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ABSTRACT

A magnetotelluric (MT) sounding curve obtained at a given location may contain
contributions from 1-D, 2-D, or 3-D geoelectric components, either singly or in combination.
The modeling and interpretation of such data depend upon the ability to assess the degree
of influence exerted by the three possible structural components. Six existing MT sounding
curves provide case histories of the performance of both conventional and new methods for
estimation of structural dimensions. For data from a single location, all the methods must
be based on the horizontal rotation properties of the impedance tensor. Of the three
conventional dimensional indicators considered, only one (skew) provides a degree of
satisfactory performance for practical data. Three recently introduced, normalized
dimensional weights appear to offer better performance. Solutions to the 1-D MT problem
are central to the issue of providing dimensional constraints. The inverse theories
established by Weidelt (1972) and Parker (1980) provide two tests that can be applied to
establish the existence of 1-D solutions. The formalism in these theories provides the basis
for a systematic method for investigating the dimensional properties of practical MT data.

INTRODUCTION

Assessment of geoelectric structural dimensions from observed magnetotelluric (MT) data is
an important step in interpreting such data. The term "data" here refers to a processed MT
response function of tensor impedance elements obtained as a function of frequency; such
data are also referred to as an "MT sounding curve." The data may contain contributions
from one-dimensional (1-D), two-dimensional (2-D), or three-dimensional (3-D) structural
components, either singly or in combination. The contributions may be present only across
a certain interval or they may persist over the whole frequency range. The dimensionality
obviously governs the type of modeling to be applied. If several sets of data are obtained
along a profile or at a high spatial density, then a further degree of control on structural
dimensions can be achieved. The dimensionality analysis made possible by profile and
gridded data was recently considered by Ranganayaki (1984). Here | refer to the more
difficult problem of assessing dimensionality at a series of isolated points (i.e. sounding
sites) which may traverse unrecognized crustal units. In fact, it is common to obtain such
data before making more detailed observations.

The present study uses existing MT data obtained from six locations in southern Scotland
and northern England. The site locations in relation to geology and known major crustal
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features are shown in Figure 1. The data consist of accurate and unbiased impedance
elements over the period range 30 to 7200 s. Data processing was described in
Beamish (1985a). From an initial assessment of structural dimensionality, it was concluded
that a 1-D inversion of the rotationally invariant, effective response data at the three central
sites ( A, B, and Cin Figure 1) was justified over the period interval 30 to 400 s. Two 1-D
inverse construction algorithms were applied. The results identified a particularly
straightforward crustal profile consisting of an intracrustal, highly conducting layer dipping
steeply to the northwest (Beamish, 1985a).

Assessment of structural dimensionality from MT data at a poi nt is based on the horizontal
rotation proper ties of the impedance tensor. Such properties may be obtained graphically
(Berdichevsky, 1968) or parametrically (Word et al, 1971). Common dimensional indicators
include the skew, eccentricity, and ellipticity. To be useful, a parameter level (e.g., a
departure from zero) must be defined which indicates the onset of a particular dimensional
contribution.

| review estimation of such conventional parameters and their application to the six data
sets. More recently introduced dimensional weights are also considered, together with
estimates of the anomalous vertical field. In practice, for point data there still are
substantial difficulties in providing parameters which permit unambiguous assessment of
the degree of two-dimensionality or three-dimensionality. The problem is formidable and
should not be underestimated. Solution requires consideration of the results of a wide
variety of 2-D and 3-D modelling studies defining typical structural categories. The problem
is compounded because the magnitudes of the parametric effects observed are a function
of frequency and location and are therefore strongly model-dependent. Such generalities
(together with the fact that certain data contributions to the parameters are inherently
noisy) result in a set of parameter magnitude criteria that are necessarily ad hoc. It appears
that since the role of structural dimensionality is central to correct interpretation of MT
data, any further constraints are wort h investigation. Given the complexity of the problem,
however, only marginal rather than definitive solutions are expected.

