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ABSTRACT 25 

The riverine transport of particulate organic matter (POM) is a significant flux in the carbon 26 

cycle, and affects macronutrients and contaminants.  We used radiocarbon to characterise POM 27 

in 9 rivers of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period.  High-28 

discharge samples were collected on three or four occasions at each site. Suspended particulate 29 

matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon 30 

isotopes.  Concentrations of SPM and SPM organic carbon (OC) contents were also 31 

determined, and were found to have a significant negative correlation.  For the 7 rivers draining 32 

predominantly rural catchments, PO14C values, expressed as percent modern carbon absolute 33 

(pMC), varied little among samplings at each site, and there was no significant difference in 34 

the average values among the sites.  The overall average PO14C value for all 7 sites of 91.2 35 

pMC corresponded to an average age of 680 14C years, but this value arises from the mixing of 36 

differently-aged components, and therefore significant amounts of organic matter older than 37 

the average value are present in the samples.  Although topsoil erosion is probably the major 38 

source of the riverine POM, the average PO14C value is appreciably lower than topsoil values 39 

(which are typically 100 pMC).  This is most likely explained by inputs of older subsoil OC 40 

from bank erosion, or the preferential loss of high-14C topsoil organic matter by mineralisation 41 

during riverine transport.  The significantly lower average PO14C of samples from the River 42 

Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived 43 

either from industrial sources or historical coal mining, and this effect is also seen in the River 44 

Ribble, downstream of its confluence with the Calder.  At the global scale, the results 45 

significantly expand available information for PO14C in rivers draining catchments with low 46 

erosion rates. 47 

 48 

Keywords: Particulate organic carbon, Radiocarbon, Rivers, Soils 49 

 50 

Abbreviations: AMS, accelerator mass spectrometry; NRCF, NERC Radiocarbon Facility; OC 51 

organic carbon; pMC, percent modern carbon absolute; POC, particulate organic carbon; POM, 52 

particulate organic matter; PO14C particulate organic radiocarbon; SPM suspended particulate 53 

matter; [SPM] concentration of SPM  54 

 55 
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1. Introduction 56 

Particulate organic matter (POM) transported by rivers is defined as organic matter that 57 

does not pass a filter with sub-micron pore size, and mainly comprises allochthonous inputs 58 

from plant litter, soils and wastes, autochthonous phytoplankton and macrophyte debris, and in 59 

situ production from dissolved organic matter (Ittekot and Laane, 1991).  It plays a significant 60 

role in the carbon cycle, being a loss from the terrestrial environment, a source of C to the 61 

atmosphere due to decomposition during transit, and ultimately a gain to the marine 62 

environment (Raymond and Bauer, 2001; Rosenheim and Galy, 2012;  Worrall et al., 2014).  63 

Particulate organic carbon (POC) accounts for approximately 50% of the riverine global 64 

organic carbon export of 0.4 Pg a-1 (Schlünz and Schneider, 2000; Aufdenkampe et al., 2011).  65 

Particulate organic matter also governs the transport of the macronutrients nitrogen and 66 

phosphorus (Meybeck 1982, Walling 2005), metals (Tipping et al., 1997) and organic 67 

contaminants (Foster et al., 2000).  To understand and quantify these POM-associated 68 

processes, and thereby predict how they might respond to changes in land use, climate and 69 

other environmental drivers, we need to delineate the sources of POM in different systems. 70 

Because POM is part of suspended particulate matter (SPM), information about sources 71 

can be obtained from more general investigations into SPM, which is known to comprise a 72 

mixture of terrestrial material derived from both surface and sub-surface materials including 73 

bedrock and mineral soil (Blair et al., 2003). The SPM entering the river systems is generally 74 

the result of physical weathering and physical disturbance through anthropogenic activity. 75 

Sediment sourcing techniques, including mineralogy (Klages and Hsieh, 1975), chemistry 76 

(Gaillardet et al., 1999), magnetism (Gruszowski et al., 2003) and radionuclides (Estrany et al., 77 

2010, Lu et al., 2014; Rosenheim and Galy, 2012) identify sources of SPM as being primarily 78 

topsoil and sub-surface material including erosion of exposed banks. Walling (2013) 79 

summarized sediment source information on 84 UK rivers, and showed that on average topsoil 80 

was the largest contributor of SPM, with relative contributions from surface material and 81 

channel banks contributing between 50% to 99% and <50% respectively.  82 

The organic matter components of SPM have been studied by a variety of analytical 83 

techniques and with stable isotopes and element ratios (da Cunha et al., 2000; Onstad et al., 84 

