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Summary 48 

• Leaf age structures the phenology and development of plants, as well as the evolution of49 

leaf traits over life histories. However, a general method for efficiently estimating leaf50 

age across forests and canopy environments is lacking.51 

• We explored the potential for a statistical model, previously developed for Peruvian52 

sunlit leaves, to consistently predict leaf ages from leaf reflectance spectra across two53 

contrasting forests in Peru and Brazil and across diverse canopy environments.54 

• The model performed well for independent Brazilian sunlit and shade canopy leaves55 

(R
2
=0.75-0.78), suggesting that canopy leaves (and their associated spectra) follow56 

constrained developmental trajectories even in contrasting forests. The model did not57 

perform as well for middle-canopy and understory leaves (R
2
=0.27-0.29), because leaves58 

in different environments have distinct traits and trait developmental trajectories. When59 

we accounted for distinct environment-trait linkages—either by explicitly including traits60 

and environments in the model, or, even better, by re-parameterizing the spectra-only61 

model to implicitly capture distinct trait-trajectories in different environments—we62 

achieved a more general model that well-predicted leaf age across forests and63 

environments (R
2
=0.79).64 

• Fundamental rules, linked to leaf environments, constrain development of leaf traits and65 

allow for general prediction of leaf age from spectra across species, sites and canopy66 

environments.67 

68 

1. Introduction:69 

     It has long been recognized that many important ecological processes vary with leaf age, the 70 

time elapsed since leaf budburst. During their lifetime, leaves exhibit variable photosynthetic 71 

rates (Field, 1983; Reich et al., 1991; Wilson et al., 2001; Kitajima et al., 2002; Pantin et al., 72 

2012), morphological changes (Maksymowych, 1973), allocation and transformation of 73 

chemicals (Wilson et al., 2001; Kitajima et al., 2002; Pantin et al., 2012), epiphyll colonization 74 

(Roberts et al., 1998; Toomey et al., 2009), and defense against herbivory (Coley, 1980; Coley 75 

& Barone, 1996; Lawrence et al., 2003; Wang et al., 2012). Thus, leaf age is a critical parameter 76 

for interpreting leaf function over time and for understanding how leaf traits evolve over 77 

Page 3 of 56



4 

development. Furthermore, expected maximum leaf age (leaf lifespan) is central to 78 

understanding plant life history (Field & Mooney, 1983; Reich et al., 1992), population 79 

dynamics (Reich et al., 2004) and the evolutionary trade-offs of the leaf economic spectrum 80 

(Reich et al., 1997; Wright et al., 2004; Funk & Cornwell, 2013; Osnas et al., 2013). Thus, many 81 

disciplines have long been interested in monitoring leaf age for individual plants (Field, 1983; 82 

Roberts et al., 1998; Wilson et al., 2001; Reich et al., 2004) and leaf lifespan for many species 83 

(Reich et al., 1991, 1992; Wright et al., 2004; Funk & Cornwell, 2013; Osnas et al., 2013). 84 

     More recent studies have begun to emphasize the importance of leaf ages and canopy age 85 

composition on phenology and ecosystem seasonality of vegetation photosynthesis and 86 

transpiration (Doughty & Goulden, 2008; Richardson et al., 2012; Restrepo-Coupe et al., 2013; 87 

Wu et al., 2016). Yet leaf development is difficult to monitor at large scales, especially in carbon 88 

rich tropical evergreen forests, where individual leaf ages are not as tightly synchronized with 89 

phenology and ecosystem seasonality as in temperate forests (Reich, 1995). In tropical forests, 90 

contrasting interpretation of satellite-detected seasonality of vegetation greenness (Morton et al., 91 

2014; Bi et al., 2015; Saleska et al., 2016) arises, in part, due to differing assumptions about the 92 

distribution of leaf ages in forest canopies and how changes in age composition might affect 93 

ecosystem seasonality (Doughty & Goulden, 2008; Brando et al., 2010; Morton et al., 2014). 94 

Therefore, for such forests, ‘ground truth’ studies of seasonal leaf age dynamics are clearly 95 

needed. 96 

     Despite the broad interest in leaf aging, there is currently no efficient and rapid method for 97 

estimating leaf age that can be applied across forests. Previous studies linking leaf morphological 98 

development (e.g. leaf length) to leaf aging (Erickson & Michelini, 1957; Chen et al., 2009; 99 

Meicenheimer, 2014) involved laborious measurements over long time periods or relied on 100 

uncertain assumptions. Near-surface remote sensing, e.g. via “phenocam”, is an alternate 101 

technique for approximating leaf age of canopy trees in temperate deciduous forests (Richardson 102 

et al., 2009; Keenan et al., 2014). This approach, however, has not been tested in tropical 103 

evergreen forests and its application could prove challenging due to the high diversity of leaf 104 

phenologies, with many tree species being brevi-deciduous or evergreen during most or all of the 105 

annual cycle (Opler et al., 1980; Reich, 1995; Schöngart et al., 2002).  106 

     Spectroscopy may provide a fast and efficient means for estimating leaf ages from their 107 

optical properties. Differences in the reflectance, absorbance, and transmittance of light at 108 
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different wavelengths by plant parts are tightly coupled to their chemical composition, cell 109 

structure, and physiological properties (Curran, 1989; Elvidge, 1990; Kokaly et al., 2009), 110 

leading to the rapid recent development of spectroscopic methods as a general tool in plant 111 

ecophysiology and ecology. For example, spectroscopy has been used to estimate wood density 112 

and hydraulic traits (Acuna & Murphy, 2006; Petisco et al., 2006; Luss et al., 2015), accurately 113 

identify plant species from dried leaves (Durgante et al., 2013) across developmental stages 114 

