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ABSTRACT 37 

As apex predators in marine ecosystems, seabirds may primarily experience climate change 38 

impacts indirectly, via changes to their food webs. Observed seabird population declines have 39 

been linked to climate-driven oceanographic and food web changes. However, relationships 40 

have often been derived from relatively few colonies and consider only sea surface 41 

temperature (SST), so important drivers, and spatial variation in drivers, could remain 42 

undetected. Further, explicit climate change projections have rarely been made, so longer-43 

term risks remain unclear. Here, we use tracking data to estimate foraging areas for eleven 44 

black-legged kittiwake (Rissa tridactyla) colonies in the UK and Ireland, thus reducing 45 

reliance on single colonies and allowing calculation of colony-specific oceanographic 46 

conditions. We use mixed models to consider how SST, the potential energy anomaly 47 

(indicating density stratification strength) and the timing of seasonal stratification influence 48 

kittiwake productivity. Across all colonies, higher breeding success was associated with 49 

weaker stratification before breeding and lower SSTs during the breeding season. Eight 50 

colonies with sufficient data were modelled individually: higher productivity was associated 51 

with later stratification at three colonies, weaker stratification at two, and lower SSTs at one, 52 

whilst two colonies showed no significant relationships. Hence, key drivers of productivity 53 

varied among colonies. Climate change projections, made using fitted models, indicated that 54 

breeding success could decline by 21 – 43% between 1961-90 and 2070-99. Climate change 55 

therefore poses a longer-term threat to kittiwakes, but as this will be mediated via availability 56 

of key prey species, other marine apex predators could also face similar threats. 57 

  58 
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1. INTRODUCTION 59 

Ecological impacts of climate change are increasingly well-understood, with changes in 60 

species’ ranges and phenology predicted and observed in both terrestrial and marine 61 

environments (Parmesan 2006, Doney et al. 2012). Some species may be primarily affected 62 

via changed biotic interactions (e.g., Pearce-Higgins et al. 2010), but such impacts can be 63 

harder to predict and observe (Tylianakis et al. 2008, Gilman et al. 2010). These “indirect” 64 

impacts are likely to be widespread and bring with them substantial extinction risks (Cahill et 65 

al. 2013, Ockendon et al. 2014), but they also pose considerable conservation challenges: 66 

species at higher trophic levels attract most attention (Sergio et al. 2008), but their populations 67 

may depend more on species at lower trophic levels and their abiotic drivers. 68 

 69 

Seabirds are the world’s most threatened group of birds (Croxall et al. 2012). As apex 70 

predators, they are likely to experience indirect climate change impacts through their 71 

supporting food webs (Sydeman et al. 2012). Their populations are responsive to changes in 72 

breeding success (Sandvik et al. 2012), which is influenced by prey availability during the 73 

breeding period (Hamer et al. 1993, Regehr & Montevecchi 1997, Wanless et al. 2004). 74 

Under poorer feeding conditions, body condition is lower, nest attendance falls, and chicks 75 

can starve (Wanless & Harris 1992, Frederiksen et al. 2004b, Vincenzi & Mangel 2013). 76 

Hence, climatic and oceanographic changes affecting food webs could impact seabird 77 

productivity. Whilst identifying underlying mechanisms is challenging, it is informative to 78 

examine relationships between physical ocean conditions and demographic parameters (e.g., 79 

Frederiksen et al. 2004b, Wanless et al. 2007), as these can indicate the ultimate drivers of 80 

population declines. 81 

 82 
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In the UK and Ireland, abundances of several seabird species have fallen substantially since 83 

the mid-1980s (JNCC 2014). Some declines have been linked to rising sea surface 84 

temperatures (SSTs) (e.g., Frederiksen et al. 2004b, Frederiksen et al. 2007). A possible 85 

mechanism behind this is reduced prey availability and nutritional value due to changing 86 

zooplankton communities (Arnott & Ruxton 2002, Wanless et al. 2004, van Deurs et al. 87 

2009). Although strong relationships with SST have been derived for individual colonies 88 

(Frederiksen et al. 2004b), its importance varies spatially, with colonies in some regions 89 

showing only weak SST relationships (Frederiksen et al. 2007, Lauria et al. 2012). Further, 90 

other oceanographic drivers, notably density stratification, may also be important (Scott et al. 91 

2006). Stratification occurs when temperature or salinity differences cause pronounced 92 

density differences between deep and shallow waters. Associated changes in nutrient 93 

availability and light regimes influence plankton growth, and in turn fish activity and growth 94 

(Scott et al. 2006, Sharples et al. 2006). Under earlier stratification, key fish species may be 95 

available too early or be less nutritious (Wright & Bailey 1996, Wanless et al. 2004, Scott et 96 

al. 2006), whilst abundance of key zooplankton and fish species may fall under stronger 97 

stratification (Beare et al. 2002, Jensen et al. 2003). To improve understanding of the physical 98 

drivers of seabird productivity and identify underlying biological mechanisms, it is therefore 99 

necessary to consider multiple colonies across multiple regions (Lauria et al. 2012, Sydeman 100 

et al. 2012), and multiple oceanographic variables. 101 

 102 

With improved understanding of physical drivers of productivity, longer-term climate change 103 

impacts can be considered. Longer-term impacts have been implied from observed changes, 104 

but few studies have made explicit projections (but see Frederiksen et al. 2013, Sandvik et al. 105 

2014). A clearer understanding of future impacts is essential when considering possible 106 

conservation strategies in a changing climate, especially in light of legislative frameworks that 107 
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consider seabird productivity under prevailing climatic conditions (HM Government 2012). 108 

Therefore, both observed relationships and explicit climate change projections are necessary 109 

to provide a more complete understanding of the impacts of oceanographic change and 110 

stochasticity on seabird populations. 111 

 112 

Here, we examine drivers of productivity for multiple seabird colonies, considering SST and 113 

stratification. We consider the black-legged kittiwake (Rissa tridactyla, hereafter 114 

“kittiwake”), as it is a sensitive indicator of environmental conditions (Wanless et al. 2007, 115 

Cook et al. 2014). We focus on the UK and Ireland, which support around 14% of the 116 

biogeographic kittiwake population and for which population data are routinely collected 117 

(JNCC 2014). Specifically, we consider the following hypotheses: 118 

1) higher SSTs are associated with reduced kittiwake breeding success; 119 

2) strong, early stratification is associated with reduced kittiwake breeding success; 120 

3) modelled kittiwake productivity will be reduced in future scenarios due to the impacts 121 

of climate change.  122 



7 

 

2. MATERIALS AND METHODS 123 

2.1. Study species 124 

Despite being one of the most abundant seabirds in the UK and Ireland, kittiwakes have 125 

declined substantially since 1986 (JNCC 2014). They nest on cliffs in colonies of up to tens of 126 

thousands of pairs (Coulson 2011). Egg-laying occurs from April to June, and incubation and 127 

fledging each take approximately one month (Coulson 2011). During breeding, kittiwakes 128 

feed primarily on fish, with sandeels (Ammodytidae; particularly the lesser sandeel, 129 

Ammodytes marinus) a key prey resource (Furness & Tasker 2000, Wanless et al. 2007). 130 

However, clupeids (e.g., herring, sprat), gadids (e.g., cod, pollock) and planktonic crustacea 131 

can also be important (e.g., Lewis et al. 2001, Chivers et al. 2012). Colonies with diverse diets 132 

may be buffered from fluctuating prey availability (Coulson 2011), with those dependent 133 

upon a single species more likely to be sensitive to climatic variability. 134 

 135 

2.2. Kittiwake foraging areas 136 

Previous analyses have extracted oceanographic predictor variable values from arbitrary areas 137 

near colonies (e.g., Frederiksen et al. 2004b, Burthe et al. 2012, Sandvik et al. 2014). 138 

However, seabird tracking has indicated variability among colonies in the size and shape of 139 

areas used (e.g., Wakefield et al. 2013), so the area of sea influencing breeding success is also 140 

likely to vary. Hence, here, tracking data were used to define colony-specific areas. 141 

 142 

Data were acquired for 11 colonies where kittiwakes were tracked during the 2010-12 143 

breeding seasons and for which productivity data were available (Table 1; Fig. 1). Tracked 144 

birds had high-resolution GPS tags (modified IgotU GT 120, Mobile Action, Taiwan) 145 

attached with adhesive tape to back feathers whilst at the colony. Tags recorded a location fix 146 

accurate to 20 m approximately every 100 seconds, and remained attached for two to five 147 
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days. Tracking occurred from May to July, but mostly in June, covering late incubation and 148 

chick rearing periods. 149 

 150 

It was assumed that oceanographic conditions primarily affect kittiwake productivity via food 151 

webs, so the most relevant areas from which to extract oceanographic data were those 152 

associated with foraging. Therefore, GPS records were filtered to identify relevant locations. 153 

Records within 1 km of the colony centre were removed to exclude fixes associated with 154 

behaviours around the nest, which are rarely associated with foraging (Suryan et al. 2002). 155 

Travel speeds between points were calculated; these formed a bimodal distribution, with 156 

lower speeds likely to be associated with foraging (e.g., Kotzerka et al. 2010). Based on 157 

preliminary analysis of a subset of data, records with speeds over 14 km h-1 were removed 158 