2000; Kendall et al., 2001; Higueras et al., 2014) to obtain information on molecular structure 85 

and insight into the materials from which the POM is derived.  Determination of the 86 

radiocarbon content of POM provides further information, not only on sources but also 87 
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apparent age. Radiocarbon gives a measure of the time elapsed since C fixation into plants 88 

from the atmosphere, providing an understanding of the residence time of plant-derived C and 89 

losses of C through mechanisms including leaching and erosion (Trumbore, 2009). Naturally 90 

occurring atmospheric 14C can be used for the measure of C turnover on the centennial and 91 

millennial timescale due to the natural radioactive decay process, while “bomb carbon” 92 

originating from atmospheric weapons testing in the mid-20th century, which almost doubled 93 

the atmospheric 14C levels (Hua et al., 2013), provides information on decadal timescales.  94 

Radiocarbon has been used in studies of POM in rivers in North and South America (Raymond 95 

and Bauer, 2001, Bouchez et al., 2014), Asia (Hilton et al., 2008; Rosenheim and Galy 2012), 96 

Europe (Cathalot et al., 2013, Megens et al., 2001), and Africa (Marwick et al., 2015). Global 97 

PO14C (particulate organic radiocarbon) data documented by Marwick et al. (2015) shows that 98 

SPM in highly-eroding catchments is depleted in PO14C and low in OC (organic carbon). 99 

The review of Marwick et al. (2015) shows that to date while there are many PO14C data 100 

for catchments with high sediment loads, there are relatively few for riverine PO14C in 101 

temperate, low-erosion European catchments and no known data for catchments of this kind in 102 

the UK.  In the wider context, UK data may be of interest because UK soils tend to be rich in 103 

carbon, which may lead to differences from global averages.  Therefore understanding UK 104 

sources should improve our ability to model the terrestrial-freshwater C cycle, and its role in 105 

transferring carbon to the atmosphere and ocean.  To this end, we carried out a programme of 106 

sampling and analysis to determine the radiocarbon contents of POM from four differing UK 107 

catchments.  Since SPM concentrations, and therefore POM transport, are elevated at high 108 

flow, we focused our sample collection on high-discharge events.  To interpret the results, we 109 

made use of the extensive soil radiocarbon data available for the UK.    110 
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2.  Methods 111 

2.1. Field sites 112 

Table 1 provides information on the individual rivers and their catchments, and their 113 

locations are shown in Figure 1.  Data on discharge and rainfall were taken from the National 114 

River Flow Archive (NRFA) (http://www.ceh.ac.uk/data/nrfa/ accessed January 2015) and Met 115 

Office (http://www.metoffice.gov.uk/industry/data/commercial/rainfall accessed March 2015) 116 

respectively.  Catchment areas were obtained from the CEH River and Catchment Query and 117 

Extraction Layer (Racquel) (http://wlwater.ceh.ac.uk/racquel/ accessed March 2015).   118 

Geological information was provided by the British Geological Society online map 119 

(http://mapapps.bgs.ac.uk/geologyofbritain/home.html, accessed March 2015). Soil types for 120 

England and Wales were obtained using soil maps (scale 1:250 000). For the Dee catchments, 121 

soil information was obtained from The James Hutton Institute online soils map 122 

(http://sifss.hutton.ac.uk/SSKIB_Stats.php accessed March 2015).  Land use data were 123 

obtained from the website http://digimap.edina.ac.uk/ (accessed March 2015).    124 

The Ribble catchment is situated in north-west England and has a population density of 125 

989 persons km-2. Two major sub catchments, the Rivers Hodder and Calder drain from the 126 

north and south of the catchment respectively.  Unlike other tributaries of the Ribble, the Calder 127 

catchment contains extensive conurbations including Burnley and Blackburn, with a history of 128 

industrial and mining activity. The upper parts of the catchment are responsive to rainfall, 129 

exhibiting a flashy flow regime.  130 

The River Conwy is one of the major drainage systems in North Wales. The catchment 131 

has a population density of 49 persons km-2.  The topography is largely mountainous, giving a 132 

high river response during storm events.  133 

Situated in the south of England, the Hampshire Avon catchment has a population 134 

density of 108 persons km-2. The catchment is largely groundwater dominated due to the 135 

presence of chalk aquifers. Thus, the system at the tidal limit does not significantly respond 136 

during rainfall events.137 
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Table 1. Catchment information. Discharge data are from records of between 35 and 50 years up to the present.  Geology, soil type and land use are presented in order of importance. 138 