(Lang et al., 2015), quantify non-structural carbohydrate content of different plant organs 115 

(Ramirez et al., 2015), and characterize a broad suite of leaf biophysical traits (Clark et al., 2005; 116 

Asner & Martin, 2011; Asner et al., 2014; Serbin et al., 2012, 2014). 117 

     Chavana-Bryant et al (2016), also in this special issue, was the first study to demonstrate that 118 

leaf reflectance spectra can successfully predict leaf age by using a partial least squares 119 

regression (PLSR, Wold et al., 2001) approach applied to data from a Peruvian evergreen forest. 120 

The underlying logic motivating the development of this spectra-age model was that because (1) 121 

leaf traits follow consistent developmental trajectories as leaves age, (2) leaf spectra emerge 122 

from the ensemble of traits that define a leaf’s structure and function at any particular time 123 

(Asner et al., 2014; Serbin et al., 2012, 2014; Ramirez et al., 2015), leaf spectra may be directly 124 

used to estimate leaf ages, and indeed, be a better predictor of leaf age than any particular limited 125 

set of leaf traits.  126 

     Although the spectra-age model was successfully tested for sunlit leaves in an evergreen 127 

forest in Peru (Chavana-Bryant et al., 2016), the broader applicability and potential limitations of 128 

this approach were not explored. This study thus focuses on exploring factors that might limit the 129 

model performance, such as variation in age-trait or age-spectra relations across forest sites and 130 

diverse canopy environments, where species composition, leaf types and trait values all vary. 131 

Specifically, we aim to answer the following questions:  132 

1. How are leaf traits and spectra related with leaf development across sites and canopy133 

environments?134 

2. Are these relationships sufficiently consistent to allow a general model to accurately135 

predict leaf age from spectra across sites and various canopy environments?136 

     To address these questions, we used measurements of reflectance spectra, traits, and age of 137 

leaves collected at two tropical evergreen forests: we built upon the spectra-age model presented 138 

in Chavana-Bryant et al (2016) that was based on sunlit leaves of a Peruvian Amazonian forest 139 

Page 5 of 56



6 

and evaluated this model at an independent Brazilian site with contrasting soil and forest 140 

properties. We then explored the consistency of relationships across both sites, with a view to 141 

developing and validating a spectra-age model generally applicable for tropical forest leaves 142 

across forest sites and canopy environments.  143 

144 

2. Materials and Methods145 

2.1 Study Sites 146 

     The study focuses on two Amazonian evergreen forests (Fig. 1): a Brazilian site and a 147 

Peruvian site that represent contrasting edaphic and forest properties along the primary axis of 148 

ecological variation across Amazonian forests. The Brazil site is less productive, higher wood 149 

density and slower turnover but higher biomass forest than the Peru site (Malhi et al., 2002, 2006; 150 

Patino et al., 2009). The contrast appears driven by soil properties, with western Amazonian 151 

soils in Peru being more fertile but with poorer physical structure (Quesada et al., 2012). 152 

The Brazil site (2
o
51’ S, 54

o
58’ W) encompasses the km67 eddy flux tower and associated153 

biometric plots in Tapajos National forest, near Santarém, Brazil (Rice et al., 2004; Hutyra et al., 154 

2007). Part of the Brazilian Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) 155 

(Davidson et al., 2012), this site sits on a well-drained clay-soil plateau. Mean annual 156 

precipitation is ~2000 mm/year with a 5-month-long dry season (Restrepo-Coupe et al., 2013). 157 

     The Peru site encompasses two primary forest plots within the Tambopata National Reserve 158 

in the Madre de Dios region of Peru (Malhi et al., 2014), both part of the Global Ecosystems 159 

Monitoring (GEM) network and the RAINFOR Amazon Forest Inventory Network (Malhi et al., 160 

2002), with RAINFOR codes TAM-06 (12°84' S, 69°30' W) and TAM-09 (12°83' S, 69°27' W). 161 

These forests grow on Haplic alisol soils (Quesada et al., 2010), at elevations of 215m and 220m 162 

above sea level, respectively. Mean annual precipitation is ~1900 mm/year (Malhi et al., 2014), 163 

with a 4-5 month-long dry season (precipitation <100 mm/mo; Lewis et al., 2011).   164 

165 

2.2 Field measurements 166 

2.2.1 Brazil dataset 167 

     In campaigns conducted in August-September 2013, November 2013, March 2014, and July-168 

August 2014, we selected a subset of 11 trees (Table 1) for precise leaf age monitoring. The age 169 

monitoring began with observations of leaf budburst and subsequent leaf tagging (using metal 170 
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tags alongside in-situ photos; Fig. S1) during the August-September 2013 campaign, when most 171 

sampled trees were flushing new leaves. Following the initial intensive tagging work, we 172 

continued to tag and photograph new leaves periodically. This age tagging technique enabled us 173 

to accurately track leaf age in terms of days from leaf emergence at budburst (0 days) to old age 174 