(Appendix S1). Filtering left 192,638 records. Although filtering did not exclude behaviours 159 

such as resting on the sea, the range of kittiwake foraging behaviours (Coulson 2011) makes a 160 

more inclusive approach preferable. A sensitivity analysis indicated that threshold selection 161 

made little difference to extracted oceanographic variable values (Appendix S1), so analyses 162 

presented here should be robust to threshold specification within the ranges considered. 163 

 164 

Kernel density estimates (KDEs) were calculated to convert GPS records into estimated 165 

foraging areas. For each colony, data were pooled across all birds and years to estimate the 166 

‘core’ foraging area; whilst interannual variation was found, most colonies used similar areas 167 

each year (Appendix S2), so pooling was considered appropriate. Although kernel density 168 

estimation is sensitive to the number of birds included, all colonies had at least the number 169 

required to describe >50% of the ‘true’ foraging area (Soanes et al. 2013). Kernel densities 170 

were evaluated on a regular 30 arc-second by 30 arc-second rectangular grid with limits 1.25 171 

degrees away from the most extreme observations. 172 
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 173 

KDEs were based on a bivariate Gaussian kernel, and were evaluated using the 'ks' R package 174 

(Duong 2013). A bivariate plug-in estimator (Duong & Hazelton 2003) and a rule-of-thumb 175 

approach (Silverman 1986) were considered for choosing the degree of smoothing. The rule-176 

of-thumb approach took bandwidth to be 1.06·σx·n
(-1/5) and 1.06·σy·n

(-1/5)
, where n denotes 177 

sample size and σx and σy denote standard deviations of longitudes and latitudes; this is 178 

derived in a univariate setting under an assumption of normality, so should be interpreted 179 

cautiously here. However, the plug-in was highly computationally intensive for datasets of 180 

this size, so the approaches were compared using a subset of sites: extracted oceanographic 181 

data were highly correlated (r ≥ 0.99), so the rule-of-thumb approach was used for all sites. 182 

Foraging areas were defined by the 90% density contour, which has been recommended for 183 

home range estimates (Börger et al. 2006). Kernels are presented in Appendix S2. 184 

 185 

2.3. Kittiwake breeding success data 186 

Breeding success data were acquired from the seabird monitoring programme (SMP; 187 

http://www.jncc.defra.gov.uk/smp; Walsh et al. (1995)). The SMP is an annual sample survey 188 

of seabird breeding population size and productivity, which started in 1986 and is coordinated 189 

by the Joint Nature Conservation Committee (JNCC). Data from the Isle of May National 190 

Nature Reserve were acquired from the Centre for Ecology & Hydrology 191 

(http://gateway.ceh.ac.uk; accessed 12/04/2013). Productivity data were not available for all 192 

years for all colonies, leaving 142 site-by-year combinations (Table 1). 193 

 194 

SMP breeding success is often analysed as mean fledged chicks per nest (e.g., Frederiksen et 195 

al. 2007). However, it was preferable to avoid this here, as Gaussian responses could become 196 

negative in projections, and varying numbers of nests contributed to observations (range 21 – 197 

http://www.jncc.defra.gov.uk/smp
http://gateway.ceh.ac.uk/
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1446). Therefore, numbers of fledged and failed chicks were modelled as a binomial 198 

response, with fledged chicks taken from the data, and failed chicks estimated as ((2 × nests) - 199 

fledged), based on the mean and modal UK kittiwake clutch size of 2 (range 1 - 3; Coulson & 200 

Porter 1985, Coulson 2011), thus preventing negative predictions and allowing prior weights 201 

to account for varying nest numbers. Hence, breeding success was modelled as chicks fledged 202 

per egg (Cook et al. 2014). To ensure results were robust to these assumptions, fledged chicks 203 

were also modelled as a Poisson response with an offset of log(nests); results were very 204 

similar to the binomial analysis (Appendix S3). 205 

 206 

2.4. Oceanographic data 207 

Two oceanographic datasets were acquired: one covered recent years (hereafter, ‘hindcast’), 208 

whilst one covered 30-year periods for the mid 20th and late 21st Centuries (hereafter, 209 

‘projections’). Both were produced from the Proudman Oceanographic Laboratory Coastal 210 

Ocean Modelling System (POLCOMS), which simulates ocean hydrodynamics as driven by 211 

atmospheric inputs (Holt & James 2001). Data acquired were monthly mean temperature and 212 

salinity on a 1/6° long × 1/9° lat grid (~12 km × 12 km) over multiple vertical layers. 213 

 214 

Hindcast data were acquired from the MyOcean project (http://www.myocean.eu; product 215 

NORTHWESTSHELF_REANALYSIS_PHYS_004_005; accessed 23/04/2013), and 216 

represented an estimate of conditions experienced between 1967 and 2004, so could be used 217 

to establish relationships with kittiwake productivity. Further information on this dataset is 218 

provided by Holt et al. (2012). Projection data were acquired from the British Atmospheric 219 

Data Centre (http://badc.nerc.ac.uk/data/link; accessed 01/03/2013; access provided by the 220 

UK Met Office), and represented baseline (1961-90) and future (2070-99, A1B SRES 221 

scenario) periods. Projections did not correspond to conditions in specific years, so could only 222 

http://www.myocean.eu/
http://badc.nerc.ac.uk/data/link
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be used to predict breeding success under average conditions in each period. Further 223 

information on this dataset is provided by Lowe et al. (2009).  224 

 225 

2.5. Explanatory variables 226 

Three oceanographic variables that could influence kittiwake productivity were calculated: 227 

SST (e.g., Frederiksen et al. 2004b), stratification strength, and the timing of seasonal 228 

stratification onset (e.g., Scott et al. 2006, Scott et al. 2010). SST was calculated by extracting 229 

the top layer of temperature data. 230 

 231 

Stratification strength was expressed using the potential energy anomaly (PEA; Equation 1), 232 

as defined by Holt et al. (2010). PEA indicates the energy per unit depth required to mix the 233 

water column. Hence, higher values indicate stronger stratification. PEA was calculated as 234 

 235 

−
𝑔

ℎ
∫ 𝑧 (𝜌(𝑇(𝑧), 𝑆(𝑧)) − 𝜌(𝑇,̅  𝑆̅))  𝑑𝑧

0

𝑧 = −ℎ
  (1). 236 

 237 

Here, g = gravitational acceleration, h = water depth (or 400 m if h exceeds this), z = the 238 

vertical coordinate (0 indicating the surface, negative values indicating deeper water), ρ = 239 

density (calculated using a polynomial function (Jackett et al. 2006)), T = temperature, 240 

S = salinity; the overbar indicates that the quantity is averaged from h to the surface. As data 241 

were available for discrete depths, the integral was evaluated numerically using Simpson’s 242 

rule.  243 

 244 

Seasonal stratification onset was calculated similarly to previous analyses of POLCOMS data 245 

(Lowe et al. 2009, Holt et al. 2010), but as daily outputs were unavailable, additional 246 

assumptions were made. Stratification onset was defined as the first day of the year with 247 
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mixed layer depth (MLD) <50 m (Holt et al. 2010). MLD was defined as the depth at which 248 

density differed from surface density by an amount equivalent to a 0.5°C temperature 249 

reduction. Only monthly outputs were available, so daily MLD values were interpolated by 250 

fitting a cubic spline through monthly values; whilst this retains the seasonal pattern of MLD, 251 

it may underestimate true variability. Hence, whilst the stratification onset metric is relatively 252 

coarse, variability among years and sites should be adequately described. 253 

 254 

For SST and PEA, winter and spring means were calculated. Winter (December, January, 255 

February) corresponded to the period important for sandeel spawning and egg hatching 256 

(Arnott & Ruxton 2002). Spring (March, April, May, June) corresponded to the period when 257 

kittiwakes commence breeding, sandeel larvae grow and sandeel abundance peaks (Wright & 258 

Bailey 1996, Coulson 2011). For stratification onset, only annual means could be defined.  259 

 260 

As well as oceanographic influences, breeding success could be influenced by density-261 

dependence, with reduced productivity at higher population sizes (Furness & Birkhead 1984). 262 

Therefore, for the subset of sites and years with SMP data on kittiwake breeding population 263 

size available (9 colonies; 78 site-by-year combinations), log(population) was considered as a 264 

further predictor variable (Appendix S4). Across all sites and at three of four individual 265 

colonies, there was no significant relationship between population size and breeding success; 266 

at the remaining colony, a positive relationship was found. Relationships between breeding 267 

success and oceanographic variables were not influenced by inclusion of population size. 268 

Consequently, in the present study there is little evidence of density-dependent effects on 269 

breeding success (Appendix S4); due to the much-restricted dataset involved in this analysis, 270 

further discussion relates to models excluding population size. 271 

 272 
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2.5. Statistical analysis 273 

Analyses were conducted in R v.3.1.0 (R Core Team 2014). Mean oceanographic variable 274 

values within foraging areas were calculated using the ‘raster’ R package (Hijmans 2013). 275 

Variables were explored for collinearity and temporal trends (Appendix S5). PEA values 276 

displayed skewed distributions, so logged and untransformed values were compared in 277 

preliminary productivity models (Appendix S5): logged PEA performed better, so further 278 

models used log(PEA). Previous analyses have shown that variables with and without a 1-279 

year lag may influence productivity (Frederiksen et al. 2004b), so both were trialled: 280 

relationships were similar, but lagged variables produced higher AICs (Appendix S5), so 281 

further analyses considered unlagged variables. 282 

 283 

Breeding success was modelled using Generalised Linear Mixed Models (GLMMs) with 284 

binomial error and logit link. Models were fitted using the ‘lme4’ R package (Bates et al. 285 

