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POTENTIAL IMPACTS OF CLIMATIC WARMING ON
GLACIER-FED RIVER FLOWS IN THE HIMALAYA

ABSTRACT

The Himalayan region is one of the most highly glacierised areas on Earth. Regarded
as the “water towers” of Asia, the Himalayas are the source of several of the world’s
major rivers. The region is inhabited by some 140 million people and ten times as
many (~1.4 billion) live in its downstream river basins. Freshwater from the
mountains is vital for the region’s economy and for sustaining the livelihoods of a
fast-growing population. Climatic warming and the rapid retreat of Himalayan
glaciers over recent decades have raised concerns about the future reliability of
mountain melt-water resources, leading to warnings of catastrophic water shortages.
Several previous studies have assessed climate change impacts on specific glacier-fed
rivers, usually applying meso-scale catchment models for short simulation periods
during which glacier dimensions remain unchanged. Few studies have attempted to
estimate the effects on a regional scale, partly because of the paucity of good quality
data across the Himalaya. The aim of this study was to develop a parsimonious grid-
based macro-scale hydrological model for the Indus, Ganges and Brahmaputra basins
that, in order to represent transient melt-water contributions from retreating glaciers,
innovatively allowed glacier dimensions to change over time. The model initially was
validated over the 1961-90 standard period and then applied in each basin with a
range of climate-change scenarios (sensitivity analysis- and climate-model-based)
over a 100-year period, to gain insight on potential changes in mean annual and
winter flows (water availability proxies) at decadal time-steps. Plausible results were
obtained, showing impacts vary considerably across the region (catchments in the east
appear much less susceptible to glacier retreat effects than those in the west, due to
the influence of the summer monsoon), and, in central and eastern Himalayan
catchments, from upstream to downstream (effects diminish rapidly downstream due

to higher runoff from non-glaciated parts).
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PART 1

1 Introduction
1.1 Background of the study

Mountain glaciers generally have been retreating, almost synchronously with climatic
warming, since the end of the Little Ice Age in the mid-19™ century (Grove, 1988).
Glacier retreat initially was rapid during the first half of the 20" century but then
slowed, and even reversed in some humid areas, from about 1950 to 1980 (Haeberli,
1996), in response to cooling of the Earth’s atmosphere (Oerlemans, 2005). Further
global warming from the late 1970s, however, has resulted in glaciers losing mass at
unprecedented rates over recent decades (Dyurgerov and Meier, 2000; Haeberli and
Hoelzle, 2001). The general loss of mass from the world’s glaciers since the Little Ice
Age coincides with observed increases in the global mean surface temperature, of
0.07 °C £0.02 °C per decade, over the last hundred years, whilst recent rapid, retreat
corresponds with accelerated increases, of 0.18°C £0.05 °C per decade, between 1979
and 2005 (Trenberth er al., 2007). According to the latest IPCC (CMIPS5) model
simulations, global mean surface temperatures for 2081-2100, relative to 1986-2005,
are likely to increase by between 0.3°C to 4.8°C (IPCC, 2013a, 2013b). It has been
suggested that continued warming may cause “deglaciation of large parts of mountain

regions in coming decades” (Zemp and Haberli, 2007).

Recent glacier retreat has led to warnings of severe water shortages in many parts of
the world (Kundzewicz et al., 2007; Stern, 2007). Glaciers essentially are natural
freshwater reservoirs. During periods of climatic warming and glacier retreat, melting
of the ice adds a component to the flow from glacierised basins in excess of that
related to contemporary precipitation: a “discharge dividend” (Collins, 2008) or
“excess discharge” (Lambrecht and Mayer, 2009), from the de-stocking of glaciers,
that has augmented glacier-fed river flows since the glacial maximum of the Little Ice
Age (Macdonald, 2004). This additional flow component cannot be sustained
indefinitely because, should climatic warming continue, glaciers one day will cease to
exist. Initially, though, this valuable component of flow might be expected to
increase, as melting is enhanced, but eventually it will reduce, as glacier extents

decline, and ultimately diminish completely, as glaciers disappear (Barnett er al.,



2005; Stahl and Moore, 2006), leaving flows thereafter to be derived exclusively from
present-day precipitation (Collins, 2008). However, the timing and volume of these
changes (if indeed such changes have yet to occur), and how they might vary
spatially, to affect water resources availability in different regions, largely remains

uncertain.