 139 

a Key to geology: Ch chalk, CM coal measures, Ig igneous intrusion, L limestone, MG millstone grit, N Neogene rocks – gravel sand silt and clay, SC sandstone and conglomerate, SSC 140 
sand silt and clay, SSM sandstone siltstone mudstone, VS volcanic and sedimentary rock. 141 

b Key to soil type: A alluvisol, BE brown earth, CS cambic stagnogley, Gs gleysol, P peat, Pz podzol, Rz rendzina, SG stagnogley, SHG stagnohumic gley, SP stagnopodzol, U urban,  142 

c Key to land cover:  AG acid grassland, B bog, H heathland, HG heather grassland, IG improved grassland, MH, montane heathland, SU suburban, U urban, W woodland 143 

Calder Hodder Ribble A Ribble B Conwy Avon Gairn Dee A Dee B

Catchment drainage area (km2) 317 258 446 1144 365 1713 146 2039 2080

Altitude range (masl) 50-560 40-480 20-420 15-560 10-1060 4-240 220-1100 30-1220 20-1220

Mean annual rainfall (m) 1.1 1.5 1.2 1.2 2.1 0.8 1.1 0.9 0.8

Mean annual air temperature (oC) 8.9 7.7 8.8 8.6 8.4 9.6 5.1 7.6 7.7

River discharge (m3 s-1)
mean 8.6 8.8 13.5 33.2 18.9 20.2 3.9 47.0 no data

95% exceedance 1.9 1.1 1.1 4.6 1.4 6.2 0.8 8.7 no data
10% exceedance 19.5 22.0 34.4 81.2 45.8 39.0 7.4 94.6 no data

Principal bedrock geologya CM MG MG MG SSM Ch Ig VS VS

MG SSM CM CM SC SSC VS Ig Ig
L SSM SSM N

Principal soil typesb CS CS Sg Sg Pz Rz P BE BE

U SP CS CS SHG SG Gs Rz Rz
A BE A A SG SP BE A A

Principal land coverc IG B IG IG IG IG MH H MH

U HG B U B W H HG H

IG HG B AG SU B MH HG
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 155 

Figure 1. Location map showing the study catchments.  For the Dee and Ribble, black triangles indicate sampling sites.  The Avon and Conwy 156 

sampling sites were at the tidal limits.157 
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The River Dee catchment is situated in the north-east of Scotland. The catchment is 158 

sparsely populated above the tidal limit, with a population density of 4 persons km-2. The 159 

tributary of the River Gairn is situated in the upper western reaches of the catchment. The upper 160 

mountainous areas respond rapidly to rainfall and snowmelt, producing a flashy flow regime.   161 

2.2. Sampling and analysis 162 

To minimise risk of carbon contamination, all equipment used during sampling and 163 

processing was new or acid-washed and all samples were managed in a radiocarbon tracer-free 164 

laboratory. Water samples (5 L) were collected in high-density polyethylene containers from 165 

the tidal limit of the four main catchments, and additional upstream samples were taken in the 166 

Ribble and Dee catchments (Figure 1).  For the Ribble, Conwy and Dee sites samples were 167 

collected during high-flow events.  For the Avon, which has a much less flashy flow regime, 168 

they were taken at regular intervals throughout one year.  High flow events were identified 169 

from daily river levels measured at gauging stations near the sampling sites, and made available 170 

on-line by the Environment Agency of England and Wales and the Scottish Environment 171 

Protection Agency.  During the period October 2013 – October 2014, four samples were taken 172 

for most of the sites, but only three each at the Gairn and Dee A sites.  Additional 500 or 1000 173 

mL samples were collected for the determination of SPM concentration and the carbon content 174 

of the SPM. 175 

The SPM was extracted from the water samples through repeated centrifugation (6 × 176 

500 mL rotor spinning at 10000 rpm for 30 minutes), removal of supernatant and pooling, until 177 

approximately 100 mL of suspended sediment and water remained.  To ensure the absence of 178 

inorganic carbonate, the concentrated suspended sediment was acidified by adding 400 mL of 179 

1M HCl to the extracted sediment and left overnight.  Samples were then twice rinsed and 180 

centrifuged with deionised water, and sub-sampled for radiocarbon analysis. Remaining 181 

sediment was frozen for further analysis.  182 

Organic carbon content of the SPM was measured using two different techniques. 183 