2014), with time as a predictor to identify temporal trends, and then with oceanographic 286 

predictors to explore drivers of productivity. Models were first fitted for individual sites, 287 

considering single predictors only. Then, equivalent single-predictor models were fitted using 288 

data from all sites. Finally, multiple-site models were fitted with multiple predictors, to allow 289 

a more complete examination of oceanographic drivers. 290 

 291 

For single-site models, only colonies with ≥10 years of productivity and oceanography data 292 

were used. Data were deemed insufficient to include multiple explanatory variables 293 

(minimum 12 data points, maximum 19), so only single predictors were considered. An 294 

observation-level factor was included as a random effect to model overdispersion in the 295 

response (e.g., Browne et al. 2005). Variable influence was assessed by comparing sample-296 

size-corrected Akaike information criterion (AICc) to that from a null model with intercept 297 
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and random effects only: ΔAICc ≤ 0 was considered to indicate some support, and ΔAICc ≤ 298 

-2 to indicate substantial support. 299 

 300 

To account for spatial and temporal structuring of data, models including data from all sites 301 

were fitted with ‘site’, ‘region’, ‘year’, ‘site*year’ and ‘region*year’ random effects. 302 

‘Site*year’ was an observation-level factor to model overdispersion. ‘Region’ was included to 303 

account for spatial clustering of colonies, and was based on regions previously identified from 304 

kittiwake productivity trends (Frederiksen et al. 2005); if a region was not stated for a specific 305 

site, the nearest region was used. These models were assessed by comparing uncorrected AIC 306 

(due to the larger sample size) to that from a null model. Next, models were fitted with 307 

multiple predictors. Interaction terms were not considered, as this would lead to overfitting 308 

and reduce interpretability. Model comparison was conducted using the ‘MuMIn’ R package 309 

(Barton 2014); performance was assessed by comparing AIC values to that from the model 310 

with lowest AIC, with ΔAIC ≤ 2 considered to indicate similar support. 311 

 312 

2.6. Climate change projections 313 

Climate change impacts were estimated using the multiple-predictor models. To account for 314 

model and parameter uncertainty, a randomisation procedure with 1,000,000 runs was used: 315 

each run, one model was picked with probability equal to its Akaike weight, and new 316 

parameter estimates were simulated. Fixed effect estimates were simulated from a 317 

multivariate normal distribution, with mean and covariance matrix taken from the chosen 318 

model, using the ‘mvtnorm’ R package (Genz et al. 2014). ‘Site’ and ‘region’ effects were 319 

extracted from the model, whilst ‘year’, ‘site*year’ and ‘region*year’ were simulated from 320 

normal distributions with mean = 0 and standard deviations taken from the model. 321 

 322 
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Simulated parameters were applied to oceanographic projections to produce breeding success 323 

estimates for ‘baseline’ and ‘future’ periods. As these periods represented average conditions, 324 

the mean across all years in each period was calculated. Proportional change in breeding 325 

success was calculated as ((future - baseline)/baseline); probability of decline was examined 326 

by calculating the proportion of randomisation runs that did not show a decline between 327 

baseline and future periods. Differences between periods were tested using Wilcoxon rank 328 

sum tests.  329 
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3. RESULTS 330 

3.1. Temporal trends and cross correlations 331 

Across all sites, breeding success showed no significant temporal trend (P = 0.141; Appendix 332 

S5). Spring SST increased significantly (P = 0.026), and winter SST showed a non-significant 333 

increase (P = 0.054). Winter PEA showed a weakly significant increase (P = 0.046), but 334 

spring PEA (P = 0.173) and stratification onset (P = 0.096) showed no significant change.  335 

 336 

Breeding success decreased significantly at Flamborough Head, Fowlsheugh and St. Abb’s 337 

Head, but increased at Bardsey Island (0.003 ≤ P ≤ 0.047). Winter SST increased significantly 338 

at Bardsey Island, Coquet Island, Flamborough Head and Lambay (0.029 ≤ P ≤ 0.043), whilst 339 

spring SST increased significantly at Bardsey Island, Flamborough Head and Puffin Island 340 

(P < 0.01). Winter PEA increased significantly at Isle of May (P = 0.016) and St. Abb’s Head 341 

(P = 0.048), but spring PEA showed no trends. Stratification onset became significantly 342 

earlier at Boddam to Collieston, Fowlsheugh and Isle of May (0.014 ≤ P ≤ 0.020). 343 

 344 

Correlations between variables were moderate or weak (Appendix S5), with the highest 345 

between winter and spring PEA (ρ = 0.669), winter and spring SST (ρ = 0.672), and 346 

stratification onset and PEA (spring ρ = -0.559; winter ρ = -0.485), so it was considered 347 

acceptable to include multiple predictors in the same model. Strong or moderate correlations 348 

were found between lagged and unlagged forms of all variables (0.647 ≤ ρ ≤ 0.950). 349 

 350 

3.2. Single predictor variable models 351 

The strongest predictor of breeding success differed among sites (Table 2; Appendix S6). 352 

Stratification onset provided the best model at Isle of May and St. Abb’s Head, with higher 353 

productivity associated with later stratification. Spring PEA provided the best model at 354 
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Flamborough Head, whilst winter PEA provided the best model at Bardsey Island, with both 355 

showing higher productivity to be associated with lower PEA; winter PEA attained 356 

significance at Coquet Island but was not supported over the null model. Spring SST provided 357 

the best model at Fair Isle, showing higher breeding success was associated with lower SSTs. 358 

Winter SST did not perform better than the null model at any site. At Boddam to Collieston 359 

and Fowlsheugh, no variable performed better than the null model. 360 

 361 

The best all-sites single-predictor model showed higher breeding success with lower winter 362 

PEA (Table 2; Fig. 2). A similar relationship was found with spring PEA, but the model 363 

received less support. There was also evidence of a negative relationship with spring SST and 364 

a positive relationship with stratification onset (Table 2). Therefore, breeding success was 365 

higher under lower SSTs, later stratification and when the water column was better mixed 366 

early in the year. 367 

 368 

3.3. Multiple predictor variable models 369 

The best multiple-predictor model (Table 3; Appendix S6) contained significant, negative 370 

coefficients for winter PEA and spring SST, showing higher breeding success was associated 371 

with weaker stratification before breeding and lower SSTs during breeding. Three other 372 

models showed similar empirical support: all contained significant, negative coefficients for 373 

winter PEA and spring SST, and one non-significant variable. The second-ranked model 374 

(ΔAIC = 1.649) contained a non-significant positive effect of winter SST, contrasting with 375 

single predictor models; this possibly reflects collinearity between winter and spring SST. 376 

The third-ranked model (ΔAIC = 1.861) contained a non-significant positive coefficient for 377 

stratification onset, whilst the fourth-ranked model (ΔAIC = 1.926) showed a non-significant 378 
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negative effect of spring PEA. Therefore, results highlighted the importance of lower winter 379 

PEAs and spring SSTs for kittiwake productivity.  380 

 381 

3.4. Climate change projections 382 

Projections indicated that climate change could drive substantial productivity declines (Table 383 

4; Fig. 3). For the baseline period, mean projected breeding success across all sites was 0.560 384 

(~1.12 chicks per pair); by 2070-99, this had declined by 32.6% to 0.377 (~0.754 chicks per 385 

pair). Only 3.0% of simulations did not predict a decline. 386 

 387 

All sites showed projected declines (Table 4). The largest proportional decline was for Fair 388 

Isle (43.2%), whilst the smallest was at Coquet Island (21.4%). The largest absolute decline 389 

was at Flamborough Head (-0.214), and the smallest was at Boddam to Collieston (-0.161). At 390 

Bardsey Island and Fair Isle, only 1.8% and 1.1% of simulations respectively did not predict a 391 

decline, whilst for Boddam to Collieston, Coquet Island, Fowlsheugh, Isle of May and St. 392 

Abb’s Head, 7.9 – 16.9% of simulations did not predict declines. Therefore, the magnitude 393 

and probability of declines varied among sites. 394 

 395 

Neither stratification onset nor winter PEA changed significantly between periods (Fig. 3). 396 

Spring PEA increased significantly (Fig. 3), but the absolute change was small (1961-90 397 

mean 10.02 Jm-3 (log scale 2.034); 2070-99 mean 12.13 Jm-3 (log scale 2.215)) and spring 398 

PEA coefficients in high-ranking models were small. Hence, these three variables changed 399 

too little or had too little an effect on productivity to drive the projected productivity declines. 400 

SST increased significantly in spring (1961-90 mean 7.95°C; 2070-99 mean 10.46°C; Fig. 3) 401 

and winter (1961-90 mean 7.08°C; 2070-99 mean 9.58°C; Fig. 3); spring SST model 402 

coefficients were large and negative, whilst winter SST coefficients were small and positive 403 
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or large and negative. Hence, rising SSTs appeared to be the major driver of projected 404 

declines.  405 
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4. DISCUSSION 406 

Weaker, later stratification and lower SSTs were associated with higher kittiwake 407 

productivity. Individual colonies also showed such relationships, but the most important 408 

driver varied among colonies. Projections indicated that climate change could drive longer-409 

term productivity declines. The analytical approach reduced reliance on intensively-studied 410 

colonies, accounted for colony-specific habitat use, allowed examination of spatial 411 

heterogeneity, and considered short- and longer-term effects, thus providing a more complete 412 

examination of drivers of kittiwake productivity. The study therefore provides an example of 413 

how changing physical conditions, presumably acting via supporting food webs, can influence 414 

apex predators, leading to indirect climate change impacts. 415 

 416 

4.1. Use of colony-specific areas 417 

Previous analyses have extracted oceanographic data from arbitrary areas or broad regions 418 