(~400 days). Aside from some of the canopy leaves, this age was not sufficient to sample the 175 

senescent leaf age class. 176 

     We sampled a total of 759 leaves with precise leaf age information for these 11 trees, 177 

consisting of 4 canopy, 3 mid-canopy, and 4 understory trees. Since we harvested both sunlit and 178 

shaded leaves for canopy trees, our dataset of precise leaf age measurements is composed of 15 179 

tree-environment combinations: leaves sampled from 4 canopy trees in a sunlit environment, 4 180 

canopy trees in a shaded environment, 3 mid-canopy trees environment, and 4 understory trees 181 

environment (Table 1).  182 

     We measured reflectance spectra (section 2.2.3) for all 759 leaves and leaf traits (Leaf Mass 183 

per Area, LM, and Leaf Water Content, LWC) for a subset of 507 of these leaves which were 184 

used for the trait-age analysis reported here. Traits were derived from fresh leaf weight 185 

(precision at 0.001 g), area (using a Canon LiDE 120 scanner) and dry weight oven-dried at 60 186 

o
C for 72 hours. 187 

     We recorded leaf growth environments, including (1) in-situ digital hemispherical photos 188 

(collected with a 180° fisheye lens adapter for a Canon T3) to capture the radiation regime 189 

(section 2.2.5), (2) branch height (m)—the height of sampled leaves aboveground, and (3) 190 

branch depth (m)—the depth of sampled leaves below local canopy top.  191 

     In addition to the 11 trees with precisely measured leaf ages, we sampled an additional 29 192 

tree species across diverse canopy environments, including 7 canopy trees (crowns exposed to 193 

direct sun), 10 mid-canopy trees (20-30m tall), 4 understory trees (10-20m tall), and 8 forest-194 

floor shrubs (<5 meters tall). The dataset included measurements of leaf traits (LMA and LWC), 195 

reflectance spectra, and the canopy environments (i.e. vertical canopy positions where the leaves 196 

were harvested). This dataset did not include precise leaf ages, but provides baseline data on 197 

community level relationships between leaf traits and canopy environments for fully expanded 198 

mature leaves (Fig. S4). 199 

200 

2.2.2 Peru dataset 201 
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     The Peru dataset of 1072 leaves was collected in 2011, for sunlit leaves of 12 canopy trees 202 

(see Table 1 for species list). Measurements encompassed two leaf functional traits (LMA, and 203 

LWC), and associated leaf reflectance spectra. Peru leaves were assigned a leaf age designed to 204 

correspond to their developmental stage, with young leaves first assigned an initial age of 1 week 205 

when they reached a size large enough to be measured for spectra, and thereafter tracked through 206 

time until they reached advanced senescence (~400 days). Old leaves (> ~250 days) had their 207 

ages adjusted by normalization relative to maximum leaf age at senescence, taken to be 13 208 

months (see Chavana-Bryant et al., 2016; Fig. 1). Full details of the data collection and leaf age 209 

classification protocols for this site are reported in Chavana-Bryant et al (2016).  210 

     We note that this method of assigning leaf ages differed from that used in Brazil, where 211 

absolute ages (based on time elapsed since tagging at emergence) were used for all leaves. This 212 

difference in age assignment methods results in a 1-4 week offset in age between the datasets, 213 

depending on species (Brazil tagged leaves were measured for spectra when they were 214 

sufficiently large, typically at 2-5 weeks since emergence, an age that was defined as 1 week for 215 

Peru leaves), and a scale difference, depending on species, for old leaves (since Peru leaves were 216 

scaled to reach senescence at 13 months whereas Brazil leaf ages were tracked to about 13 217 

months without scaling). As shown in the results section, this difference in dating methods did 218 

not significantly limit the inter-comparability of leaf age predictions between sites. 219 

220 

2.2.3 Spectral measurements in Brazil 221 

     We measured leaf spectra using a full-range (350-2500nm) FieldSpec® Pro 222 

spectroradiometer (Analytical Spectra Devices, ASD, Boulder, CO). The spectrometer had a 223 

spectral sampling resolution of 1.4nm, 2.2nm and 2.3nm in the visible, NIR, and SWIR 224 

wavelengths and all data were interpolated to 1nm before analysis. All measurements were 225 

collected using a customized assembly attached to a plant probe with an internal calibrated light 226 

source, following Chavana-Bryant et al (2016) protocols. The customized assembly was 227 

composited by two measurement blocks: one for 99.9% reflectivity white standard (Spectralon, 228 

Labsphere Inc., North Dutton, NH, USA), and the other for 3% reflectivity dark standard 229 

(Odyssey III black 449/9009 Marine Grade Cover Fabric). For each leaf, reflectance spectra 230 

were measured on 1-6 different parts of the leaf adaxial surface and then averaged to determine 231 

the mean optical properties across all wavelengths. 232 
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233 

2.2.4 Vegetation indices (VIs) 234 

     To include important aspects of leaf bio-physiological traits that are not fully covered by 235 

LMA and LWC, we calculated four commonly-used VIs, including Normalized Difference 236 

Vegetation Index (NDVI; Eqn 1; Tucker, 1979; Ustin et al., 2009), Enhanced Vegetation Index 2 237 

(EVI2; Eqn 2; Jiang et al., 2008), Photosynthetic Reflectance Index (PRI; Eqn 3; Gamon et al., 238 