The concept of the 1-D layered geoelectric profile is the basis for interpretation of MT
data. Conductivity variations with depth generate characteristic gradients and turning
points within the sounding curve. When the data can be shown to be 1-D, the geoelectric
profile over a given depth interval can be readily investigated. The 2-D and 3-D forward
modeling studies also indicate that in certai n circumstances representative 1-D profiles can
be investigated and recovered from data with 2-D and 3-D characteristics.

Such 1-D models are often generated to provide the basis of initial 2-D model investigations.
The response data can therefore always be viewed as a 1-D sounding curve which is
perturbed to some degree by lateral variations in conducti vity structure which may be
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2-D or 3-D. From this viewpoint, such structure "distorts" the basic (1-D) sounding curve.
This view motivated investigation and classification of 2-D and 3-D distortion effects
undertaken at the Moscow State University and summarized in Berdichevsky and Dmitriev
(1976) and Rokityansky (1982). An important class of forward models are near-surface 2-
D and 3-D structures. Bot h types of electrically t hin structures can produce static
(frequency-independent) distortion of a sounding curve. Such thin structures should be
distinguished from substantial 2-D and 3-D structures producing frequency- dependent
distortion of the equivalent 1-D sounding curve. Fortunately, it is possible to distinguish
static distortion effects with an appropriate presentation of phase data.

The 1-D MT problem is central to providing dimensional constraints from MT data at a point.
Even this basic problem is nonlinear and should be treated with respect. Parker (1983), i n
reviewing the MT inverse problem, addresses the question of the existence of 1-D solutions.
| understand that a satisfactory theory is now available to determine whether or not a
given finite collection of response data is consistent with any 1-D conductivity profile. If this
theory can be satisfactorily applied to practical MT data, it should be important in the
assessment of structural dimensionality. The theory of Parker (1980) [reviewed i n Parker
(1983)] establishes a test that is necessary and sufficient for 1-D solutions to exist. The
theory therefore compliments Weidelt's (1972) inequality constraints which the data and its
first and second derivatives must satisfy for a 1-D solution to exist. | consider the behavior
of the data in both sets of tests.

DIMENSIONALITY INDICATORS

Many authors have considered parameters relating to geo- electric structural dimensionality
(Sims and Bostick, 1969; Word et al., 1971 ). Only the basic definitions are reproduced here.
The MT impedance tensor ( Z) obtained in the measured directions is given by

E=ZH

with an implied dependence on frequency throughout. The electric field vector comprises
the orthogonal components (E,, E,), and H is the corresponding magnetic field vector
consisting of (Hx ,Hy). The dimensionality indicators are based on the horizontal rotation
properties of Z. If Ris a coordinate rotation matrix given by

R cos B sin B
| —sin® cos®
for clockwise rotation through an angle 6, the rotated impedance matrix (denoted by a

prime) is given by
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21 =RZR™"

The loci of the elements of Z’(8) in the complex plane are, in general, elliptical. The
representation of such rotation properties forms a practical method for assessing
structural dimensionality. Word et al. (1971) and Kaufman and Keller (1981) summarized the
properties of several parameters generated by 1-D, 2-D and 3-D structures. The
parameter combinations (Z« + Z,y) and (Zy, - Z,x) are independent of 6, as is their ratio. |
define two rotational invariants

27, = Z, (0~ Z,(0) = Z,, — Z

yx
And

22, =Z. O+ Z, =2, +Z,,.

Z1 and Z, correspond to the centers of the rotation ellipses i n the complex plane. The
major and mi nor axes of the Z'(8) ellipse are given by M; and M, , respectively, wit h

21“1 = Z;)‘On) + le (Oo)v
And

M, = Z0, (D) — Z1,.(0,),

where 6 is the angle between a measurement coordinate axis and the direction in
which IM;lis a maximum. 6y and (6o + 90 degrees) are principal directions. A number of
dimensional indicators have been derived based on the above parameters. The most
extensively used parameter is skew a, defined as

a=1|2,/7|
which is zero for 1-D and 2-D structures and nonzero for general 3D structures.