(e.g., Frederiksen et al. 2004a, Lauria et al. 2012), but here, colony-specific areas were 419 

produced. This allowed the analysis to reflect observed habitat use, but several caveats apply 420 

when interpreting results. It was assumed that colonies use foraging areas consistently, but 421 

foraging locations may vary (e.g., Ainley et al. 2003, Robertson et al. 2014). However, 422 

kittiwakes can display high foraging site fidelity (Irons 1998) and kernels were often similar 423 

among years (Appendix S2), indicating that ‘core’ foraging areas may retain importance. 424 

Further, kernel density estimation is sensitive to the number of birds, trips and years included 425 

(Soanes et al. 2013, Bogdanova et al. 2014), so areas estimated here may not adequately 426 

represent ‘whole colony’ foraging areas. However, all colonies passed the threshold required 427 

to estimate >50% of the core foraging area, and many passed that required for estimating 95% 428 

(Soanes et al. 2013). Collection of further tracking data could resolve such issues, providing 429 

increased understanding of spatiotemporal variability in foraging areas and more robust kernel 430 
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estimates. Finally, if prey species are transported or migrate into foraging areas, physical 431 

conditions elsewhere could be more important in determining prey availability. However, 432 

after settlement, adult sandeels do not move to other areas, and larval sandeel transport 433 

towards the UK is limited (Christensen et al. 2008), so local conditions are likely to remain 434 

important in areas where sandeels dominate seabird diets. Improved understanding of seabird 435 

diet, and the population dynamics of key prey species, could help to clarify such uncertainties. 436 

 437 

4.2. Drivers of kittiwake productivity 438 

As in previous analyses (e.g., Frederiksen et al. 2004b) a negative relationship between 439 

breeding success and SST was found. However, the strongest relationship showed a negative 440 

relationship with winter PEA. This suggests that examining multiple variables is necessary to 441 

improve our understanding of physical drivers of kittiwake productivity, and the biological 442 

mechanisms through which they act.  443 

 444 

Stratification timing and strength are likely to interact to influence feeding conditions. 445 

Seasonal stratification influences plankton growth, which can in turn cause fish to move 446 

towards the surface to feed (e.g., Greenstreet et al. 2006, Buren et al. 2014). Hence, early 447 

stratification can cause a mismatch between peak fish availability or size and the seabird 448 

breeding period (Scott et al. 2006, Burthe et al. 2012). Although seabirds can adjust the 449 

timing of breeding, such changes may not be sufficient to track prey availability, leading to 450 

phenological mismatch (Burthe et al. 2012). Relationships with winter PEA may themselves 451 

reflect timing effects, with high PEA values simply indicating areas likely to stratify early. 452 

However, kittiwakes avoid foraging in very strongly stratified areas (Scott et al. 2010), 453 

suggesting that stratification strength could directly affect breeding success. Strong 454 

stratification could reduce sandeel availability, as larvae are more abundant in weakly-455 
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stratified surface waters (Jensen et al. 2003), and oxygen deficits under stronger stratification 456 

reduce habitat suitability (Behrens et al. 2009). Stronger stratification is also associated with 457 

lower abundance of Calanus finmarchicus (Beare et al. 2002), a key prey species for North 458 

Sea forage fish (e.g., van Deurs et al. 2009). As stratification is likely to become stronger and 459 

earlier under climate change (Lowe et al. 2009) investigating mechanisms linking 460 

stratification, fish and seabirds is a priority. 461 

 462 

It has been suggested that SST relationships could reflect stratification conditions (Scott et al. 463 

2006), but the best models here included both PEA and SST, indicating that temperature has 464 

an independent effect. For sandeels, increased metabolic costs at higher temperatures may 465 

inhibit growth or cause them to remain buried in the sediment (Greenstreet et al. 2006), and 466 

can reduce recruitment (Arnott & Ruxton 2002). Higher temperatures also influence plankton 467 

communities, with smaller, less nutritious species replacing larger, cold-adapted species 468 

(Beaugrand et al. 2002, Morán et al. 2010); such changes could reduce fish survival or 469 

growth. It should also be noted that if climate change affects the distribution of temperature 470 

through the water column, stratification could itself be affected by temperature increases 471 

(Lowe et al. 2009). It therefore appears beneficial to consider both temperature and 472 

stratification effects on food webs when considering drivers of seabird productivity. 473 

 474 

Single-site models highlighted spatial variation in oceanographic drivers of productivity, but 475 

where foraging areas overlapped, similar patterns were observed. At Isle of May and St. 476 

Abb’s Head, which overlapped somewhat (Appendix S2), stratification onset provided the 477 

best model, whilst at Boddam to Collieston and Fowlsheugh, which overlapped substantially, 478 

no relationships were significant. This supports the idea that clustering of kittiwake 479 

population trends is driven by local foraging conditions (Frederiksen et al. 2005). Further, 480 
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only Isle of May and St. Abb’s Head showed a lagged variable to perform better than the 481 

unlagged equivalent (Appendix S5). Similar results have previously been taken to show that 482 

1-group sandeels influence productivity more than 0-group (Frederiksen et al. 2004b); weak 483 

lagged effects elsewhere imply that other colonies may rely more on 0-group sandeels or 484 

other species. More seabird diet data are required to improve understanding of such spatial 485 

patterns.  486 

 487 

4.3. Climate change impacts 488 

Projections indicated that kittiwake productivity could decline by 21 – 43% between the mid 489 

20th and late 21st Centuries. The largest absolute decline was projected for Flamborough 490 

Head, likely reflecting the strong warming forecast there (Lowe et al. 2009). Smaller declines, 491 

with lower probabilities of occurrence, were projected for colonies further up the east coast, 492 

but the largest proportional decline occurred at Fair Isle, indicating that larger impacts may 493 

not be limited to southerly colonies. Indeed, as dramatic declines have already occurred in 494 

northern Scotland (JNCC 2014), these colonies are likely to face the greatest climate change 495 

threats. 496 

 497 

Between 1986 and 2008, UK kittiwake productivity declined by 31% (Cook & Robinson 498 

2010), comparable to declines projected here over longer timescales. This does not, however, 499 

indicate that declines have reached their maximum: realised magnitudes of longer-term 500 

declines will be determined by factors including anthropogenic influences (e.g., Furness & 501 

Tasker 2000) and adult condition (Frederiksen et al. 2004a). Notably, although no density-502 

dependence was found in the present study or some previous studies of kittiwakes 503 

(Frederiksen et al. 2005, Sandvik et al. 2014), density-dependence could exacerbate or 504 

ameliorate productivity declines, through processes such as reduced local competition for 505 
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food in smaller populations (Furness & Birkhead 1984), or reduced threats from predators in 506 

larger populations (Massaro et al. 2001). Therefore, further information about how kittiwake 507 

behaviour and breeding success interact with population size could be important in 508 

understanding population-scale impacts of climate change. Further, various methodological 509 

processes and assumptions influence the magnitude of projected declines. Projections describe 510 

30-year means for 11 colonies, whereas observed decline estimates are based on individual 511 

years of data for over 50 colonies (Cook & Robinson 2010). Data were extracted from recent 512 

foraging areas, but birds might shift their foraging areas under climate change to track prey. 513 

However, if kittiwakes remain reliant upon sandeels, it is unlikely that important new areas 514 

will emerge due to patchy distribution of sandeels, the sparse distribution of sandeel habitat 515 

and limited transport among sandbanks (Christensen et al. 2008); shifts to new dominant prey 516 

species cannot be predicted using currently-available data. Finally, climate projections 517 

represented only one possible future scenario, so cannot account for the full range of 518 

conditions that may be experienced, and whilst the projections present a plausible future 519 

scenario, they are subject to uncertainty (Holt et al. 2012) so realised future conditions may 520 

differ from projections. Overall, however, results indicate that climate change is expected to 521 

reduce kittiwake productivity in the longer term. 522 

 523 

Although projections suggest that climate change will drive declines in breeding success, the 524 

conservation status of kittiwake populations will be influenced by more than just productivity. 525 

Adult and juvenile survival declines under higher SSTs (Frederiksen et al. 2004b, Sandvik et 526 

al. 2014), and population size is sensitive to declining survival (Sandvik et al. 2012). Hence, if 527 

rising temperatures drive declines in both productivity and survival, abundances could fall 528 

very rapidly. If, by contrast, warmer temperatures cause higher adult survival, as has been 529 

found in some cases (Sandvik et al. 2014), population trends may be somewhat buffered from 530 
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declining productivity. There may also be impacts on individual-level responses such as stress 531 

hormone levels (Brewer et al. 2008) and chick development rates (Vincenzi & Mangel 2013); 532 

such responses could combine to produce substantial population-level effects. Collection of 533 

data on these other demographic parameters, and examination of how they interact with SST 534 

and stratification, could prove highly informative in understanding population-level climate 535 

change impacts. 536 

 537 

Global SSTs are projected to increase by 1 – 3°C by the end of the 21st Century (Collins et al. 538 