1992), and Normalized Difference Water Index (NDWI; Eqn 4; Gao, 1996). 239 

 (1) 240 

 (2) 241 

 (3) 242 

     (4) 243 

where NIR is the reflectance at near-infrared 800 nm band, R is the reflectance at Red 680 nm 244 

band, is the reflectance at 531 nm, is the reflectance at 570 nm, and SWIR is the 245 

reflectance at short-wavelength infrared 1240 nm band. 246 

     These VIs represent important leaf bio-physiological properties: NDVI and EVI2 are the 247 

integrated metric for the greenness and structure of leaves (Sellers et al., 1992; Huete et al., 248 

2002); PRI is a measure of the intrinsic quantum yield for photosynthesis (Gamon et al., 1992); 249 

NDWI is an indicator of leaf water content or hydrological status (Gao, 1996). By using these 250 

VIs (together with leaf traits of LMA and LWC, and spectra), we aim for a more comprehensive 251 

understanding of canopy environments effect on leaf properties and their developmental 252 

trajectories. 253 

254 

2.2.5 Within-canopy light environment 255 

     We estimated the within-canopy light environment from in-situ digital hemispheric photos 256 

(section 2.2.2). These photos were preprocessed and quality controlled using Adobe Lightroom 4 257 

(Adobe Systems INC., San Jose, CA). Contrast was then optimized, and the modified images 258 

were exported in JPEG format. Using a custom MATLAB program together with Otsu’s 259 
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algorithm (Ostu, 1975), these images were automatically binarized into sky (or gap) or non-sky 260 

pixels. The image fraction of the sky, or gap fraction, was then calculated to index the light 261 

environment of the leaf sample.    262 

263 

2.3 Spectra-Age Modelling 264 

2.3.1 General approach 265 

     As in Chavana-Bryant et al (2016), we used the partial least-square regression (PLSR) 266 

modeling approach (Geladi & Kowalski, 1986; Wold et al., 2001), which was adapted from 267 

several recent studies (Wolter et al., 2008; Serbin et al., 2014; Singh et al., 2015). PLSR is the 268 

current state-of-the-art approach for linking leaf and canopy spectroscopy with leaf and plant 269 

traits (e.g. Bolster et al., 1996; Townsend et al., 2003; Asner and Martin, 2011; Serbin et al., 270 

2014). Previous studies have also shown that PLSR is a more robust method compared to simple 271 

correlation or multiple linear regression approaches (Geladi & Kowalski, 1986; Grossman et al., 272 

1996; Wold et al., 2001).  273 

     Here the PLSR included five steps (Fig. S2): (1) filtering of outliers (which removed ~5% of 274 

data) following the Monte-Carlo sampling method for outlier detection (Xu & Liang, 2001); (2) 275 

the filtered dataset was one-time randomly divided into the training (70%) and testing (30%) 276 

datasets; (3) 90% of the training dataset were randomly selected (with 100-time replication) for 277 

PLSR analysis, with the latent variable number varying from 1 to n (n=20 in our case); (4) the 278 

PLSR regression coefficients were applied to the training and testing datasets, with model 279 

performance assed by using root mean squares error (RMSE), and R
2
 (the proportion of variance280 

of observation explained by model); (5) the optimal latent variable number were then identified 281 

by minimizing RMSE and maximizing R
2
.282 

     We implemented the above PLSR analysis to our predictor variables, using the MCS function 283 

from LibPLS (http://www.libpls.net) for outlier removal, PLSREGRESS function in Matlab 284 

(Mathworks, Natick, MA, USA) for the PLSR analysis, and custom Matlab functions for other 285 

steps. The predictor variables in this study can be either leaf spectra only (400–2500 nm; see 286 

“Peru Spectra model” in section 2.3.2 and “All Spectra model” in section 2.3.3 below) or leaf 287 

spectra combined with leaf traits (see “Peru Spectra+all Trait model” and “All Spectra+all Trait 288 

model” in section 2.3.3 below).  289 

290 
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2.3.2 Cross-site spectra-age analysis 291 

     We first examined the ability to model leaf age from leaf spectra across different sites 292 

through a series of tests. We used the spectra-age model developed for Peruvian sunlit leaves 293 

(Chavana-Bryant et al., 2016) as a “reference model” (or “original Peru Spectra model”), 294 

applying it to the Brazilian dataset which included leaves sampled from four canopy 295 

environments. The goal was to explore the potential for generalizing the spectra-age model 296 

across sites (from Peruvian sunlit leaves to Brazilian sunlit leaves) and across canopy 297 

environments (from Peruvian sunlit leaves to Brazilian canopy shade, middle-canopy and 298 

understory leaves). 299 

300 

2.3.3 Generalizing the leaf age model across canopy environments 301 

     Since leaf growth environments affect within-canopy leaf trait variation (Ellsworth & Reich, 302 

1993; Cavaleri et al., 2010), we expected that the leaves from the broader range of growth 303 

environments in Brazil would have different optical properties (and therefore different 304 

relationships between leaf spectra and age) as compared with the sunlit leaves from Peru 305 

(Chavanna-Bryant et al., 2016). To investigate how spectra-age relationships depend on the 306 

different growth environments and their associated traits, and hence, to develop a more general 307 

model of leaf age applicable across these growth environments, we first conducted a reference 308 

test (“Test 0”) of how well the original Peru Spectra model predicted leaves across different sites 309 

and environments. We then tested three models of leaf age--trait--spectra relations across canopy 310 

environments: 311 

- Test 1 (Peru Spectra+ all Trait model) —determines whether accounting for changing 312 

growth environments and their associated leaf traits could improve performance of the 313 