As noted i n Kao and Orr ( 1982) the upper limit of the value of a for a 3-D structure has not
been clearly defined. The 3-D forward modeling studies of Reddy et al. (1977a), Ting and
Hohman n (1981), and Park et al. (1983) provide upper li mits of 0.4, 0.12, and 0.5,
respectively. The results of Hermance (1982) indicate that the magnitude of a for
values between 0.001 and 0.72 is not an accurate guide to the level of near- surface
distortion typically experienced by the induced electric field. Despite such difficulties, the
presentation of a as a useful guide to dimensionality remains a common feature of
many MT studies.
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The skew values for the six sites of the present study are presented on a logarithmic scale in
Figure 2. The values display a typical wide range of values. It is evident that a skew value
of 0.3, shown as a horizontal line in Figure 2, separates sites A, B, and C with relatively low
values of skew from sites |, 2, and 3 which possess consistently higher values.

Two other indicators of 3-D structure are eccentricity and ellipticity. The eccentricity of the
rotation ellipse was defined by Word et al. (1971) as

B(8) = Z..(8) — Z,, (8)/Z.,() + Z;,.(6),

which is clearly dependent upon the rotation angle. However, if B(0) is evaluated at 0o,
B(6o) = 0is obtained for a 2-D strcture. The ellipticity (Bo) defined by Word et al. (1971) as

Bn = B(B(J) = Mz.‘fM|

is the ratio of minor to major axes of the rotation ellipse. Nonzero values for | Bo| may
therefore indicate 3-D structure. The values obtained for | Bg | at the six sites are shown
in Figure 3. As with the val ues obtained for skew, it is necessary to establish a magnitude
level which indicates the onset of 3-D behavior. The most consistent set of low values is
obtained atsite 2. However, from Figure 2, note that the skew values obtained at this
site are among the largest from the six sites. This empirical evidence seems to support
Herma nce ( 1982) who commented on his modeling results that "the utility of o as an
unequivocal indicator of three dimensionality is not apparent.”

Noting the problems inherent in the interpretation of skew, Kao and Orr ( 1982) introduced
a set of three normalized dimensional weights (D |, D2, and D3 ). These weights attempt to
assess the relative importance of 1-D, 2-D. and 3-D structural contributions simultaneously.
With reference to the parameter definitions, the weights are defined as

D1 =|Z,|/S,

D2 =|M,|/S,
D3 = |Zzifs.

and

D3 =|M,|/S,

and S is defined as

S=Z,[+|M|+(Z,]+

M, |)/2.
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The dimensional weights D1, D2, and D3 for the six sites are shown in Figure 4.
Dimensional weight D3' is not considered. It is evident that for sites A, B, and C the
condition D1 » D2 > D3 is generally true. The weights at the three remaining sites display
very different behavior. The largest dimensional weight at sites 1 and 2 is D2. The
reciprocal behavior of the D1 and D3 weights with period at site 2 is a location
characteristic. The behavior of the three weights is consistent with the dimensional
characteristics infer red from the behavior of skew at the six locations. The dimensional
weights, however, appear to offer a direct, simultaneous assessment of the relative
contributions from 1-D, 2-D, and 3-D structural components.

For measurements which include the vertical field, the vertical field transfer function, or
tipper, may provide further dimensional constraints. In a true 1-D situation, the vertical
field transfer function is zero. When the vertical field transfer function is nonzero, its
horizontal rotation properties define a relatively unambiguous geoelectric strike
direction (6s). In 2-D situations, determination of Bs, removes the ambiguity of 90
degrees inherent i n determination of geoelectric strike using the MT principal
directions. It is also evident that in strongly 3-D situations, the geoelectric strike
determined by the two methods may differ by a substantial angle (Jones and Vozoff.
1978). The magnitudes of the vertical field transfer function at sites A. B, and C with a large
D1 weight and at site 1 with alarge D2 weight are shown in Figure 5. The consistent
behavior of the vertical field at sites A, B, and C for periods greater than 400 s is a
regional induction effect (Banks and Beamish, 1984). At periods less than 400 s, the vertical
field magnitude at sites A, B, and Cis small (i.e., <0.15), while the strong frequency
dependence and large magnitude at site 1is thought to reflect strong 2-D behavior
(Beamish, 1985b, Figure 10c). A comparison of the azimuths 6y, (6o + 90 degrees), and S, at
the six sites reveals little of the behavior predicted by 2-D models; so azimuth
assessment appears to be the least effective way to assess structural dimensionality.