2013), so further impacts on seabirds may be unavoidable. However, appropriate marine 539 

management could ameliorate some negative effects. Sandeel fisheries can reduce seabird 540 

productivity (Frederiksen et al. 2004b, Daunt et al. 2008), so any action that reduces prey 541 

abundance in key foraging areas is also likely to affect seabirds. With improved knowledge of 542 

foraging locations, it may be possible to grant important areas enhanced environmental 543 

protection, minimising negative anthropogenic influences on fish populations, and thus 544 

providing a more resilient food web; this is in line with previous recommendations for marine 545 

climate change adaptation (Mawdsley et al. 2009). Establishing marine management 546 

strategies to promote healthy forage fish populations may provide the best approach for 547 

conserving kittiwakes and other apex predators under uncertain future conditions. 548 

 549 

4.4. Conclusions 550 

This study suggests that weaker, later stratification and lower SSTs are beneficial for 551 

kittiwake productivity, and that climate change is a longer-term threat. Kittiwakes are surface-552 

feeding apex predators, so some findings may be primarily relevant to similar species: if 553 

oceanographic changes reduce prey availability near the surface, this may explain why surface 554 

feeders such as kittiwakes and Arctic terns (Sterna paradisaea) appear most sensitive to 555 
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changing conditions (Enstipp et al. 2006). If, however, overall prey abundance or quality is 556 

reduced, more species could be affected. Indeed, declines have been observed in North Sea 557 

harbour seal (Phoca vitulina) populations (Lonergan et al. 2007), increased harbour porpoise 558 

(Phocoena phocoena) starvation might be linked to reduced sandeel availability (MacLeod et 559 

al. 2007b; but see MacLeod et al. 2007a, Thompson et al. 2007), and productivity of 560 

guillemots (Uria aalge) and razorbills (Alca torda) has declined (JNCC 2014), suggesting that 561 

impacts of changing oceanographic conditions on marine food webs affect more than just 562 

surface-feeding birds. Climate change could therefore have substantial ecosystem-wide 563 

impacts. 564 

 565 

This study provides an example of possible indirect climate change impacts, with effects 566 

mediated via supporting food webs. Such impacts are possible whenever predators depend 567 

upon prey species that are sensitive to climate change, and may be more important than 568 

previously understood (Cahill et al. 2013, Ockendon et al. 2014). Given the complexity 569 

associated with identifying and understanding these impacts, there is an urgent need to 570 

investigate biotic mechanisms linking physical drivers to higher consumers. By identifying 571 

the specific physical conditions, prey species and community changes that drive population-572 

level responses in apex predators we may be better-able to target conservation actions. If 573 

appropriate management allows apex predators to maintain high productivity in some years, it 574 

may still be possible to ameliorate population-level impacts of climate change.  575 



27 

 

Acknowledgements 576 

This study was jointly funded by the RSPB and Natural England (NE) through the Action for 577 

Birds in England partnership. Tracking data collected under FAME and STAR projects were 578 

funded by the EU regional development fund through its Atlantic area program and by Marine 579 

Scotland, Scottish Natural Heritage (SNH) and JNCC. Bardsey Island and Puffin Island 580 

tracking was funded by a Natural Environment Research Council (NERC) CASE studentship, 581 

Environment Wales and Natural Resources Wales (NRW). Coquet Island tracking was funded 582 

by a NERC CASE studentship. Flamborough Head tracking was funded by the LEADER 583 

programme and NE. Isle of May tracking was jointly funded by NERC and the RSPB. 584 

Lambay tracking was funded by the EU regional development fund through its Atlantic area 585 

program and BirdWatch Ireland (Seabird Appeal). 586 

 587 

Licences to fit GPS devices were issued by the British Trust for Ornithology. We thank NRW 588 

for access to Bardsey Island and Puffin Island, NE for permission to work on Coquet Island, 589 

East Riding of Yorkshire Council for access to Flamborough Head, SNH for access to Isle of 590 

May NNR, the Trustees of the Lambay Estate for permission to work on Lambay Island, Sir 591 

Richard Williams-Bulkeley for permission to work on Puffin Island, and the National Trust 592 

for Scotland for access to St. Abb’s Head. We thank Bardsey Island Trust, Bardsey Island 593 

Bird and Field Observatory, Fair Isle Bird Observatory and Margaret and Patrick Kelly for 594 

facilitating fieldwork.  595 

 596 

We thank Chris Bell, Antony Bellamy, Maria Bogdanova, Helen Boland, Andy Brown, Sarah 597 

Burthe, Kendrew Colhoun, Stephen Dodd, Carrie Gunn, Maggie Hall, Mike Harris, Robert 598 

Hughes, Becky Langton, Liz Mackley, Mara Nydegger, Kat Snell, Jenny Sturgeon, Jennifer 599 



28 

 

Taylor and Ashley Tweedale for collecting tracking data. We thank Wesley Davies, David 600 

Jardine, Paul Morrison and the East Yorkshire Ringing Group for fieldwork help. 601 

 602 

We are grateful to JNCC for providing access to SMP data. Data used were extracted from the 603 

Seabird Monitoring Programme Database at www.jncc.gov.uk/smp. Data have been provided 604 

to the SMP by the generous contributions of nature conservation and research organisations, 605 

and of many volunteers throughout the British Isles.  606 

 607 

This study has been conducted using MyOcean products, and we thanks all organisations 608 

involved. We thank the UK Met Office and BADC for access to climate projection data.  609 

 610 

Isle of May NNR data owned by NERC - Centre for Ecology & Hydrology, © Database 611 

Right/Copyright NERC - Centre for Ecology & Hydrology, all rights reserved. 612 

 613 

We thank Dr S. Wakelin for providing advice on oceanographic variables. We thank three 614 

anonymous reviewers for helpful comments.  615 



29 

 

LITERATURE CITED 616 

Ainley DG, Ford RG, Brown ED, Suryan RM, Irons DB (2003) Prey resources, competition, 617 

and geographic structure of kittiwake colonies in Prince William Sound. Ecology 618 

84:709-723 619 

Arnott SA, Ruxton GD (2002) Sandeel recruitment in the North Sea: demographic, climatic 620 

and trophic effects. Marine Ecology Progress Series 238:199-210 621 

Barton K (2014) MuMIn: Multi-model inference. R package version 1.10.0. <http://R-622 

Forge.R-project.org/projects/mumin/> 623 

Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using 624 

Eigen and S4. R package version 1.1-6. <http://lme4.r-forge.r-project.org/> 625 

Beare DJ, Batten S, Edwards M, Reid DG (2002) Prevalence of boreal Atlantic, temperate 626 

Atlantic and neritic zooplankton in the North Sea between 1958 and 1998 in relation 627 

to temperature, salinity, stratification intensity and Atlantic inflow. Journal of Sea 628 

Research 48:29-49 629 

Beaugrand G, Reid PC, Ibañez F, Lindley JA, Edwards M (2002) Reorganization of North 630 

Atlantic marine copepod biodiversity and climate. Science 296:1692-1694 631 

Behrens JW, Ærtebjerg G, Petersen JK, Carstensen J (2009) Oxygen deficiency impacts on 632 

burying habitats for lesser sandeel, Ammodytes tobianus, in the inner Danish waters. 633 

Canadian Journal of Fisheries and Aquatic Sciences 66:883-895 634 

Bogdanova MI, Wanless S, Harris MP, Lindström J, Butler A, Newell MA, Sato K, Watanuki 635 

Y, Parsons M, Daunt F (2014) Among-year and within-population variation in 636 

foraging distribution of European shags Phalacrocorax aristotelis over two decades: 637 

Implications for marine spatial planning. Biological Conservation 170:292-299 638 

Börger L, Franconi N, De Michele G, Gantz A, Meschi F, Manica A, Lovari S, Coulson TIM 639 

(2006) Effects of sampling regime on the mean and variance of home range size 640 

estimates. Journal of Animal Ecology 75:1393-1405 641 

Brewer JH, O’Reilly KM, Dean Kildaw S, Loren Buck C (2008) Interannual variation in the 642 

adrenal responsiveness of black-legged kittiwake chicks (Rissa tridactyla). General 643 

and Comparative Endocrinology 156:361-368 644 

Browne WJ, Subramanian SV, Jones K, Goldstein H (2005) Variance partitioning in 645 

multilevel logistic models that exhibit overdispersion. Journal of the Royal Statistical 646 

Society: Series A (Statistics in Society) 168:599-613 647 

http://r-forge.r-project.org/projects/mumin/
http://r-forge.r-project.org/projects/mumin/
http://lme4.r-forge.r-project.org/


30 

 

Buren AD, Koen-Alonso M, Pepin P, Mowbray F, Nakashima B, Stenson G, Ollerhead N, 648 

Montevecchi WA (2014) Bottom-up regulation of capelin, a keystone forage species. 649 

PLoS ONE 9:e87589 650 

Burthe S, Daunt F, Butler A, Elston D, Frederiksen M, Johns D, Newell M, Thackeray S, 651 

Wanless S (2012) Phenological trends and trophic mismatch across multiple levels of 652 

a North Sea pelagic food web. Marine Ecology Progress Series 454:119-133 653 

Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, Hua X, Karanewsky CJ, Yeong Ryu H, 654 

Sbeglia GC, Spagnolo F, Waldron JB, Warsi O, Wiens JJ (2013) How does climate 655 

change cause extinction? Proceedings of the Royal Society B: Biological Sciences 280 656 

Chivers LS, Lundy MG, Colhoun K, Newton SF, Reid N (2012) Diet of Black-legged 657 