Peru reference model when applied to leaves from all environments. To this end, we used 314 

the original leaf spectral variables for the Peru reference model alongside the added 315 

variables, including branch height, depth, LMA, LWC, and four VIs, as the new predictor 316 

variables, to generate a “Peru Spectra+all Trait” PLSR model.  317 

- Test 2 (All Spectra model) —tests whether a more general spectra-only model can predict 318 

leaf ages across all categories of leaves and growth environments. In this test, we used 319 

combined Peru and Brazil datasets (with leaves encompassing the full range of traits that 320 
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emerge from development under different environments) to re-parameterize an “All 321 

Spectra” model (with no traits included explicitly). 322 

- Test 3 (All Spectra+all Trait model) is a simple combination of test 1 and 2. 323 

     We hypothesized (H1) that including traits and proxies for growth environments (test 1) 324 

would indeed improve model generality from sunlit leaves to understory leaves. A positive 325 

outcome for test 1 (which would show that accounting for environmental influence on leaf trait 326 

variation improves ability to predict age) would suggest a second hypothesis (H2) that a spectra-327 

only model should be able to perform as well as, or even better than, the hybrid model of Test 1. 328 

This is because spectral models have been shown to predict a broad array of traits (e.g. Serbin et 329 

al., 2014), including traits that are unmeasured for the leaves used in this study but which may 330 

also be associated with age (Chavana-Bryant et al., 2016). Finally, we hypothesize (H3) that test 331 

3 will perform only marginally better than test 2, because the spectra will themselves already 332 

capture the majority of the variation in the response as compared to including traits separately in 333 

the model.  334 

To test these hypotheses, in addition to the two metrics of model goodness, RMSE and R
2 

335 

(section 2.3.1 above), we also calculated the Akaike Information Criterion (AIC) for the model 336 

cross-comparisons. The AIC used is formatted as AIC = N × log(δ 2 )+ 2×m , following the 337 

literature (Akaike, 1974; Aho et al., 2014), where N is the number of leaves, δ is RMSE, and m 338 

is the optimal latent variable number for each PLSR modeling scenario (section 2.3.1 above). 339 

340 

3. Results341 

     We first focus on the results from the Brazil site (reported here for the first time), and then 342 

show integration with the Peru dataset (from Chavanna-Bryant et al., 2016).   343 

344 

3.1 Leaf traits and spectra vary with age across canopy environments and forests 345 

     Despite the broad trait variation induced by different canopy environments (from full sun to 346 

deeply shaded understory environment, Table S1), correlations of leaf traits LMA and LWC with 347 

leaf age were evident across the Brazilian site community (R
2
=0.20, p<10

-5
 for LMA; R

2
=0.42,348 

p<10
-5

 for LWC; Fig. 2a,b). The trait differences across canopy environments tended to obscure349 

the strength of these correlations, which were more evident within specific environments across 350 

all trees (R
2
=0.23 to 0.72 for LMA and R

2
=0.60 to 0.80 for LWC, Fig. 2) and within351 
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environments of individual trees. Within individual trees, all 11 tree-environment combinations 352 

showed a significantly positive trend in LMA-age relationships (R
2
=0.52-0.91), and significantly 353 

negative LWC-age relationships (R
2
=0.60-0.95). These positive LMA-age and negative LWC-354 

age relationships are consistent with those that were observed at the contrasting forest in Peru 355 

where a single leaf environment was sampled (sunlit leaves, Chavana-Bryant et al., 2006).  356 

     Spectral data also showed strong dependency on leaf age and leaf canopy environment across 357 

all Brazilian tree-environment combinations (Fig. 3 and Fig. S7). Mean visible reflectance, 358 

especially the green peak (~550 nm), and its variance showed continuous declines with age 359 

across all Brazilian tree-environment combinations. Initial mean NIR reflectance (800-1200 nm) 360 

increased (with lower variance) during leaf expansion, which was followed by decreases in the 361 

mean (and increases in variance) as leaves aged (Fig. 3a,c). Mean SWIR reflectance (1400-2500 362 

nm) increased monotonically with age, while the variance initially decreased and then increased 363 

as leaves aged. These patterns of the relative spectra change with leaf age, observed at the Brazil 364 

site across vertical canopy profiles, are also consistent with those observed in the Peruvian sunlit 365 

leaves (Chavana-Bryant et al., 2016).  366 

Strong spectral dependencies on canopy environments were also observed (Fig. 3b). 367 

Upper canopy versus middle canopy or understory differences were especially strong in the 368 

SWIR, where reflectance increased monotonically with depth into the canopy (Fig. 3d). Effects 369 

due to canopy growth environment were comparable to those of leaf age, indicating that models 370 

intended to predict age across different canopy environments would likely need to account for 371 

growth environment effects.  372 

373 

3.2 Cross-site spectra-age analysis 374 

     Since leaf traits and spectra consistently vary with leaf age across both canopy environments 375 

and forest sites (albeit with offsets among the different canopy environments), we explored the 376 

application of the Peru-trained spectra-age model to the independent forest in Brazil. We found 377 

that the Peruvian model developed in Chavana-Bryant et al (2016, with 7 latent variables) 378 

predicted ages of leaves for the Brazilian canopy trees with high precision (R
2
=0.75 and R

2
=0.78379 

for sunlit and shade canopy leaves respectively) (see Fig 4a,b at 7 latent variables, and Fig. 9a). 380 