The Himalayan region is considered particularly vulnerable to the impacts of
deglaciation (Barnett et al., 2005; Zemp and Haberli, 2007). The most glacierized area
outside of the polar regions (Dyurgerov, 2005), with glaciers occupying an estimated
61,000 km?’ (Bajracharya and Shrestha, 2011), the Himalayas are the source of
several major rivers, including the Indus, Ganges, Brahmaputra, Mekong, and
Yangtze (Singh et al., 2006b). As such, the mountains are often referred to as the
“water towers of Asia” (e.g. UNEP, 2007; Immerzeel et al., 2010). An estimated 140
million people inhabit the mountainous Himalayan region itself (Papola, 2002) and
almost ten times as many (~1.4 billion = 20% of the global population) live
downstream within its river basins (Immerzeel et al., 2010; Xu et al., 2007), a
significant proportion of whom are impoverished (Ravallion et al., 2007) and possess

little capacity to adapt to environmental change (DFID, 2006).

Himalayan glaciers generally followed global glacier fluctuations for much of the 20"
century (Bolch et al., 2012; Mayekwski and Jeschke, 1979; Zemp et al., 2008). Many
studies have reported significant retreat of the region’s glaciers since the early 1970s
(e.g. Kadota et al., 1997; 2000; Naithani et al., 2001; Fujita et al., 2001; Ageta et al.,
2001; Ageta et al., 2003; Berthier et al., 2007; Kulkarni et al., 2007; Raina, 2009;
Scherler et al., 2011; Kiib et al., 2012). In 1999, the Working Group on Himalayan
Glaciology of the International Commission for Snow and Ice (ICSI) claimed
“glaciers in the Himalayas are receding faster than in any other part of the world and,
if the present rate continues, the likelihood of them disappearing by the year 2035 is
very high” (Hasnain, 1999). This claim, which was re-asserted in several publications
(e.g. Pearce, 1999; Samuel, 2001; WWEF, 2003, 2005), including the IPCC Fourth
Assessment (Cruz et al., 2007), was shown to be wrong by Cogley et al. (2010) and
Schiermeier (2010), the former pointing-out that “Himalayan rates of recession are
not exceptional” and for Himalayan glaciers to disappear by 2035 “requires a 25-fold

greater loss rate from 1999 to 2035 than that estimated for 1960 to 1990”. Despite
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this, serious concerns remain over the potential impacts continued climatic warming
and retreating glaciers will have on the economic growth of South Asia generally
(Schiermeier, 2010; Zemp and Haberli, 2007), on water availability and food security
(Immerzeel et al., 2010; Moors and Siderius, 2012), and on the lives and livelihoods
of the growing downstream population (Singh et al., 2011). Improved understanding
of the potential impacts of climatic warming on glacier-fed river flows across the
Himalaya is vital to enable the region’s decision- and policy-makers to develop

appropriate adaptation strategies (Sullivan et al., 2004).

Climate varies markedly within the region from aridity in the west to extreme humid
conditions in the monsoonal east, and from sub-tropical on the southern Gangetic
plain to arctic in the high mountains (Alford, 1992). Consequently, the effects of
glacier retreat on river flows, and water resources, are unlikely to be uniform (Bolch
et al., 2012). Studies to determine the impact of future climatic warming on glacier-
fed river flows typically require application of physically-based models to represent
the various hydro-glaciological processes controlling catchment response (Beven,
2012). Such studies, however, are hampered in the Himalaya because
hydrometeorological data are sparse, unrepresentative and of inferior quality due to
difficult, or inaccessible, terrain, and the heterogeneity of mountain catchments
(Collins et al., 2013; Shankar, 1990). Many have attempted to assess the climate
change impacts on Himalayan river flows (e.g. Akhtar et al., 2008; Nepal et al., 2013;
Singh et al., 2006a; Singh and Bengtsson, 2005; Singh and Jain, 2003), usually
applying meso-scale (~10" = 10* km?, Uhlenbrook ez al., 2004) catchment models for
short simulation periods during which glacier dimensions (if at all considered) remain
unchanged. Climatic warming is, however, progressive and glacier dimensions
continually change: a model’s inability to represent transitory conditions invalidates
their application over longer timescales (Nepal et al., 2013). Few studies have
attempted to estimate the effects on a regional, macro- (>10" km?), scale, partly
because of the paucity of good quality data across the Himalaya (exceptions include
Raje et al., 2013; Yang and Musiake, 2003) and fewer still account for transient-melt-
water contributions from retreating glaciers (e.g. Immerzeel et al., 2010; Lutz et al.,

2014).