Firstly a known volume of the additional water sample was filtered through a pre-weighed, pre-184 

combusted (500 oC) Whatman GF/F filter paper. This was dried at 105oC overnight and 185 

reweighed to determine [SPM], then analysed for total carbon with a Vario EL elemental 186 

analyser at CEH Lancaster (Ribble, Conwy, Avon) and a Thermo Flash 2000 elemental 187 

analyser at the James Hutton Institute. The values obtained would include any inorganic carbon 188 

present in the samples.  Secondly a sub-sample of the concentrated SPM was captured on a 189 
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pre-weighed and combusted GF/F filter paper, and analysed.  Results obtained by the two 190 

methods were in good agreement, suggesting that little or no inorganic carbonate had been 191 

present in the samples.  Reported values are means from the two methods.  192 

Graphite targets for 14C analysis by AMS were prepared by quantitative recovery of carbon in 193 

sealed quartz tubes followed by cryogenic separation of CO2 (Boutton et al., 1983).  Aliquots 194 

of CO2 were converted to an iron/graphite mix by iron/zinc reduction (Slota et al., 1987).  A 195 

sub-sample of CO2 was used to measure 13C using a dual-inlet mass spectrometer with a 196 

multiple ion beam collection facility (Thermo Fisher Delta V) in order to correct 14C data to –197 

25 ‰ 13CVPDB. The mass spectrometer was calibrated with international reference materials 198 

to a precision of  0.03 ‰.   For five samples, difficulties were encountered in the measurement 199 

of 13C by mass spectrometry, and so instead values of δ13C were obtained during AMS analysis, 200 

and used to correct to δ13C = -25 ‰ vPDB.  In these cases the δ13C values were not considered 201 

representative of the original combusted material.  202 

In all but three cases 14C analysis was carried out at the Scottish Universities 203 

Environmental Research Centre AMS Laboratory, East Kilbride (Xu et al., 2004); these have 204 

publication codes starting SUERC.  The other three measurements were on sample sizes of less 205 

than 500 μg carbon and were made at the Keck Carbon Cycle AMS Laboratory at the 206 

University of California Irvine (publication codes UCIAMS).  Size matched process 207 

background materials and known age standards were prepared and analysed to check accuracy 208 

and precision. In keeping with international practice, the results are reported as absolute % 209 

modern (pMC) which involves a mathematical adjustment to account for ongoing radioactive 210 

decay of the international reference standard (oxalic acid, provided by the US National Bureau 211 

of Standards), since AD 1950 (Stuiver and Polach, 1977) with conventional radiocarbon ages 212 

(based on radioactive decay and relative to AD1950) provided where results are below 100 213 

pMC.  The 14C enrichment of a sample is measured as a percentage (or fraction) of the 14C 214 

activity relative to the modern standard of oxalic acid where 100% modern is defined as the 215 

value in AD 1950, in the absence of any anthropogenic influences.  Radiocarbon contents can 216 

exceed 100 pMC if they contain sufficient “bomb carbon”.  Overall analytical precision is 217 

quoted at 1.   218 

2.3. Soil radiocarbon data 219 



 
 

10 
 

To aid the interpretation of the PO14C data, we assembled soil radiocarbon data for UK sites 220 

under different land use.  These comprised 70 data points for agricultural soils from Jenkinson 221 

et al. (2008), 132 values for semi-natural non-forested and forested soils from Mills et al. 222 

(2014), and 87 of our own unpublished data (H Toberman, JL Adams, E Tipping, CL Bryant) 223 

for semi-natural sites and improved grassland.  The results are summarised in Table S1.  We 224 

used values of 14C (pMC) for samples taken over the time-period 1999 to 2013.  Average values 225 

were calculated to simplify data presentation and provide an overall picture of radiocarbon with 226 

depth.  Because 14C is constantly changing, albeit slowly, the combination of data taken in 227 

different years involves approximation, but the time period for which data were taken was short 228 

in comparison to the turnover rate of bulk soil carbon as estimated by Mills et al. (2014).  229 

Therefore the averages obtained will differ little from those that would apply had all the 230 

sampling been simultaneous. 231 
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3.  Results 232 

At a UK level, the study catchments vary with respect to size, altitude range, climate, 233 

soil type, and land use (Table 1).  The Calder catchment stands out as the only one with a 234 

substantial urban area, and it is also industrialised.  The Avon catchment differs in that it lacks 235 

upland area and has more cultivated land.  Furthermore, the River Avon discharge varies 236 

relatively little, owing to the dominant influence of groundwater.  The other rivers display 237 

much more flashy flow regimes.  In the Avon, Conwy and Ribble catchments, the main land 238 

use is livestock grazing, mainly on improved grassland in the Avon and Ribble, but mainly on 239 

unimproved grassland or heather moorland in the Conwy.  Much of the Dee catchment is 240 

heather moorland and blanket bog, with significant but smaller areas of coniferous plantation 241 

woodland and improved grassland.  None of the catchments contains extensive arable 242 

agriculture.  In all cases, the dominant soil types have organic-rich surface horizons.  243 