Kittiwakes (Rissa tridactyla) feeding chicks at two Irish colonies highlights the 658 

importance of clupeids. Bird Study 59:363-367 659 

Christensen A, Jensen H, Mosegaard H, St. John M, Schrum C (2008) Sandeel (Ammodytes 660 

marinus) larval transport patterns in the North Sea from an individual-based 661 

hydrodynamic egg and larval model. Canadian Journal of Fisheries and Aquatic 662 

Sciences 65:1498-1511 663 

Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski 664 

WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-665 

term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin 666 

D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley 667 

PM (eds) Climate Change 2013: The Physical Science Basis Contribution of Working 668 

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate 669 

Change. Cambridge University Press, Cambridge, United Kingdom and New York, 670 

NY, USA 671 

Cook A, Robinson R (2010) How representative is the current monitoring of breeding 672 

seabirds in the UK? BTO Research Report 573. BTO, Thetford, UK.  673 

Cook ASCP, Dadam D, Mitchell I, Ross-Smith VH, Robinson RA (2014) Indicators of 674 

seabird reproductive performance demonstrate the impact of commercial fisheries on 675 

seabird populations in the North Sea. Ecological Indicators 38:1-11 676 

Coulson JC (2011) The Kittiwake. T & AD Poyser, London, UK 677 

Coulson JC, Porter JM (1985) Reproductive success of the Kittiwake Rissa tridactyla: the 678 

roles of clutch size, chick growth rates and parental quality. Ibis 127:450-466 679 



31 

 

Croxall JP, Butchart SHM, Lascelles B, Stattersfield AJ, Sullivan B, Symes A, Taylor P 680 

(2012) Seabird conservation status, threats and priority actions: a global assessment. 681 

Bird Conservation International 22:1-34 682 

Daunt F, Wanless S, Greenstreet SPR, Jensen H, Hamer KC, Harris MP (2008) The impact of 683 

the sandeel fishery closure on seabird food consumption, distribution, and productivity 684 

in the northwestern North Sea. Canadian Journal of Fisheries and Aquatic Sciences 685 

65:362-381 686 

Doney SC, Ruckelshaus M, Emmett Duffy J, Barry JP, Chan F, English CA, Galindo HM, 687 

Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, 688 

Talley LD (2012) Climate change impacts on marine ecosystems. Annual Review of 689 

Marine Science 4:11-37 690 

Duong T (2013) ks: kernel smoothing. R package version 1.8.13. <http://CRAN.R-691 

project.org/package=ks> 692 

Duong T, Hazelton M (2003) Plug-in bandwidth matrices for bivariate kernel density 693 

estimation. Journal of Nonparametric Statistics 15:17-30 694 

Enstipp M, Daunt F, Wanless S, Humphreys E, Hamer K, Benvenuti S, Grémillet D (2006) 695 

Foraging energetics of North Sea birds confronted with fluctuating prey availability. 696 

In: Boyd IL, Wanless S, Camphuysen CJ (eds) Top Predators in Marine Ecosystems. 697 

Cambridge University Press, Cambridge, UK 698 

Frederiksen M, Anker-Nilssen T, Beaugrand G, Wanless S (2013) Climate, copepods and 699 

seabirds in the boreal Northeast Atlantic – current state and future outlook. Global 700 

Change Biology 19:364-372 701 

Frederiksen M, Edwards M, Mavor RA, Wanless S (2007) Regional and annual variation in 702 

black-legged kittiwake breeding productivity is related to sea surface temperature. 703 

Marine Ecology Progress Series 350:137-143 704 

Frederiksen M, Harris MP, Daunt F, Rothery P, Wanless S (2004a) Scale-dependent climate 705 

signals drive breeding phenology of three seabird species. Global Change Biology 706 

10:1214-1221 707 

Frederiksen M, Wanless S, Harris MP, Rothery P, Wilson LJ (2004b) The role of industrial 708 

fisheries and oceanographic change in the decline of North Sea black-legged 709 

kittiwakes. Journal of Applied Ecology 41:1129-1139 710 

Frederiksen M, Wright PJ, Harris MP, Mavor RA, Heubeck M, Wanless S (2005) Regional 711 

patterns of kittiwake Rissa tridactyla breeding success are related to variability in 712 

sandeel recruitment. Marine Ecology Progress Series 300:201-211 713 

http://cran.r-project.org/package=ks
http://cran.r-project.org/package=ks


32 

 

Furness R, Tasker M (2000) Seabird-fishery interactions: quantifying the sensitivity of 714 

seabirds to reductions in sandeel abundance, and identification of key areas for 715 

sensitive seabirds in the North Sea. Marine Ecology Progress Series 202:253-264 716 

Furness RW, Birkhead TR (1984) Seabird colony distributions suggest competition for food 717 

supplies during the breeding season. Nature 311:655-656 718 

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2014) mvtnorm: 719 

Multivariate Normal and t Distributions. R package version 0.9-99992. 720 

<http://CRAN.R-project.org/package=mvtnorm> 721 

Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for 722 

community interactions under climate change. Trends in Ecology & Evolution 25:325-723 

331 724 

Greenstreet SPR, Armstrong E, Mosegaard H, Jensen H, Gibb IM, Fraser HM, Scott BE, 725 

Holland GJ, Sharples J (2006) Variation in the abundance of sandeels Ammodytes 726 

marinus off southeast Scotland: an evaluation of area-closure fisheries management 727 

and stock abundance assessment methods. ICES Journal of Marine Science 63:1530-728 

1550 729 

Hamer KC, Monaghan P, Uttley JD, Walton P, Burns MD (1993) The influence of food 730 

supply on the breeding ecology of Kittiwakes Rissa tridactyla in Shetland. Ibis 731 

135:255-263 732 

Hijmans R (2013) raster: Geographic data analysis and modeling. R package version 2.1-49. 733 

<http://CRAN.R-project.org/package=raster> 734 

HM Government (2012) Marine Strategy Part One: UK Initial Assessment and Good 735 

Environmental Status. <http://www.defra.gov.uk/environment/marine/msfd/> 736 

Holt J, Butenschön M, Wakelin SL, Artioli Y, Allen JI (2012) Oceanic controls on the 737 

primary production of the northwest European continental shelf: model experiments 738 

under recent past conditions and a potential future scenario. Biogeosciences 9:97-117 739 

Holt J, Wakelin S, Lowe J, Tinker J (2010) The potential impacts of climate change on the 740 

hydrography of the northwest European continental shelf. Progress in Oceanography 741 

86:361-379 742 

Holt JT, James ID (2001) An s coordinate density evolving model of the northwest European 743 

continental shelf: 1. Model description and density structure. Journal of Geophysical 744 

Research: Oceans 106:14015-14034 745 

Irons DB (1998) Foraging area fidelity of individual seabirds in relation to tidal cycles and 746 

flock feeding. Ecology 79:647-655 747 

http://cran.r-project.org/package=mvtnorm
http://cran.r-project.org/package=raster
http://www.defra.gov.uk/environment/marine/msfd/


33 

 

Jackett DR, McDougall TJ, Feistel R, Wright DG, Griffies SM (2006) Algorithms for density, 748 

potential temperature, conservative temperature, and the freezing temperature of 749 

seawater. Journal of Atmospheric and Oceanic Technology 23:1709-1728 750 

Jensen H, Wright PJ, Munk P (2003) Vertical distribution of pre-settled sandeel (Ammodytes 751 

marinus) in the North Sea in relation to size and environmental variables. ICES 752 

Journal of Marine Science 60:1342-1351 753 

JNCC (2014) Seabird Population Trends and Causes of Change: 1986-2013 Report. Updated 754 

August 2014. Joint Nature Conservation Committee. Accessed 16/02/2015. 755 

<http://www.jncc.defra.gov.uk/page-3201> 756 

Kotzerka J, Garthe S, Hatch S (2010) GPS tracking devices reveal foraging strategies of 757 

black-legged kittiwakes. J Ornithol 151:459-467 758 

Lauria V, Attrill MJ, Pinnegar JK, Brown A, Edwards M, Votier SC (2012) Influence of 759 

climate change and trophic coupling across four trophic levels in the Celtic Sea. PLoS 760 

ONE 7:e47408 761 

Lewis S, Wanless S, Wright P, Harris M, Bull J, Elston D (2001) Diet and breeding 762 

performance of black-legged kittiwakes Rissa tridactyla at a North Sea colony. Marine 763 

Ecology Progress Series 221:277-284 764 

Lonergan M, Duck CD, Thompson D, Mackey BL, Cunningham L, Boyd IL (2007) Using 765 

sparse survey data to investigate the declining abundance of British harbour seals. 766 

Journal of Zoology 271:261-269 767 

Lowe J, Howard T, Pardaens A, Tinker J, Holt J, Wakelin S, Milne G, Leake J, Wolf J, 768 

Horsburgh K (2009) UK Climate Projections science report: Marine and coastal 769 

projections. Met Office Hadley Centre, Exeter, UK.  770 

MacLeod CD, Pierce GJ, Begoña Santos M (2007a) Starvation and sandeel consumption in 771 

harbour porpoises in the Scottish North Sea. Biology Letters 3:535-536 772 

MacLeod CD, Santos MB, Reid RJ, Scott BE, Pierce GJ (2007b) Linking sandeel 773 

consumption and the likelihood of starvation in harbour porpoises in the Scottish 774 