1.2 Objectives of the study

The aim of this study was to develop a novel parsimonious grid-based macro-scale
hydrological model (MHM) for the Indus, Ganges and Brahmaputra basins that, in
order to represent transient melt-water contributions from retreating glaciers,
innovatively allowed glacier dimensions to change over time. The model was to be
used to assess how future climate change, as represented by a variety of sensitivity
analysis- and climate-model-based scenarios, might affect future Himalayan river
flows. The study focussed primarily on possible long-term changes in the mean
annual and seasonal (winter half-year) flow along the Indus, Ganges and Brahmaputra
rivers and their glacier-fed tributaries: such flow statistics generally being considered
good indicators, or proxies, of potential water resources availability (cf. Oki and
Kanae, 2006; Vorosmarty et al., 2000). The three rivers basins cover a significant
proportion of the whole Himalayan region. Arguably they are the most important
basins on the Indian sub-continent, inhabited by over 700 million people and having a
combined total area of 2.8 x 10°km? (Xu et al., 2007) that encompasses the
mountainous countries of Nepal and Bhutan and large parts of northern India, south
west China, Bangladesh, Afghanistan and Pakistan. The study’s objectives were

specifically stated as:

1) To develop a new method of representing mountain glaciers in MHMs that is
capable of accounting for the varying melt-water contributions from many

retreating glaciers in a large river basin, or region;

2) To incorporate the method into an MHM, with the resulting, combined, hydro-

glaciological model tested in the region against observed river flow data;

3) To apply the new model with a range of different climate-change scenarios, with
view to assessing how ensuing glacier-retreat might affect spatial and temporal
variations in mean annual and winter flows of the Indus, Ganges and

Brahmaputra rivers, and their tributaries, several decades into the future.



Some non-goals were also established from the outset. The study deliberately did not
seek to predict changes to: runoff-generating processes (e.g. evapotranspiration) in
glacier-free parts of catchments; the shape and magnitude of river flow regimes; the
frequency and extent of extreme hydrological events (i.e. floods or drought); nor the
occurrence and risk of natural hazards (e.g. glacial lake outburst floods, landslides,

avalanches).

1.3 Approach and outline of the thesis

This thesis describes the development and application of the new macro-scale
hydrological model and its key component, a regional glacier melt model. The thesis
is the outcome of a part-time study that began in 2002 but was delayed, and then
suspended from 2008 - 2014, due to family and work commitments. Despite the bulk
of the research being conducted over the initial 6-year period (2002-2008), the
outcomes of the study are still highly relevant and, thus, are presented very much in

respect of contemporary scientific knowledge and understanding.

The thesis is presented in seven chapters, and in three parts. Part 1, which comprises
Chapters 1-3, generally sets-out the background and context of the study. Following
this introductory chapter (Chapter 1), Chapter2  provides information on
characteristics of the study area and outlines current understanding of global and
Himalayan glacier fluctuations, of historic and projected climatic change in the
region, and of previous hydrological modelling studies pertinent to this study. Chapter
3 describes the hydrometeorological data that were obtained for the study and presents
the results of some cursory analyses that were undertaken with view to informing the
design of the new model. Part 2 details the development (Chapter 4) of the macro-
scale hydrological model, its new regional glacier-melt component in particular, and
(in Chapter 5) describes the software implementation of the model and its application,
first, over a standard-period baseline and, then, with a range of climate change
scenarios. Part 3 presents, interprets and discusses the model results (Chapter 6) and,
in conclusion (Chapter 7), assesses the impact of the study and explores areas for

further research and development.



2 Current Understanding

2.1 Introduction

Himalayan glaciers have been the focus of much scientific research for the last 40
years. The research effort arguably was most intense in the 1980s and early 1990s,
when several major collaborative programmes were initiated, such as the Nepal-Japan
cooperation in glacier and climate research (Higuchi, 1993), the Pakistan-Canada
Snow and Ice Hydrology Project (Hewitt and Young, 1993), and the Nepal-Germany
collaboration, to establish a hydrometeorological monitoring network at high
elevation in 6 glacierised catchments (Grabs and Pokhrel, 1993). A large number of
publications resulted from the monitoring and research conducted during this period
(cf. Young and Neupane, 1996). Despite political tensions between, and within,
countries in the region, efforts to promote regional collaboration and cooperation in
hydrological and glaciological research persisted throughout the 1990s and into the
2000s. The UNESCO-IHP HKH-FRIEND project, established in 1996 (Chalise and
Khanal, 1996), did much to advance regional collaboration over this period and
supported a variety of hydrological and glaciological research projects and capacity
building activities (e.g. Kansakar et al., 2004; Kaser et al., 2003; Konz et al., 2006;
Rees et al., 2002).