1-D, 2-D, AND 3-D FORWARD MODELS

Given an MT response function with either 2-D or 3-D characteristics, it is still considered
acceptable, i n some cases, to establish 1 -D models of geoelectric structure provided the
results of appropriate forward models are considered. Any discussion of the magnitude of
2-D and 3-D effects is inevitably a complicated function of the dimensions of the
structure, the point of observation, andte frequency interval considered. It is still
possible, however, to establish certain general characteristics particularly regarding the
phase.

A strictly 2-D earth with given horizontal strike provides two orthogonal, uncoupled
response modes referred to as TE (electric field parallel to strike) and TM (magnetic field
parallel to strike). The characteristic feature of the response is displacement of the
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magnitude the response determined in the two principal directions. The 2-D modeling
studies by Madden and Swift ( 1969) and Wright ( 1970) showed that the sounding curve
determined along the TE direction is more representative of an equivalent plane-layered
1-D model. As a general result of such relatively simple 2-D models ( Reddy and Rankin,
1972: Reddy et al., 1977b), the major (maximum) principal direction will be parallel to
strike on the conductive side of the geoelectric contrast and perpendicular to strike on
the resistive side of the contrast. In this strictly 2-D situation, the problem essentially
reduces to determination of geoelectric strike direction. In addition to displacement of the
magnitude of the response in the two principal directions, the modeling studies also reveal
that across the region where this displacement is most pronounced, a frequency
dependence of both TE and TM mode phase data is generally observed which is different for
the t wo modes. The region across which these effects are most pronounced is also
associated with the largest vertical fields.

Near-surface 2-D and 3-D models were considered by Berdichevsky and Dmitriev (1976),
Hermance (1982), and Park et al. (1983), among others. These studies introduced an
electrically thin, laterally inhomogeneous surface layer with either 2-D or 3-D characteristics
and the effects of that layer on equivalent 1-D and 2-D MT sounding curves. The models
essentially consider the problem of static distortion (Hermance, 1982). Near-surface
conductivity variations of limited extent typically cause vertical displacement of both TE
and TM resistivity curves, but the phase data are unaffected. The most representative 1-D
curve in such circumstances is close to, but below, the major resistivity curve, both in the TE
mode direction and in the TM mode direction (Berdichevsky and Dmitriev, 1976). In the
absence of additional constraints, Berdichevsk y and Dmitriev ( 1976) demonstrated that a
useful procedure is to form an average or effective impedance constructed from the linear
average of the impedances in the two principal directions as

ZE = (Zx); - Z,-x)/za

which is rotationally invariant. The procedure provides an effective resistivity curve biased
toward the maximum of the bilaterally displaced sounding curves.

The above discussion of the results of forward models suggests that if the dimensional
characteristics of the tensor response data can be established, there are appropriate pro-
cedures for recovery of equivalent 1-D profiles. If the data exhibit strong 2-D characteristics,
the response in a direction parallel to geoelectric strike should be used. If the data exhibit
strong 3-D characteristics, the rotationally invariant effective response should be employed.
The difficulties i n providing parameters which permit a quantitative assessment of the
degree of 2-D and 3-D contributions have already been noted. The above discussion also
suggests, however, that the phase data for the TE and TM modes may provide a level of
arbitration in identification of dimensional contributions. In practice, the rotation of MT
tensor data in to principal directions will usually provide major and minor response curves
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although in a 1-D situation the two curves may be numerically identical. The major and
minor response data (resistivi ty and phase) for the six sites are shown in Figure 6. Both 2-D
and 3-D structural contributions can produce vertical displacement of the two curves. If
only near-surface 3-D contributions are present, the two resistivity curves will be displaced
parallel and the phase data will be identical and representative of the equivalent 1-D profile.
The response data at sites A, B, and C have already been characterized as having low values
of skew, large D1 weights, and small vertical fields. For these three data sets the major and
minor resistivity curves exhibit a degree of parallelism i n the lower period interval. At
periods greater than 1000 s, the two curves diverge at all three sites. To conform with the
model, the major and minor phase curves should be identical. The phase data from all six
sites depart from the ideal; however, the degree of departure appears least at sites A, B,
and C for periods less than 400 s. | suggest that these characteristics can be usefully
interpreted as at least partially due to near-surface 3-D effects operating in the period range
30 to 400 s. At periods greater than 1000 s, the interpretation is less clear. The data at sites
1, 2, and 3 have already been shown to exhibit large values of skew and a variety of levels in
the three dimensional weights (DI, D2, and D3). The response at site 1 is associated with a
substantial vertical field. It is fairly evident from Figure 6 that no simple interpretation is
possible at these three sites. It could be suggested that the characteristics observed at site
1in Figure 6 may be due to a combination of near-surface 3-D and substantial 2-D
contributions. At present there is no way of separating such complex contributions from
response data at a point.

