Fe-Mn Leachate ⁸⁷ Sr/ ⁸⁶ Sr
2003 Data	I				km	°C		mS	% of S.W.	mg/L	meq/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L		mg/kg		mg/kg		mg/kg	
A4	N 64°36.199'	W 21°42.481'	09/09/2	003 09:30	0.00	9.0	.93	0.07	0.1	610	0.473	34.7	12.8	0.5	7.1	0.5	3.9	1.9	0.3	6.4	0.705155	192	0.703344	0.00056	0.704567	1.78	0.704555
C1	N 64°34.290'	W 21°49.299'	09/09/2	003 08:20	6.43	7.7	.92	0.07	0.2	n.a	n.a	33.4	14.5	0.8	7.5	0.5	4.2	6.4	0.3	6.9	0.706343	n.a	0.703347	n.a	n.a	n.a	n.a
C2	N 64°33.584'	W 21°51.107'	09/09/2	003 08:40	8.42	8.0	.95	0.09	0.2	n.a	n.a	47.2	30.5	1.0	12.9	0.7	4.3	2.0	0.4	11.6	0.706593	n.a	0.703485	n.a	n.a	n.a	n.a
C3	N 64°33.207'	W 21°51.792'	09/09/2	003 09:10	9.21	8.8	.94	2.89	5.4	n.a	n.a	1419	652.3	218.1	547.2	25.0	26.8	2.7	9.4	346.6	0.709118	210	0.706838	n.a	n.a	n.a	n.a
C4	N 64°32.924'	W 21°52.529'	09/09/2	003 09:45	10.00	9.4	.08	7.15	13.3	n.a	n.a	3570	1808.1	309.3	1142.6	51.6	51.7	67.1	21.0	788.5	0.709127	201	0.707744	n.a	n.a	n.a	n.a
C5	N 64°32.623'	W 21°53.270'	09/09/2	003 10:00	10.84	9.6	.16	9.81	19.1	n.a	n.a	4900	4077.1	576.3	1676.0	75.9	72.5	139.0	30.3	1147.8	0.709166	195	0.708191	n.a	n.a	n.a	n.a
C6	N 64°31.686'	W 21°56.450'	09/09/2	003 10:10	13.94	9.8	.22	12.91	24.8	n.a	n.a	6460	5353.4	714.7	2666.8	118.5	113.8	325.7	48.0	1962.7	0.709176	199	0.708359	n.a	n.a	n.a	n.a
C7	N 64°31.240'	W 21°57.647'	09/09/2	003 10:30	15.18	10.4	.25	15.27	29.7	n.a	n.a	7660	7090.6	810.7	3747.3	162.3	156.7	454.5	71.5	2637.4	0.709182	212	0.708505	n.a	n.a	n.a	n.a
C8	N 64°30.035'	W 21°59.427'	09/09/2	003 10:40	17.71	10.7	.27	21.79	41.2	n.a	n.a	10930	9749.6	1075.8	4758.9	198.6	194.8	578.5	90.2	3469.8	0.709191	n.a	n.a	n.a	n.a	n.a	n.a
C9	N 64°29.019'	W 22°01.071'	09/09/2	003 11:05	19.90	11.1	.28	30.80	58.6	n.a	n.a	15400	13649.4	1488.9	6713.0	283.1	276.6	806.9	121.5	4775.3	0.709194	77.9	0.708576	n.a	n.a	n.a	n.a
C10	N 64°26.523'	W 22°05.955'	09/09/2	003 11:20	25.94	11.8	.26	44.20	87.2	n.a	n.a	21700	18825.5	2218.9	9149.9	406.6	381.2	1125.3	155.5	6247.3	0.709194	n.a	n.a	n.a	n.a	n.a	n.a
C11	N 64°26.050'	W 22°08.966'	09/09/2	003 11:45	28.33	12.1	.29	47.10	90.6	n.a	n.a	23500	19215.5	2286.2	9632.7	422.3	404.8	1183.7	163.1	6799.3	0.709194	14.2	0.708699	n.a	n.a	n.a	n.a

TableClick here to download Table: Table 2.xlsx

2008 Bedload	Bed 1	Bed 2	Bed 3	Bed 4	Bed 5	Bed 6
Corresponding site	A4	C4	C5	C6	C7	C8
Lat.	N 64°36.199'	N 64°32.924'	N 64°32.623'	N 64°31.686'	N 64°31.240'	N 64°30.035'
Long.	W 21°42.481′	W 21°52.529'	W 21°53.270'	W 21°56.450'	W 21°57.647'	W 21°59.427'
BET (m ² g ⁻¹)	6.358	11.14	9.603	9.756	12.38	8.404
SiO ₂ (%)	46.74	46.29	45.81	46.82	44.94	45.30
Na ₂ O (%)	2.67	2.40	2.19	2.28	2.72	2.20
MgO (%)	8.17	9.00	9.00	8.51	7.20	9.75
Al ₂ O ₃ (%)	15.24	13.06	13.07	13.70	13.24	11.46
P ₂ O ₅ (%)	0.14	0.12	0.13	0.12	0.17	0.13
K ₂ O (%)	0.28	0.39	0.33	0.38	0.49	0.38
CaO (%)	14.02	14.02	14.14	13.96	14.63	14.35
TiO ₂ (%)	1.45	1.49	1.56	1.44	1.49	1.57
MnO (%)	0.24	0.20	0.20	0.19	0.16	0.18
Fe ₂ O ₃ * (%)	10.81	11.46	11.90	11.52	12.42	12.99
Sr (mg kg ⁻¹)	152.90	159.94	162.64	154.90	196.53	175.92
⁸⁷ Sr/ ⁸⁶ Sr	0.703180	0.703591	0.703668	0.703569	0.705118	0.704637

Supplementary material for on-line publication only Click here to download Supplementary material for on-line publication only: Supplementary Table 1.xlsx