However, model performance when predicting ages of leaves from middle and understory 381 
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Brazilian trees was poor (R
2
=0.27 and R

2
=0.29 for Brazilian middle-canopy and understory382 

leaves respectively) (Fig 4a,b for 7 latent variables; Fig. 9a). 383 

     We sequentially re-fitted the Peru-trained model with different numbers of latent variables, 384 

in order to investigate whether there existed an optimum number of latent variables that would 385 

improve the Peru-trained model performance across the range of canopy environments at the 386 

Brazil site. We found that reducing the number of latent variables from 7 to 5 significantly 387 

improved performance of the Peru-trained model in predicting the ages of Brazil middle-canopy 388 

and understory leaves, without resulting in a significant reduction in performance for Peruvian 389 

sunlit leaves (for which the 7-variable model was optimal) (Fig. 4a,b). We thus adopted the 5-390 

variable model as the Peru reference model, optimized across canopy environments. 391 

     Closer investigation of the performance of the 7-variable Peru-trained spectra-age model for 392 

individual Brazilian trees revealed that the relatively poor performance of this model relative to 393 

the 5-variable model was confined to early developing leaves (≤40 days old) of one middle-394 

canopy and two understory trees (E.uchi_MC, G.Amazonicum_US, and M.ruficalyx_US; Table 1 395 

and Fig. 5). The early developing leaves of these trees exhibited “reddish” coloration (e.g. Fig. 396 

5a), a common early developmental process displayed by sub-canopy leaves but not by canopy 397 

sunlit leaves, which has confounding effects for the 7-variable Peru model (Fig. 5c).    398 

     The PLSR regression coefficients (Fig. 4c) and Variable Importance in Projection (VIP; Fig. 399 

4d) from this optimized reference model indicated the important spectral domains responsible for 400 

leaf age modeling, which included visible domain (especially ~550 nm), red edge (~725 nm), 401 

NIR (~800 nm) and several water absorption bands (~1440 nm, ~1700 nm, and ~1920 nm). 402 

These patterns also matched well with the age-dependent spectral variation (Fig. 3a,c), providing 403 

confidence for our spectra-age modeling. 404 

The optimized Peru model performance using the Peru testing data was R
2
=0.83 and405 

RMSE=55 days compared with R
2
=0.64 and RMSE=72 days when applied to all Brazilian data406 

(Fig. 9b). When the Brazil data were separated by canopy environments, cross-site performance 407 

of the Peru model applied to the Brazil data ranged from high performance in sunlit and shade 408 

canopy leaves and middle-canopy leaves (R
2
=0.77, RMSE=62 days for sunlit, and R

2
=0.77, 409 

RMSE=62 days for shade canopy leaves, and R
2
=0.71, RMSE=80 days for middle-canopy leaves) 410 

to lower performance when applied to understory leaves (R
2
=0.29, RMSE=101 days for the 411 

original Peru model and R
2
=0.47, RMSE=90 days for the optimized Peru model) (Fig. 9a,b). In 412 
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sum, we found that the greater the disparity in canopy environment from that used to train the 413 

Peru reference model, the larger the inaccuracies in leaf age model predictions. 414 

415 

3.3 The range of leaf traits affects cross-site model generality 416 

     We investigated whether the relatively lower performance of the Peru-trained canopy sunlit 417 

leaf age model for leaves sampled from canopy environments beyond its original scope was 418 

associated with different suites of traits and/or developmental pathways not included in the 419 

reference model training dataset, and if so, whether such differences were systematically linked 420 

to the broader range of canopy environments. We found that canopy sunlit leaves from the two 421 

sites largely overlapped in both their height above the ground (a proxy for growth environment), 422 

and in their trait values, but that sunlit leaves were significantly different from understory leaves 423 

in growth-environments and leaf trait values for old leaves (Fig. 6). The presence of ‘reddish’ 424 

early developmental leaves in the middle canopy and understory also demonstrates the existence 425 

of a different developmental pathway. This environmentally driven divergence in traits (as also 426 

seen in Ellsworth & Reich, 1993; Cavaleri et al., 2010) provides a mechanistic basis for 427 

improving predictive models of leaf age applicable across canopy growth environments.  428 

     To leverage this result, we quantified how model fit of the optimized Peru reference model 429 

(developed for Peruvian sunlit leaves) depended on different environments. Deviations of 430 

predictions from observations were characterized by simple linear regressions for each tree-431 

environment combination (as seen by regression lines between model predicted and observed 432 

ages, Fig. 7).  These regression lines showed systematic deviation from the 1:1 line, with strong 433 

dependency on leaf growth environments:  Deviations in canopy sunlit environments (Fig. 7a-d) 434 

usually (3 of 4 trees) followed a slope shallower than the 1:1 line, while at the other end of the 435 

environmental gradient, deviations in Brazilian understory trees were significantly steeper than 436 

the 1:1 line (Fig. 7l-o). Deviations were largest in understory environments, whose leaf ages 437 

tended to be significantly overestimated in young age classes, but underestimated in old age 438 

classes.  439 

     We found that the deviation of leaf age model performance could be tied to canopy 440 

environments (and to leaf traits): the deviations, as represented by the variation in the parameters 441 