The dimensional indicators presented for sites 1, 2, and 3 are complex enough that direct
recovery of 1-D profiles from the data does not appear warranted, with the possible
exception of data from site 1 which appear to possess a strong 2-D component. For further
analysis, the dimensional characteristics at the three sites A, B, and C over the period 30 to
400 s are considered representative of a strong 1-D contribution distorted by near-surface
3-D structural contributions. Accordingly, the effective impedance over this period is now
used as a basis for further assessments of structural dimensionality.

The 1-D electromagnetic (EM) induction problem requires consideration of the behavior of
the electric field induced in material of finite conductivity o= o(z) by a periodic and uniform
source field varying as e'“". Within a 1-D earth, the complex electric field E obeys the
differential equation

d*E(z, w)/dz* — iop, o(z)E(z, ) = 0.

If o(z) is known, the complex response function c(w) can be calculated as

C(U)) = _-E(zy a))/E'(Z, 0)}
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observed at the earth's surface (z = 0). The complex response is readily transformed into
the more familiar MT impedance Z as

c(®) = g(o) — ih(w) = Z(0)/iop,.

The 1-D inverse problem considers what can be deduced about o(z) given a finite set of
observations of c(w). The first question raised by this problem is: Does there exist any 1-D
distribution of conductivity which will reproduce the observations?

INEQUALITY CONSTRAINTS

Analytical properties of the complex response e(co) are described by the general theory of
second-order, linear differential equations. These equations were considered in detail by
Weidelt (1972) who established the general relationship

c(w) = a(A)dA /(A + im),

where a is a bounded nondecreasing real function. This transformation allowed Weidelt to
deduce all of the analytic properties obeyed by the complex response function. Many of the
properties have since been discussed in Rokityansky (1982) and Parker (1983). The simplest
property of the relationship c(w) = g(w) - ih(w) is that the real and imaginary parts must be
nonnegative. Using a mechanical analogy, the positive length g(w) can be interpreted as the
depth of the center of gravity of the in-phase induced current system.

By introducing the differential operator D defined as

Df = wdf/do = df/d (log w),

Weidelt established 19 inequality constraints which must be upheld by 1-D data. The first
nine inequality constraints (11 to 19) are

g>0, h=0, 1, I2)
Dg <0, (I3)
0< —Djci<|cl, (14, I5)
|IDcl<h, |c+ Dc|<y, (16, I17)

|D*c|<h, and |c+ 2Dc+ D*c|<g. (I8, 19)

Each of these conditions must be upheld at every frequency. Clearly constraints I3 to 19
involve the first and second derivatives of the observed complex response function.
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Although the derivatives cannot be determined using only a finite number of observations,
they can nevertheless be estimated. The derivatives can typically be obtained using the
derivative of a Lagrangian interpolation polynomial (Jones, 1980). However, note that such a
numerical procedure is inherently unstable The approximate values of the derivatives
obtained will, in general, be less accurate than the functions from which they are obtained.