High flow water samples collected across the catchments varied considerably in 244 

average [SPM] and OC content (Table 2).  The OC content (%) declines with increasing [SPM], 245 

the relationship following the power law, OC(%) = 26.7 [SPM]-0.22, which accounts for 75 % 246 

of the variance in OC content (p < 0.005).  This is consistent with global-scale data collated by 247 

Marwick et al. (2015), and means that under conditions of high sediment delivery the SPM is 248 

relatively poor in OC. 249 

The δ13C values of the samples (Table 3) fall in the range -30 to -25 ‰, with all but one 250 

value < -27 ‰.  These indicate that the carbon is derived almost exclusively from plants using 251 

the C3 photosynthetic pathway, which is normal for northern temperate ecosystems like the UK 252 

(Still et al., 2003).  The 14C contents of the samples fell in the range 69-100 pMC, 253 

corresponding to conventional 14C ages of 3000 years to modern (Table 3).  The overall mean 254 

is 909 14C years with a standard deviation (SD) of 555 years.  Comparison of the mean 14C 255 

values for the individual rivers (Figure 2) shows that the only two rivers differing significantly 256 

from the others were the River Calder (p < 0.01) and Ribble B site (p < 0.001).  The markedly 257 

low 14C for the Calder is probably related to its urban and industrial character, and the 258 

contribution of the Calder flow to that of the Ribble B is likely the reason for the moderately 259 

low PO14C of the latter site. If the PO14C data for the Calder and Ribble B are ignored, the 260 

overall average PO14C value is 91.2 pMC (SD 3.0), and the average age of POC becomes 681 261 

14C years (SD 246 years), which can be taken as a representative value for predominantly rural 262 

rivers. 263 
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To put the results into context, we can firstly consider the radiocarbon content of catchment 264 

soils.  A systematic survey of soil radiocarbon in proportion to land use or soil type is not 265 

available for each catchment, but a substantial body of radiocarbon data (Table S1) can be used 266 

to summarise land-use and depth variations for the UK (Figure 3).  The results show that the 267 

highest 14C contents are found for topsoils under forest, then for soils under non-forest semi-268 

natural vegetation, then under agricultural land use.  Sub-soil 14C shows a fairly regular pattern 269 

of decline with depth (Figure 3).  The average riverine PO14C of 91.2 pMC is lower than the 270 

average soil organic 14C values for forest and non-forest semi-natural topsoils, but only slightly 271 

less than the improved grassland average of 93.6pMC, calculated from the two topsoil depths 272 

of 7 and 11cm in figure 3; note that none of our catchments included significant areas of arable 273 

soil.        274 

Secondly, our results can be compared with a global dataset published by Marwick et 275 

al. (2015) (Figure 4). These authors identified [SPM] and the OC content (%) of SPM as useful 276 

variables against which to compare the 14C values. In the global context, the UK [SPM] values 277 

are comparably low and the OC contents are comparatively high.  The PO14C values are high 278 

compared with data for high-SPM, low-OC systems, but lower than the previously reported 279 

data for the low-SPM, high-OC range.   280 

 281 

282 
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Table 2.  Mean concentrations of SPM and OC contents of SPM.  Values in brackets are 283 

standard deviations, and reflect both natural variation and the averaging of results obtained by 284 

different methods (Section 2.2).  285 

 286 

River [SPM] 

mg L-1 

OC content 

% 

Calder 52.8 (±63.2) 8.8 (±4.7) 

Hodder 13.4 (±6.8) 15.0 (±8.0) 

Ribble A 13.8 (±7.6) 14.3 (±5.7) 

Ribble B 21.3 (±19.0) 16.1 (±10.3) 

Conwy 2.7 (±1.0) 24.6 (±10.3) 

Avon 8.1 (±5.4) 19.1 (±6.3) 

Gairn 0.8 (±0.2) 35.9 (±19.2) 

Dee A 0.8 (±0.5) 14.4 (±14.2) 

Dee B 0.9 (±0.5) 35.0 (±17.7) 

  287 
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Table 3.  Isotope data for POM in high-flow samples.  Values are given of 14C (pMC), δ13C 288 

(‰ vPDB) and conventional radiocarbon age (years BP).  The errors in 14C are expressed as 289 

+/- 1σ (pMC) where σ is the overall analytical uncertainty.  Bracketed values of δ13C are not 290 

necessarily representative of the original combusted material (see Section 2.2). 291 

 292 

River Date δ13C 14C +/-1σ  Age Publication No. 