North Sea: could climate change mean more starving porpoises? Biology Letters 775 

3:185-188 776 

Massaro M, Chardine JW, Jones IL (2001) Relationships between black-legged kittiwake 777 

nest-site characteristics and susceptibility to predation by large gulls. The Condor 778 

103:793-801 779 

http://www.jncc.defra.gov.uk/page-3201


34 

 

Mawdsley JR, O’Malley R, Ojima DS (2009) A review of climate-change adaptation 780 

strategies for wildlife management and biodiversity conservation. Conservation 781 

Biology 23:1080-1089 782 

Morán XAG, López-Urrutia Á, Calvo-Díaz A, Li WKW (2010) Increasing importance of 783 

small phytoplankton in a warmer ocean. Global Change Biology 16:1137-1144 784 

Ockendon N, Baker DJ, Carr JA, White EC, Almond REA, Amano T, Bertram E, Bradbury 785 

RB, Bradley C, Butchart SHM, Doswald N, Foden W, Gill DJC, Green RE, 786 

Sutherland WJ, Tanner EVJ, Pearce-Higgins JW (2014) Mechanisms underpinning 787 

climatic impacts on natural populations: altered species interactions are more 788 

important than direct effects. Global Change Biology 20:2221-2229 789 

Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual 790 

Review of Ecology, Evolution, and Systematics 37:637-669 791 

Pearce-Higgins JW, Dennis P, Whittingham MJ, Yalden DW (2010) Impacts of climate on 792 

prey abundance account for fluctuations in a population of a northern wader at the 793 

southern edge of its range. Global Change Biology 16:12-23 794 

R Core Team (2014) R: A Language and Environment for Statistical Computing. 795 

<http://www.R-project.org/> 796 

Regehr HM, Montevecchi WA (1997) Interactive effects of food shortage and predation on 797 

breeding failure of black-legged kittiwakes: indirect effects of fisheries activities and 798 

implications for indicator species. Marine Ecology Progress Series 155:249-260 799 

Robertson GS, Bolton M, Grecian WJ, Monaghan P (2014) Inter- and intra-year variation in 800 

foraging areas of breeding kittiwakes (Rissa tridactyla). Mar Biol:1-14 801 

Sandvik H, Erikstad K, Sæther B (2012) Climate affects seabird population dynamics both via 802 

reproduction and adult survival. Marine Ecology Progress Series 454:273-284 803 

Sandvik H, Reiertsen T, Erikstad K, Anker-Nilssen T, Barrett R, Lorentsen S, Systad G, 804 

Myksvoll M (2014) The decline of Norwegian kittiwake populations: modelling the 805 

role of ocean warming. Climate Research 60:91-102 806 

Scott BE, Sharples J, Ross ON, Wang J, Pierce GJ, Camphuysen CJ (2010) Sub-surface 807 

hotspots in shallow seas: fine-scale limited locations of top predator foraging habitat 808 

indicated by tidal mixing and sub-surface chlorophyll. Marine Ecology Progress 809 

Series 408:207-226 810 

Scott BE, Sharples J, Wanless S, Ross ON, Frederiksen M, Daunt F (2006) The use of 811 

biologically meaningful oceanographic indices to separate the effects of climate and 812 

fisheries on seabird breeding success. In: Boyd IL, Wanless S, Camphuysen CJ (eds) 813 

http://www.r-project.org/


35 

 

Top Predators in Marine Ecosystems: Their Role in Monitoring and Management, 814 

Book 12. Cambridge University Press, Cambridge, UK. 815 

Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, McHugh K, Hiraldo F (2008) 816 

Top predators as conservation tools: ecological rationale, assumptions, and efficacy. 817 

Annual Review of Ecology, Evolution, and Systematics 39:1-19 818 

Sharples J, Ross ON, Scott BE, Greenstreet SPR, Fraser H (2006) Inter-annual variability in 819 

the timing of stratification and the spring bloom in the North-western North Sea. 820 

Continental Shelf Research 26:733-751 821 

Silverman BW (1986) Density estimation for statistics and data analysis. CRC Press, London, 822 

UK. 823 

Soanes LM, Arnould JPY, Dodd SG, Sumner MD, Green JA (2013) How many seabirds do 824 

we need to track to define home-range area? Journal of Applied Ecology 50:671-679 825 

Suryan RM, Irons DB, Kaufman M, Benson J, Jodice PGR, Roby DD, Brown ED (2002) 826 

Short-term fluctuations in forage fish availability and the effect on prey selection and 827 

brood-rearing in the black-legged kittiwake Rissa tridactyla. Marine Ecology Progress 828 

Series 236:273-287 829 

Sydeman W, Thompson S, Kitaysky A (2012) Seabirds and climate change: roadmap for the 830 

future. Marine Ecology Progress Series 454:107-117 831 

Thompson P, Ingram S, Lonergan M, Northridge S, Hall A, Wilson B (2007) Climate change 832 

causing starvation in harbour porpoises? Biology Letters 3:533-535 833 

Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species 834 

interactions in terrestrial ecosystems. Ecology Letters 11:1351-1363 835 

van Deurs M, van Hal R, Tomczak M, Jónasdóttir S, Dolmer P (2009) Recruitment of lesser 836 

sandeel Ammodytes marinus in relation to density dependence and zooplankton 837 

composition. Marine Ecology Progress Series 381:249-258 838 

Vincenzi S, Mangel M (2013) Linking food availability, body growth and survival in the 839 

black-legged kittiwake Rissa tridactyla. Deep Sea Research Part II: Topical Studies in 840 

Oceanography 94:192-200 841 

Wakefield ED, Bodey TW, Bearhop S, Blackburn J, Colhoun K, Davies R, Dwyer RG, Green 842 

JA, Grémillet D, Jackson AL, Jessopp MJ, Kane A, Langston RHW, Lescroël A, 843 

Murray S, Le Nuz M, Patrick SC, Péron C, Soanes LM, Wanless S, Votier SC, Hamer 844 

KC (2013) Space partitioning without territoriality in gannets. Science 341:68-70 845 



36 

 

Walsh P, Halley D, Harris M, Del Nevo A, Sim I, Tasker M (1995) Seabird monitoring 846 

handbook for Britain and Ireland: a compilation of methods for survey and monitoring 847 

of breeding seabirds. JNCC/RSPB/ITE/Seabird Group, Peterborough, UK 848 

Wanless S, Frederiksen M, Daunt F, Scott BE, Harris MP (2007) Black-legged kittiwakes as 849 

indicators of environmental change in the North Sea: Evidence from long-term 850 

studies. Progress in Oceanography 72:30-38 851 

Wanless S, Harris MP (1992) Activity budgets, diet and breeding success of Kittiwakes Rissa 852 

tridactyla on the Isle of May. Bird Study 39:145-154 853 

Wanless S, Wright PJ, Harris MP, Elston DA (2004) Evidence for decrease in size of lesser 854 

sandeels Ammodytes marinus in a North Sea aggregation over a 30-yr period. Marine 855 

Ecology Progress Series 279:237-246 856 

Wright PJ, Bailey MC (1996) Timing of hatching in Ammodytes marinus from Shetland 857 

waters and its significance to early growth and survivorship. Mar Biol 126:143-152 858 

 859 

860   861 



37 

 

Supporting information 862 

Appendix S1: Sensitivity analysis of threshold values used to define foraging areas 863 

 864 

Appendix S2: Maps of foraging area kernels used in analyses 865 

 866 

Appendix S3: Results from generalised linear mixed models with Poisson error structure 867 

 868 

Appendix S4: Results from models including population size to account for density-869 

dependence  870 

 871 

Appendix S5: Results from models testing for trends over time, and from models trialling 872 

different forms of input variables 873 

 874 

Appendix S6: Full model results from main analysis  875 



38 

 

Table 1. Descriptions of sites included in analyses. Site refers to the name in the SMP 876 

database. Map site number refers to location on Fig. 1. Oceanographic data were available up 877 

to 2004, whilst productivity data were available from 1986, meaning that the maximum 878 

possible overlap was 19 years. Regions listed were based on those specified by Frederiksen et 879 

al. (2005). 880 

Site 
Map site 

number 
Region  Coordinates 

Years of breeding 

success data 

overlapping 

oceanography 

Years of 

tracking 

data 

Total 

birds 

tracked 

Fair Isle 1 Shetland 
1.65° W, 

59.52° N 
19 3 11 

Boddam to 

Collieston 
2 

East 

Scotland 

1.85° W, 

57.42° N 
15 1 25 

Fowlsheugh 3 
East 

Scotland 

2.20° W, 

56.92° N 
17 1 15 

Isle of May 

NNR 
4 

East 

Scotland 

2.57° W, 

56.18° N 
18 1 17 

St. Abb’s 

Head NNR 
5 

East 

Scotland 

2.13° W, 

55.91° N 
18 1 15 

Coquet 

Island 
6 

East 

England 

1.52° W, 

55.34° N 
12 2 36 

Flamborough 

Head and 

Bempton 

Cliffs 

7 
East 

England 

0.08° W, 

54.12° N 
18 3 51 

Bardsey 

Island NNR 
8 Irish Sea 

4.83° W, 

52.76° N 
17 1 8 

Puffin Island 9 Irish Sea 
4.03° W, 

53.32° N 
1 3 70 

Lambay 10 Irish Sea 
6.03° W, 

53.50° N 
1 2 14 

Isle of 

Colonsay 
11 

West 

Scotland 

6.21° W, 

56.08° N 
6 3 59 

 881 
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Table 2. Results from models relating breeding success to single oceanographic predictor 883 

variables. See text for model fitting details. Parameter estimates ( SE) are given, along with 884 