Two main problems are associated with the inequality constraints given above. The first
problem is that the data have errors that must ultimately be taken into account in order to
provide valid assessments concerning existence of solutions. The second problem is that
other functions, which are not admissible as valid 1-D response functions, may also satisfy
the inequality constraints (Parker, 1983).

The required quantities were obtained from the response functions at all six sites using a
three-point formula operating on the effective impedance over the period interval from 30
to 400 s. The performance of the inequality constraints on the data from site B is illustrated
in Table 1. Of the 9 x 8 = 72 inequalities tested, 83 percent were found to be accurate. The
corresponding performance results at the six sites are: 82 per- cent (site A), 83 percent (B),
90 percent (C), 93 percent (1), 53 percent (2), and 19 percent (3). Given the instability of the
numerical procedure, it is difficult to attach a level of significance to such pass marks. In
certain circumstances a period range over which a 1-D response would not be appropriate
might be established. However, this does not arise for the present data. Clearly a 1-D
interpretation of the response data at sites 2 and 3 does not appear warranted, in accord
with previous dimensional indicators. Also note that site 1, with a large D2 dimensional
weight, provides the highest pass mark in this necessary test for one-dimensionality.
Furthermore, note that the above inequality constraints are invariant with respect to the
near-surface static distortion effects considered previously (Larsen, 1981).

ONE-DIMENSIONAL INVERSION

Parker ( 1983), in reviewing the 1-D MT inverse problem, addressed several relevant
guestions including methods for construction of solutions. Since the inverse problem is
nonlinear, Parker ( 1983) noted that methods based on linearization of the problem
cannot provide wholly systematic inferences concerning real Earth structure. Such
difficulties can be overcome using the fully nonlinear solutions of Parker (1980) and Parker
and Whaler ( 1981). The three classes of solutions, referred to as D+, H+, and C2 +,
acknowledge the fact that the data have errors and the acceptability of any particular
model is measured by the chi-square (x2 ) misfit. The problem of existence of a 1-D solution
is reduced to finding a model with the smallest possible misfit ; if this optimum model is
rejected, so will every other model capable of reproducing the data to some degree be
rejected. The nonlinear theory presented in Parker ( 1980) establishes the fact that the
optimum ( best- fit) model is a delta-function (D+ ) model, consisting of a finite number of
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delta functions (zero thickness but finite conductance) separated by perfect insulators.
The D + solutions at the six sites for the effective impedance data are shown in Table 2. The
data consist of eight complex results over the period 30 to 400 s, the expectation level of
is )(2 16, and a xz < 27 is considered acceptable at the 95 percent confidence limit. This
level is achieved by the D+ solutions at five of the six sites. With the exception of the
solution at site 1, all solutions terminate with a perfect conductor. Several types of
behavior can be observed. Atsites A, B, and C a single crustal delta function is required.
The effective depth of penetration of the data was determined using the method
established in Parker (1983). The results reveal that structure below 115 kmis
nonphysical. At site C a second, deeper delta function has been introduced to achieve a
low level of misfit. The acceptable solutions obtained at sites 1 and 2 appear rather
exotic.

At site 1, the stack of delta functions provides an extremely low value of misfit. To
emphasize the quality of the D+ solution obtained, the observed and calculated complex
response functions are compared in Figure 7. The data from this site provide skew values in
the range 0.56 to 0.78, a large D2 dimensional weight, and the vertical field transfer
function is one of the largest to be observed in mainland (non- coastal) Britain ( Beamish,
1985b). Thus the data set cannot be compatible with a 1-D assumption. The D+ result shown
in Figure 7 and in Table 2 demonstrates that more than adequate 1-D solutions can be
generated from data which would not otherwise be classified as 1-D. Acceptable 1-D
solutions are not limited to the effective impedance (to be discussed). In view of the results
presented, it seems necessary to emphasize that the above techniques only reject the
existence of 1-D solutions. It is obviously possible to construct specific 2-D and 3-D models
which generate satisfactory 1-D solutions; however, a formalism which encompasses the
existence or nonexistence of 1-D solutions in the case of general 2-D and 3-D structural
components remains to be explored.