Calder 4/10/13 -28.2 75.06 0.35 2243 SUERC-52256 
  22/10/13 -27.5 68.86 0.30 2935 SUERC-52262 
  2/1/14 -28.2 81.80 0.36 1552 SUERC-52267 
  7/1/14 -28.5 80.58 0.37 1672 SUERC-52274 

Hodder 4/10/13 -28.6 89.89 0.39 794 SUERC-52257 
  22/10/13 -28.6 91.09 0.42 687 SUERC-52263 
  2/1/14 -28.8 91.25 0.40 673 SUERC-52268 
  7/1/14 (-28.6) 89.92 0.39 792 SUERC-52275 

Ribble A 4/10/13 -25.2 88.95 0.41 878 SUERC-52258 
  22/10/13 -28.6 87.67 0.40 995 SUERC-52264 
  2/1/14 -29.1 89.55 0.41 825 SUERC-52272 
  7/1/14 -29.3 89.26 0.41 850 SUERC-52276 

Ribble B 4/10/13 -28.6 84.68 0.39 1274 SUERC-52261 
  22/10/13 -28.6 84.68 0.39 1273 SUERC-52265 
  2/1/14 -28.7 88.15 0.41 951 SUERC-52273 
  7/1/14 -28.8 84.34 0.39 1306 SUERC-52277 

Conwy 7/1/14 -28.5 90.52 0.42 737 SUERC-52278 
  27/1/14 (-23.0) 90.09 0.28 775 UCIAMS-144595 
  14/2/14 -29.2 97.90 0.49 108 SUERC-53199 
 22/10/14 -28.3 100.07 0.47 Modern SUERC-58254 

Avon 22/10/13 -28.2 90.60 0.40 731 SUERC-52266 
  6/2/14 (-28.4) 88.78 0.28 895 UCIAMS-144596 
  23/4/14 -29.9 92.63 0.48 553 SUERC-54377 
 28/8/14 -30.1 92.62 0.41 554 SUERC-57317 

Gairn 7/1/14 -28.5 90.58 0.42 732 SUERC-52283 
  26/2/14 (-25.9) 90.92 0.31 700 UCIAMS-144597 
  16/3/14 -27.0 95.84 0.45 279 SUERC-54379 

Dee A 7/1/14 -27.9 93.74 0.41 457 SUERC-52282 
  26/2/14 -28.2 89.52 0.45 827 SUERC-53201 
  21/3/14 -27.2 88.09 0.46 957 SUERC-54382 

Dee B 7/1/14 -27.9 93.04 0.41 517 SUERC-52281 
  26/2/14 (-28.6) 88.88 0.45 885 SUERC-53200 
  16/3/14 -27.7 88.95 0.44 878 SUERC-54378 
  21/3/14 -27.6 91.76 0.44 628 SUERC-54383 
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Figure 2.  Average PO14C (pMC) for suspended sediment collected at high flow at the 9 305 

sampling sites.   Error bars represent standard deviations. Greyed bars show the two sites for 306 

which the PO14C values differ significantly from the others.   307 
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 309 

 310 

Figure 3. Soil radiocarbon plotted against soil depth for 296 samples of UK soils.  Depths are 311 

plotted as the weighted average of sampling depths.  The horizontal bars are standard deviations 312 

in 14C, the vertical bars are ranges of sampling depth.  See Table S1 for details.   313 
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Figure 4.  Radiocarbon contents of POM, i.e. PO14-C, plotted the against OC content of SPM 339 

(%) and [SPM].  Global data collated by Marwick et al. (2015) are represented by the open 340 

circles. Data for the 7 rurally-dominated UK sites are shown by filled circles. Values for the 341 

Rivers Calder and Ribble B are shown by filled triangles. 342 
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4.  Discussion 343 

In attempting to interpret the PO14C data reported here, it must be borne in mind that 344 

all the measured values arise from the mixing of organic matter from different sources, and that 345 

any calculated ages are only apparent.  Therefore, the mean of 680 14C years must mean that 346 

both younger and older material is also present.  An especially clear effect of mixing is seen 347 

within the present data, for the River Calder sub-catchment and Ribble B site (Table 3, Figure 348 

2).  The Calder PO14C values (68 – 82 pMC) are lower than at any of the other sites due to 349 

industrial and/or mining activity in the catchment; for example coal (14C ~ 0) may be present 350 

in the samples. Mixing of River Calder water with water from the other two Ribble tributaries 351 