(slope and intercept) of lines fit to those deviations, were systematically explained by growth 442 

environments, as captured by branch height (Fig. 8a,c), and by traits (e.g. LMA, Fig. 8b,d). 443 
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Therefore, variability in canopy environments and traits is the source of the lower performance 444 

of the optimized Peru leaf age model when extended to new canopy environments. This suggests 445 

that modeling strategies that account for variation in traits or proxies for canopy environment 446 

(e.g. branch height) should produce more general models of leaf age that are applicable across 447 

different canopy growth environments. 448 

449 

3.4 Generalizing the leaf age model across canopy environments 450 

   Four modeling exercises were conducted to explore model generality across canopy 451 

environments in Brazil (Fig. 9), with the optimum five latent variables for “Peru Spectra” and 452 

“All Spectra” models and the optimum six latent variables for “Peru Spectra+all Trait” and “All 453 

Spectra+all Trait” models (Fig. S6). The calculated AIC metric for each modeling scenario 454 

showed consistent, positive relationship with RMSE, suggesting that RMSE is a good metric for 455 

the cross-model comparison in this study (Table S2). Relative to the Peru reference model (Fig. 456 

9a), the “Peru Spectra+all Trait” model, which incorporated the covariates of growth 457 

environments and leaf traits, modestly improved overall performance for all the Brazil data 458 

(R
2
=0.69, RMSE=74 days vs R

2
=0.64, RMSE=72 days for reference; Fig. 9c), but significantly459 

improved prediction for Brazilian understory samples (R
2
 increased from 0.47 to 0.57; RMSE460 

decreased from 90 days to 88 days).  461 

     The “All Spectra” model, parameterized by both Peruvian and Brazilian leaf spectra (Fig. 9d), 462 

achieved large performance gains across canopy environments (R
2
 increased from 0.64 to 0.79463 

and RMSE decreased from 72 days to 53 days for all Brazilian leaves; R
2
 increased from 0.47 to464 

0.73 and RMSE decreased from 90 days to 72 days for Brazilian understory leaves).  465 

     The “All Spectra+all Trait” model, parameterized by both Peruvian and Brazilian leaf spectra 466 

and traits (Fig. 9e), led to the best model overall, but, as we hypothesized (H3 from §2.3.3 467 

above), it gave only a modest improvement over the “All Spectra” model overall (R
2 

increased468 

from 0.79 to 0.81 and RMSE decreased from 53 days to 50 days; Fig. 9). Specifically, the most 469 

significant improvement occurred in Brazilian understory leaves (R
2 

increased from 0.73 to 0.82470 

and RMSE decreased from 72 days to 60 days; Fig. 9), at the small expense of model 471 

performance for Brazilian canopy shade leaves (R
2 

decreased from 0.89 to 0.88 and RMSE472 

increased from 48 days to 49 days; Fig. 9).   473 

474 
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4. Discussion475 

     We investigated whether principles of leaf trait ecology and ontogeny could be used to create 476 

a general model relating leaf spectra to leaf age, taking into account the effect of growth 477 

environments. We divided this investigation into two broad questions: (1) How are leaf traits and 478 

spectra related to leaf development across different sites and canopy growth environments? (2) 479 

Are these relationships sufficiently consistent to allow a general model to accurately predict leaf 480 

age from spectra across sites and various canopy environments?  481 

482 

I. How are leaf traits and spectra related to leaf development across different sites and 483 

canopy growth environments? 484 

 Two key findings address this question:   485 

1. Variation in leaf traits and spectra across all leaves is large compared to datasets that486 

focus only on sunlit mature leaves. Our 759 leaves from 11 trees in Brazil encompassed variation 487 

in LMA (35-270 g/m
2
), LWC (42-83%) and NIR reflectance (0.35-0.64) (Table S1) that covers488 

over 98% LMA values and 89% NIR reflectance values recorded for the much larger dataset of 489 

1,449 tree species (6,136 leaves) in Asner et al (2011, 2014). These results are consistent with 490 

those reported at the contrasting forest site with very different soil condition (Quesada et al., 491 

2012) in Peru (Chavana-Bryant et al., 2016) and show that such large variation in traits and 492 

spectra can be attributed primarily to the substantial variation across leaf ages (Figs. 2,3) and 493 

canopy environments (Figs. 2,3, and S4).  494 

     This finding highlights two important points: First, it emphasizes how leaf ages (Hulshof et 495 

al., 2013; Chavana-Bryant et al., 2016) and canopy environments (Wright et al., 2004; Asner et 496 

al., 2011, 2014; Serbin et al., 2014) can be key drivers of trait variation that cause within-species 497 

traits to vary as much or more than variations across species; and second, most relevant for this 498 

study, it confirms that if leaf age varies in concert with leaf traits and spectra, then sampling 499 

leaves of a broad range of traits (and how they vary with leaf age and canopy environments) may 500 

be more important than sampling many sites or species in developing a general model for 501 

predicting leaf age from spectra.   502 

503 

2. Leaf traits and spectra vary with both age and canopy environments (Figs. 2,3,6; Fig. S4):504 

Previous studies have found that leaf age influences leaf traits and spectra (Field & Mooney, 505 
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1983; Kitajima et al., 1997, 2002; Roberts et al., 1998; Wilson et al., 2001; Yang et al., 2014; 506 

Chavana-Bryant et al., 2016) and that canopy environments influence leaf traits (e.g. 507 

Lichtenthaler et al., 1981; Givnish et al., 1988; Ellsworth & Reich, 1993; Terashima et al., 2001; 508 