Thus far | have limited my study to D+ solutions derived from effective or averaged
impedance data. | now consider to what extent the methods described concerning the
existence of 1-D solutions can be used to infer dimensionality. Refer back to the
horizontal rotation properties of general tensor impedance data described previously. For
a 1-D structure the rotational properties are invariant, and clearly 1-D solutions must
exist at every azimut h. For a 2-D structure, the rotated tensor Z’(8) must diagonalize for 90
degree increments of 6.

Two-dimensional structures therefore provide symmetrical properties in increments of 90
degrees. The procedure adopted was to apply the D+ algorithm to directional response data
obtained in equal increments of 10 degrees over the interval from O to 180 degrees. The
variation in D+ misfit as a function of rotation angle at the three 1-D data sets (A, B, and
C) is shown in Figure 8a. The variation is sufficiently small that a linear scale can be used;
the 95 percent and 99 percent x* confidence limits are indicated by horizontal broken
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lines. The minimum x? obtained for these data are all significantly larger than those
obtained using the invariant response data. Clearly, even at the 99 percent confidence
limit acceptable 1-D models are not obtained at every azimuth . The results, however,
establish several useful facts.

The results of Figure 8a reveal that if the data were rotated to a common azimuth (e.g.,
a geologically plausible azimuth such as 75 degrees east), acceptable 1-D solutions would
not exist at all three sites. In fact for these data no single azimuth can be found for which
acceptable solutions exist at the 95 percent limit at all three sites. Another interesting
fact emerges when the principal directions (0y) at the three sites are considered in
relation to the results obtained. The ranges of values of Bpat each of the three sites
over the same bandwidth are shown in Figure 8a by the shaded regions against the
corresponding rotation curves. The directional response at 6, consists of the rotated
major response. If a 1-D inversion of these data were attempted, Figure 8a would establish
that an acceptable 1-D solution would only be obtained at one site (A). Acceptable 1-D
solutions exist for the other two sites at azimuths of 8o + 90 degrees, corresponding to
rotated minor response data. Since such behavior can be systematically monitored, the
method is a powerful means of investigating the dimensional properties of MT data.

An identical procedure was performed on the data at the sites 1, 2, and 3. The equivalent
results are shown in Figure 8b. For these results it is necessary to use a logarithmic scale for
the misfit. The 95 percent and 99 percent acceptance levels, together with the azimuthal
ranges of Bp, are again shown. The results obtained have very different characteristics from
those of Figure 8a. Only at one site (1) do acceptable 1-D solutions exist over a substantial
azimuthal interval. An acceptable 1-D solution occurs at an azimuth corresponding to the
rotated major response data at this site. The large variation in misfit levels for these data
suggests a strong departure from one-dimensionality, as has already been indicated in the
various dimensional indicators presented. The symmetric rotation characteristics at sites 1
and 2 appear to imply a degree of 2-D behavior, which would appear to comply with the
values obtained for the dimensional weights at these sites i.e., D2 > D1. The slightly
asymmetric rotation characteristics observed at site 3 may also comply with the observation
D3=D1.

DISCUSSION

This stud y used six widely separated data sets to investigate a number of conventional and
newly established methods for assessing structural dimensionality. For the three
conventional indicators considered, it has been demonstrated that skew values, although
useful, do not provide an unambiguous assessment of the degree of 3-D distortion. For the
present data, the low values of skew together with the low values obtained for the
magnitude of the vertical field at three sites (A, B, and C) can be used to infer 1-D

Page 12 of 26



characteristics. Note, however, that vertical field estimates are not always available. A
comparison of the three normalized weights introduced by Kao and Orr (1982) appears
to confirm the above inference. | recommend that studies of these weights in relation to
the results of general 2-D and 3-D forward models be undertaken since the weights
appear to offer a direct method for simultaneous assessment of the relative contributions
from 1-D, 2-D, and 3-D structural components. Considering typical data bandwidths,
however, it remains questionable whether such forward models can successfully reproduce
structural contributions with dimensions ranging from hundreds of meters (e.g., static
distortion) to hundreds of kilometers.