(Figure 1) then leads to relatively low PO14C (84 – 89 pMC) in the samples from the Ribble B 352 

site. 353 

For the 7 rivers other than the Calder and Ribble B, the average value of PO14C (91.2 354 

pMC) could arise from the mixing of topsoil material with material from subsoils, exposed at 355 

the bank or via field drains (Chapman et al., 2001, Deasy et al., 2009). For example, if we 356 

assume that average subsoil has a 14C value of 75 pMC (from Figure 3, the value at a depth of 357 

about 50 cm), and adopt a mid-range value of 100 pMC for the topsoil (Figure 3), then the 358 

value of 91.2 pMC would arise from a mixture comprising 65% topsoil OC and 35% subsoil 359 

OC.  But if a topsoil value of 95 pMC were chosen, which might arise if soil under improved 360 

grassland were the main source of riverine POM (Figure 3), the mixture would be 81% topsoil 361 

OC and 19 % subsoil OC.  These results bracket the average contributions to riverine SPM of 362 

topsoil and subsoil (73%: 27%) obtained by Walling (2013) from a collation of data for 84 UK 363 

rivers.  However, the analysis is complicated by the fact that the OC content of soil decreases 364 

with depth, so that typically for UK soils, the subsoil OC concentration is only about one-fifth 365 

of the topsoil (Table S2, Figure S1). This would mean that to achieve the required amount of 366 

bulk subsoil OC to account for the PO14C values, the SPM fractions would have to be weighted 367 

towards the subsoil, which would not agree with Walling’s results. A possible explanation is 368 

that soil components that are rich in organic matter are preferentially mobilised from the 369 

subsoil.  370 

Another process that might explain why the riverine PO14C is depleted relative to 371 

topsoil (i.e. the average value of 91.2 pMC in the 7 rural catchments) is preferential 372 

mineralisation within the river channel of radiocarbon-rich topsoil organic matter (Marwick et 373 

al., 2015).  This could arise because topsoil contains organic matter pools with different 374 
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turnover rates, and therefore with different 14C contents.  On this basis, Mills et al. (2014) used 375 

a steady-state model with two main organic carbon pools having mean residence times of 20 376 

and 1000 years to interpret observed topsoil 14C data, and estimated that the pools were present 377 

in roughly equal proportions.  At the present time, the faster turnover pool has a 14C content 378 

greater than 100 pMC because of the presence of “bomb carbon”, while the long-lived pool 379 

typically has a 14C content of about 90 pMC.  Furthermore, the topsoil contains plant litter 380 

deposited within the last few years, with a 14C content slightly greater than 100 pMC.  Both the 381 

litter and the 20-year major soil pool are mineralised in the terrestrial environment much faster 382 

than the 1000-year pool, and this difference would also be expected during riverine transport 383 

and temporary storage in the river bed.  Loss of the more labile carbon would then reduce the 384 

PO14C value compared to that of topsoil.  From regression analysis of UK-wide river data, 385 

Worrall et al. (2014) estimated that about 25% of POC is lost to the atmosphere as CO2 during 386 

riverine transport.  If so, then a substantial reduction in the radiocarbon content of riverine POC 387 

could occur during transit.  However, comparisons of sediment storage and annual flux suggest 388 

that residence times of SPM in UK rivers with catchment areas comparable to those of the 389 

present study are short, rarely more than a year (Owens et al., 1999; Collins and Walling, 2007), 390 

and so to achieve the 25 % mineralisation loss suggested by Worrall et al. (2014), rates of 391 

decomposition of POC in rivers would need to be appreciably higher than is generally accepted 392 

for their turnover in the soil.  Dispersion of the material and exposure to light during riverine 393 

transport might accelerate the mineralisation process.   394 

A possible explanatory factor with respect to our results is the effect of parent geology, 395 

the importance of which was highlighted by Longworth et al. (2007) to interpret PO14C results 396 

for rivers draining small rural catchments in the Hudson-Mohawk watershed in upper New 397 

York State.  Like our catchments, this is a low-erosion system as evidenced by the 5-year 398 

average (2004-2008) [SPM] of 22 mg L-1 for the Mohawk River at Cohoes 399 

(http://waterdata.usgs.gov/nwis accessed April 2015).  Longworth et al. (2007) did not report 400 

[SPM] and OC content of SPM, and so their results are absent from the plotted values of 401 