Speculation regarding the potential catastrophic consequences of deglaciation (e.g.
Pearce, 1999; Samuel, 2001; Gore, 2006) that followed erroneous claims over the
state and fate of Himalayan glaciers (Hasnain, 1999 in Cogley et al., 2010) focussed
much of the world’s scientific attention onto the Himalayan region and prompted
many new multilateral- and bilateral-funded programmes, projects and initiatives
post-2000, such as the EU’s WATCH (Harding et al., 2011) and HighNoon (Moors
and Siderius, 2012) projects, the DFID “Snow and Glacier Aspects of Water
Resources Management in the Himalaya” (SAGARMATHA) project (Rees et al.,
2004b), IRD’s (Institut de Recherche pour le Développement) campaign of mass
balance monitoring on the Chhota Shigri glacier in India, (Wagnon, pers. comm.,
2005), the “Himalayan Climate Change Adaptation Programme” (HICAP) of the
Norwegian and Swedish governments, and the World Bank’s “Glacier Retreat in

Nepal” study (Alford and Armstrong, 2010), to name but a few.



This chapter aims to distil, from the plethora of resulting research outputs, the current
knowledge and understanding pertinent to this study. Its sources include books,
scientific peer-reviewed papers from journals, dissertations, contract reports and
websites. Major book sources included the Red Book series of the International
Association of Hydrological Sciences (IAHS) and technical reports of the
Kathmandu-based International Centre for Integrated Mountain Development
(ICIMOD). The major scientific journal sources included: Annals of Glaciology;
Cryosphere; Current Science; Hydrology and Earth System Sciences; Hydrological
Processes; Journal of Glaciology; Journal of Hydrology; Mountain Research and

Development; Nature; and Science.

Based on the available literature, the chapter first describes the general
physiographical, hydrological and socio-economic characteristics of the Himalayan
region (§2.2), summarises current knowledge on the fluctuation of Himalayan glaciers
(§2.3), and outlines climatological and hydrological changes that have been observed
and projected by climate change models (§2.4). It then describes modelling
approaches for estimating future water resources availability, first at the catchment-

(or meso-) scale (§2.5) and then at a regional, or macro-, scale (§2.6).

2.2 Characteristics of the Himalayan region

2.2.1 Physical and geomorphological characteristics

The Himalayan region extends across the north of the Indian sub-continent in a broad
3500 km arc, from Afghanistan, in the north-west, to Mayanmar, in the south-east (70
- 105 °E, 40 - 25 °N). Covering an area of some 4 x 10° kmz, the region includes the
Hindu Kush, Karakoram and Greater Himalaya mountain ranges (Figure 2.1). It is a
region characterised by extremes of elevation, slope and climate. Elevation can vary
dramatically over relatively short horizontal distances, from about 50 m in the Indo-
Gangetic plain to over 8000 m within a distance of only some 160 km (Chalise and
Khanal, 1996; Khanal er al., 1998). It has been estimated that the mean snow-
covered-area of the region is approximately 18.2% of the total surface area (Gurung et
al., 2011) and that there are over 54,000 glaciers in the region, occupying an area over
61,000 km* and displacing a volume of about 6,000 km’® (Bajracharya and Shrestha,

2011). The Himalaya, thus, is the largest natural freshwater reservoir in the world, and



its melt-waters are a significant component of flow of several major rivers, including
the Indus, Ganges, Brahmaputra, Mekong, Yangtze, and Yellow rivers (Barnett et al.,

2005; Collins, 1996; Singh et al., 2006).

The Himalaya were formed by uplift of the Earth’s crust, as the northwardly moving
Indo-Australian tectonic plate collided with the Eurasian some 40 - 50 million years
ago (Molnar, 1986). The mountain building process (orogeny), at the boundary of the
two plates, continues to this day, making the Himalaya one of the most geologically
active, and fragile, regions on Earth, prone to frequent earthquakes, landslides,

avalanches and glacial lake outburst floods.

Rising from the plains of the Indian sub-continent, the Himalayan region comprises a
series of successively higher mountain ranges, from the Siwalik Hills (or Outer
Himalaya), at elevations of 900 - 1500 m, to the Middle Mountains (Lesser Himalaya)
that rise to about 2500 m, and the High (or Greater) Himalaya (4000 - 8848 m ASL)
(Khanal et al., 1998; Valdiya, 2002). The region encompasses the Karakoram and
Hindu Kush ranges and many other sub-ranges, all of which form part of the same
extended area of uplift. Beyond the Greater Himalaya, to the north, lies the Tibetan

Plateau, at an average elevation of some 4500 m.

Some 8 million years ago, the mountains attained sufficient height to disrupt
atmospheric circulation and bring about conditions that, to this present day, induce the
South Asian summer monsoon (Molnar, 1993). The high mountains effectively form
a barrier to cold northerly air masses from Asia, increasing temperature over the
Indian sub-continent. Westerly winds are split northwards and southwards (Benn and
Owen, 1998), diverting high-pressure centres to the north (Trenberth and Chen, 1988)
and inducing areas of low pressure over northern India in summer that draw-in
moisture-laden winds from the south. The Tibetan Plateau further provides a localised
high-elevation heat-source in summer, creating a pressure gradient that strengthens air
fl