Consideration of the results of 2-D and 3-D forward models suggests that an appropriate
choice of response data for the recovery of equivalent 1-D profiles can be made. The choice
between rotational data at a given azimuth and rotationally invariant data depends upon
whether the data exhibit 2-D or 3-D characteristics. | have also emphasized that near-
surface, static distortion effects can be identified, to a certain extent, using the phase of the
sounding curves in the principal directions.

It is evident from the 1-D inverse problem that methods which consider the existence of 1-D
solutions play an important role in assessment of structural dimensionality. Again such
assessments must be based on the horizontal rotation properties of the impedance tensor.
Because such tests must be applied to data rotated through successive azimuths, existence
tests are required which are numerically robust when the data are subject to errors. The
inequality constraints of Weidelt (1972) provide necessary conditions for the existence of 1-
D solutions. Inequality constraints were illustrated using the effective impedance data at the
six sites. Their numerical implementation is straightforward but subject to error propagation
; therefore it is difficult to attach significance to the results obtained. The nonlinear theory
presented in Parker (1980) reduces the problem of existence of 1-D solutions to an assess-
ment of the acceptability of the optimum (D+ ) solution. Despite the fact that the

condition requires careful, numerical implementation (Parker and Whaler, 1981), it has
been demonstrated that the technique is the basis for a systematic scheme for assessing
structural dimensions.

For the present data, neither the dimensional indicators nor the existence tests can provide
unequivocal results regarding structural dimensions. | do not anticipate definitive answers
for the reasons already outlined. It appears that point data must undergo at least some of
the tests considered. The six data sets provide examples of the behavior associated with
1-D, 2-D, and 3-D structural contributions. The accumulated evidence presented for the
three central sites (A, B, and C) points to data which are strongly 1-D but which
nevertheless are perturbed by the near-surface effects over the period from 30 to 400 s.
The extent to which satisfactory inferences may be made regarding real Earth structure
using these data was considered by Beamish and Smythe (1986).
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Table 1 Results obtained by applying the first nine inequality constraints (ICl to 1C9) of Weidelt
(1972) to eight estimates of the effective impedance for data from site B. Central periods are given
in seconds. A plus sign indicates that a particular inequality constraint is satisfied.

PERIOD 1C1 1C2 I1C3 1C4 1C5 1C6 1C7 1C8 ICo
37 + - * + + + + * *
48 + + - + + * + + +
58 + + + + + + + + +
€8 + - + + + - + - +
B2 + + > + + - * - »

125 + + + + + - + + +
183 + » - + - - + - -
263 + * + + = - - - -
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Table 2 Optimum D+ solutions for the effective impedance data from the six sites A, 8, C, 1, 2, and
3. Data bandwidth is from 30 to 400 s. Delta functions obtained at a particular depth are denoted
by a delta number and provide a conductance (conductivity times thickness) value. Solutions at all

but site 1 are underlain by a perfect conductor at the final depth indicated.

Site Deita Cepth Conductance Chi-square
code no. { km} (Siemans) misfit
A 1 29.1 648.9 10.96
148.2
B i 18.4 774 .1 12.69
2 115.9 B35.9
181.8
c 1 10.7 B58.2 2.64
2 62.9 511.4
160.4
1 1 0.0 123.9 1.38
2 11.6 548 .5
3 46.2 690.9
4 77.4 3340.9
2 1 0.0 1751.6 20.99
4.4
3 i Q.0 1627 .6 2429 02
77 .4
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FIG. 1. Six MT sites and major geologic features of southern Scotland and northern England.
Central three sites (A, B, and C) are solid circles and remaining three sites (I, 2, and 3) are
open circles. Major faults are shown as bold lines. Shading indicates areas underlain by
granite batholiths. Stippled areas are underlain by substantial thicknesses of post-
Caledoniansedimentary rock. Coordinate values are National Grid; multiply by 10 for
kilometer scale.
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Skew values are identified by the site codes. Broken horizontal line denotes a skew value

of 0.3.
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limits are shown for the results at site 1.
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