ΔAIC (for all-sites models) or ΔAICc (for individual site models) relative to a null model 885 

fitted with intercept and random effects only. Parameter estimates significantly different from 886 

0 at P < 0.05, as indicated by Wald Z tests, are bold; results approaching but not attaining 887 

significance with 0.05 ≤ P < 0.1 are italic. Full model details are given in Appendix S6.  888 

 

Null 

model 
Spring PEA Spring SST Strat. onset Winter PEA Winter SST 

Bardsey 

Island 

AICc = 

187.621 

-1.719 

( 2.266), 

ΔAICc = 2.420 

1.311 

( 0.877), 

ΔAICc = 0.807 

0.041 

( 0.019), 

ΔAICc = -1.356 

-1.645 

( 0.693), 

ΔAICc = -2.090 

0.928 

( 0.579), 

ΔAICc = 0.516 

Boddam to 

Collieston 

AICc = 

178.476 

-0.123 

( 1.414), 

ΔAICc = 3.174 

0.057 

( 0.593), 

ΔAICc = 3.172 

0.024 

( 0.018), 

ΔAICc = 1.561 

-0.141 

( 0.488), 

ΔAICc = 3.099 

0.175 

( 0.498), 

ΔAICc = 3.059 

Coquet 

Island 

AICc = 

103.824 

1.228 

( 0.968), 

ΔAICc = 2.140 

-0.061 

( 0.351), 

ΔAICc = 3.636 

0.018 

( 0.014), 

ΔAICc = 1.992 

-0.697 

( 0.346), 

ΔAICc = 0.109 

-0.075 

( 0.315), 

ΔAICc = 3.610 

Fair Isle 
AICc = 

278.788 

-13.414 

( 5.332), 

ΔAICc = -3.316 

-4.280 

( 1.189), 

ΔAICc = -8.679 

0.042 

( 0.058), 

ΔAICc = 2.348 

-0.942 

( 1.295), 

ΔAICc = 2.336 

-3.661 

( 1.474), 

ΔAICc = -2.561 

Flamborough 

Head and 

Bempton 

Cliffs 

AICc = 

225.489 

-2.502 

( 0.909), 

ΔAICc = -3.417 

-0.663 

( 0.300), 

ΔAICc = -1.416 

-0.023 

( 0.029), 

ΔAICc = 2.321 

0.253 

( 0.509), 

ΔAICc = 2.668 

-0.434 

( 0.393), 

ΔAICc = 1.733 

Fowlsheugh 
AICc = 

214.311 

-1.176 

( 1.244), 

ΔAICc = 2.117 

-0.239 

( 0.407), 

ΔAICc = 2.647 

0.013 

( 0.020), 

ΔAICc = 2.561 

-0.388 

( 0.451), 

ΔAICc = 2.263 

-0.270 

( 0.366), 

ΔAICc = 2.453 

Isle of May 
AICc = 

254.784 

0.689 

( 2.371), 

ΔAICc = 2.830 

-0.488 

( 0.601), 

ΔAICc = 2.264 

0.092 

( 0.030), 

ΔAICc = -4.855 

-1.478 

( 1.192), 

ΔAICc = 2.738 

-0.283 

( 0.535), 

ΔAICc = 2.636 

St. Abb’s 

Head 

AICc = 

230.539 

-1.177 

( 1.241), 

ΔAICc = 2.034 

-0.024 

( 0.361), 

ΔAICc = 2.910 

0.034 

( 0.013), 

ΔAICc = -2.665 

-1.085 

( 0.613), 

ΔAICc = 0.029 

-0.122 

( 0.328), 

ΔAICc = 2.777 

All sites 
AIC = 

1803.730 

-0.602 

( 0.285), 

ΔAIC = -2.669 

-0.700 

( 0.264), 

ΔAIC = -5.242 

0.014 

( 0.007), 

ΔAIC = -3.383 

-0.641 

( 0.201), 

ΔAIC = -11.502 

-0.240 

( 0.231), 

ΔAIC = 0.994 
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Table 3. Top-ranked models from the all-sites analysis relating breeding success to 890 

oceanographic variables; those shown have ΔAIC ≤ 2 relative to the best model; the null 891 

model, fitted with intercept and random effects only, is shown for comparison. See text for 892 

details of model fitting. Parameter estimates ( SE) are given, along with the ΔAIC value 893 

relative to the best model and P values from Wald Z tests: P < 0.05 are highlighted in bold, 894 

0.05 ≤ P < 0.1 are highlighted in italic. Full details are in Appendix S6. 895 

  896 

Intercept 
Spring 

PEA 

Spring 

SST 

Stratification 

onset date 

Winter 

PEA 

Winter 

SST 
 AIC ΔAIC Weight 

4.429 

( 2.181) 

P = 0.042 

– 

-0.539 

( 0.244)  

P = 0.027 

– 

-0.602 

( 0.190)  

P = 0.002 

–  1789.734 0 0.263 

4.308 

( 2.185)  

P = 0.049 

– 

-0.674 

( 0.336)  

P = 0.045 

– 

-0.609 

( 0.192)  

P = 0.001 

0.173 

( 0.295)  

P = 0.556 

 1791.383 1.649 0.115 

4.206 

( 2.269)  

P = 0.064 

– 

-0.544 

( 0.245)  

P = 0.027 

0.003 

( 0.008)  

P = 0.712 

-0.566 

( 0.214)  

P = 0.008 

–  1791.595 1.861 0.104 

4.706 

( 2.408)  

P = 0.051 

-0.090 

( 0.333)  

P = 0.786 

-0.541 

( 0.244)  

P = 0.027 

– 

-0.574 

( 0.217)  

P = 0.008 

–  1791.659 1.926 0.100 

-0.677 

( 0.268) 

P = 0.012 

– – – – –  1803.730 15.336 0.000 
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Table 4. Projected breeding success for the UKCP09 climatic baseline period of 1961-90 and 897 

for 2070-99 under the SRES A1B scenario. Reported breeding success values are the mean of 898 

100,000 randomisation runs, where each run produces a mean breeding success across all 899 

years in the time period; breeding success is here defined as the proportion of successfully 900 

fledged chicks. The standard deviation of the 1,000,000 projections is also given. Pertentage 901 

change is calculated as ((future - baseline)/baseline)*100, based on the mean for each period. 902 

To indicate the probability of decline, the difference between the baseline and future 903 

projections was calculated for each run, and the proportion of these differences > 0 (i.e. those 904 

not showing a decline) was calculated. See Methods for randomisation procedure details. 905 

Site 

Mean predicted 

1961 – 1990 

breeding 

success  

( SD) 

Mean predicted 

2070 – 2099 

breeding 

success  

( SD) 

Absolute 

change 

Percentage 

change 

Proportion of 

projections not 

showing 

decline 

Bardsey Island 0.426 ( 0.090) 0.246 ( 0.121) -0.181 -42.4% 0.018 

Boddam to 

Collieston 
0.578 ( 0.109) 0.418 ( 0.107) -0.161 -27.8% 0.169 

Coquet Island 0.776 ( 0.077) 0.610 ( 0.123) -0.166 -21.4% 0.125 

Fair Isle 0.431 ( 0.091) 0.245 ( 0.068) -0.186 -43.2% 0.011 

Flamborough 

Head and 

Bempton Cliffs 
0.591 ( 0.108) 0.378 ( 0.112) -0.214 -36.1% 0.028 

Fowlsheugh 0.606 ( 0.106) 0.442 ( 0.109) -0.164 -27.0% 0.168 

Isle of Colonsay 0.535 ( 0.101) 0.350 ( 0.104) -0.185 -34.6% 0.035 

Isle of May 0.492 ( 0.097) 0.308 ( 0.084) -0.183 -37.3% 0.098 

Lambay 0.500 ( 0.077) 0.318 ( 0.139) -0.182 -36.4% 0.087 

Puffin Island 0.633 ( 0.106) 0.437 ( 0.158) -0.197 -31.0% 0.026 

St. Abb’s Head 0.592 ( 0.088) 0.401 ( 0.097) -0.191 -32.2% 0.079 

Across all sites 0.560 ( 0.074) 0.377 ( 0.095) -0.183 -32.6% 0.030 
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Figure legends 907 

Figure 1. Map indicating locations of kittiwake colonies included in analyses. Numbers refer 908 

to colony descriptions in Table 1. 909 

 910 

Figure 2. Plots of breeding success against oceanographic predictor variables with no lag, 911 

along with fitted lines from binomial GLMMs including the ‘site’ and ‘region’ random 912 

effects. Each point represents one site-by-year observation; point sizes are scaled by log(nests 913 

surveyed) to reflect weightings of observations in models. 914 

 915 

Figure 3. Boxplots comparing oceanographic variables and projected breeding success 916 

between 1961-90 and 2070-99. For oceanographic variables plots, input values were 30 years 917 

of projection data for each foraging area used in all-sites analyses; for breeding success, input 918 

values were 1,000,000 annual breeding success projections (see text for details). Boxes 919 

indicate interquartile range and median; whiskers indicate 1.5×IQR; outliers indicate points 920 

outside 1.5×IQR. Results of Wilcoxon rank sum tests shown, indicating whether there is a 921 

significant difference between periods. 922 
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