Marwick et al. (2015) in Figure 4.  Generally, their PO14C values are higher than ours, falling 402 

in the range 89 to 109 pMC, but mostly they exceed 100 pMC.  They explained the 403 

geographical distribution of their data, i.e. spatial variations in PO14C values, in terms of 404 

contributions to POM from the physical weathering of shale (containing organic matter low in 405 

14C).  However, this is an unlikely explanation for the relatively depleted PO14C reported in the 406 

present work, because the 7 rivers that provide the average of 91.2 pMC are in catchments free 407 
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of rock types containing ancient organic matter (Table 1).  Therefore it seems unlikely that the 408 

presence of ancient carbon sources provides a general explanation for depleted PO14C in low-409 

erosion catchments. 410 

The present results fit with and extend the data compiled by Marwick et al. (2015).  The 411 

plots in Figure 4 show that the global data fall into two zones.  One occurs at high [SPM] and 412 

low OC content, for which very low 14C values are observed, and the data encompass highly 413 

eroding, unstable systems (Smith et al., 2013).  As noted by Marwick et al. (2015) this will 414 

reflect the strong dilution of topsoil-derived POC with eroded mineral matter low in OC but 415 

highly-aged, possibly with near-zero 14C. This zone occurs for [SPM] greater than about 100 416 

mg L-1 and for OC contents less than about 2%.  The other zone is for lower [SPM] and higher 417 

OC content and there appears to be no true trend in the PO14C values with either [SPM] or OC 418 

content in this range, especially after the addition of the new data presented here (Figure 4).  419 

Thus we find a range of PO14C between about 80 and 110 pMC in the low-SPM, high-OC zone. 420 

Based on the present study and the conclusions of Marwick et al. (2015), variations in PO14C 421 

in low-erosion rivers can be attributed to variations in a number of factors.  In approximate 422 

order of general importance these are (i) topsoil O14C variations across different land uses, (ii) 423 

catchment size and bank erosion, (iii) decomposition of POM during riverine transport, (iv) 424 

inputs of organic matter highly depleted in 14C (from coal, shale or industry) and (v) in-river 425 

carbon fixation.  Different combinations of these factors between rivers, or in the same rivers 426 

at different times, could generate the observed range of PO14C values.  Progress towards the 427 

precise attribution of POC sources will require all these factors to borne in mind when 428 

designing field surveys and experiments.   The fractionation of POM, e.g. by density or particle 429 

size, may also be a useful tool in characterising the PO14C. In the meantime, modelling and 430 

forecasting future change in POC fluxes will only be approximate.   However, it seems certain 431 

that the riverine transport of carbon fixed many centuries ago, arising from both topsoil and 432 

subsoil, is contributing appreciably to carbon budgets in the UK and other low-erosion 433 

locations, and will continue to do so.   434 

The high degree of consistency among the rivers (Figure 2) means that the results 435 

presented here are probably representative of pasture and upland catchments of similar size or 436 

greater across the UK.  Catchments dominated by arable agriculture are missing from this study 437 

and should be considered in future research.  We would expect that their rivers would have 438 

lower PO14C, in view of the available data on arable topsoils showing them to be relatively low 439 

in 14C (Figure 3).  The likely lower PO14C values in arable-dominated catchments, together 440 
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with contributions of POC from catchments with coal mining and industry, will tend to make 441 

the average age of POC entering the sea from the whole UK, somewhat greater than the average 442 

value of 680 14C years derived for the rural catchments of the present study. 443 

  444 



 
 

22 
 

5.  Conclusions  445 

 Particulate organic matter transported at high flow by 7 UK rivers draining pastoral rural 446 

landscapes had an average 14C content of 91.2 pMC, corresponding to an apparent average 447 

age of 681 14C years.  These rivers show no significant difference (p > 0.05) in their average 448 

14C values. 449 

 Owing to industrial and mining activity in its catchment, the River Calder’s POM was 450 

significantly more depleted in 14C (average 76.6 pMC).  The Ribble B site, of which the 451 

River Calder is a tributary, also showed depleted PO14C as a result of the contribution from 452 

the Calder catchment. 453 

 Erosion of topsoil is an obvious major source of riverine POM.  The most likely 454 

explanations for the relatively low PO14C in the 7 rural rivers compared to topsoil O14C 455 

(range 94 – 109 pMC depending upon land-use) are firstly, inputs of older subsoil OC due 456 

to bank erosion and secondly, preferential mineralisation of 14C-rich organic matter during 457 

riverine transport. 458 

 The present results are probably typical of other UK rivers with similar catchment soils and 459 

land uses.  We expect that catchments dominated by arable soils would have lower PO14C 460 

values because of lower topsoil radiocarbon levels. 461 

 462 

  463 
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