Koike et al., 2001; Kumagai et al., 2001; Cavaleri et al., 2010; Kenzo et al., 2015; Coble & 509 

Cavaleri, 2015), but this study also finds that understanding their interaction (Fig 2, Fig 3a,b) is 510 

particularly important for developing general relationships between leaf ages and trait-mediated 511 

spectra. 512 

     These interacting trait-age and trait-environment relationships lay the foundation for 513 

addressing our second question (below). This is because the age-dependent and/or environment-514 

dependent changes in the above-mentioned leaf traits and other related leaf morphological, 515 

structural and physico-chemical traits are known to influence leaf optical properties (Curran, 516 

1989; Carter et al., 1989; Elvidge, 1990; Jacquemoud & Baret, 1990; Kokaly et al., 2009; Asner 517 

et al., 2011, 2014; Serbin et al., 2012, 2014; Yang et al., 2014; Chavana-Bryant et al., 2016). 518 

Intriguingly, the spectrally-based species identification study of Lang et al (2015) noted a result 519 

that leaves from young and adult plants differed consistently in their near-infrared spectra, which 520 

parallels what we investigated here (and also reported in Chavana-Bryant et al., 2016) across the 521 

developmental stages of individual leaves within adults. This suggests that, ultimately, the 522 

spectra-age relationship in leaves may integrate effects of both individual leaf and whole plant 523 

ontogenies.     524 

525 

II. Are these relationships sufficiently consistent to allow a general model to accurately526 

predict leaf age from spectra across sites and various canopy environments? 527 

     In general, we find that the answer to this question is yes, as leaf traits (co-varying with leaf 528 

spectra) are evidently constrained by ontogenetic physiology and canopy environments. 529 

Therefore, leaf traits and spectra vary systematically and predictably with leaf age between forest 530 

sites thousands of kilometers apart and across canopy growth environments. This result emerges 531 

from two key findings: 532 

533 

1. A single model, developed to predict leaf age from the spectra of sunlit leaves in a534 

southwestern Amazon forest in Peru, predicts sunlit and shade canopy leaf ages from a central 535 

eastern Amazon forest in Brazil almost as well without recalibration. The success of the model 536 
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of Chavana-Bryant et al (2016) in predicting ages of sunlit and shade canopy leaves across 537 

widely separated sites (Fig. 4a,b) suggests that general rules constrain ontogenic development 538 

within similar growth environments. This is also true across all tropical leaves (see finding 2, 539 

below) once the differences between canopy environments and associated environment-trait 540 

linkages are accounted for (Figs. 2,3). The underlying reason, as discussed before, is that key 541 

spectral regions were consistently associated with leaf age (Fig. 3a) and with different growth 542 

environments (Fig. 3b). 543 

544 

2. Because leaf traits (and hence spectra) vary substantially with growth environments, a more545 

general model to accurately predict leaf ages across environments (including both canopy and 546 

subcanopy trees) can be developed (e.g. by incorporating the samples of wider trait ranges).  547 

     Leaf ages predicted by the Peru model deviated from observed ages in a way that 548 

systematically and predictably depended on canopy growth environments, developmental 549 

pathways and leaf traits (Figs. 5-8). In general, understory leaves exhibited trait values that fell 550 

outside the range exhibited by both the Peruvian and Brazilian canopy leaves. Old-leaf traits 551 

differed for understory leaves (Fig. 6), and young leaves of some middle-canopy and understory 552 

leaves followed a different developmental pathway manifesting reddish color in leaves early in 553 

development (Fig. 5). This distinct developmental pathway is possibly a consequence of 554 

strategies for herbivore defense in sub-canopy tropical leaves based on delay of chlorophyll 555 

infusion in herbivore-abundant environments (Fig. 5a) (Kursar & Coley, 1992; Dominy et al., 556 

2002; Queenborough et al., 2013). 557 

     These observations support the ideas of (a) a model that explicitly included canopy growth 558 

environments and leaf traits as new predictor variables alongside leaf spectra (Fig. 9), and (b) a 559 

model driven only by leaf spectra, but parameterized by leaves that span the entire trait range 560 

found in diverse canopy environments (Fig. 9).   561 

     Both of these approaches significantly improved model generality, but the spectra-only 562 

model, parameterized by leaves across all canopy environments, performed better than one fit to 563 

the sun-specific subset of traits. This confirms our hypothesis (H2 from §2.3.3 above) that 564 

because spectra are jointly influenced by all leaf traits, whether measured or unmeasured, and 565 

therefore this spectral model had more predictive power because it could implicitly account for 566 

the effects of unmeasured traits. 567 
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     We highlight three directions for further work on general leaf-age modeling. First, we note 568 

that despite the relatively strong predictive capacity of our recommended “all spectra” leaf age 569 

model (Fig. 9c, R
2
 ≈ 0.8 or better), there is still systematic residual variation between predictions570 

of the spectra-age model and observations of leaf age. The residuals of the spectra-age model 571 

(Fig. S5) showed a concave nonlinear relationship with observed leaf age, with both young and 572 

old leaf ages being under-estimated. This pattern, evident in both Brazil and Peru datasets (Fig 573 

S5), suggests that even better models of leaf age may be possible with further work that 574 

identifies the causes of this residual variation, and/or through the inclusion of additional leaf 575 

variation to expand the range of the modeling approach.   576 

     Second, our demonstration here of convergent relations across the broad trait variability 577 

induced by both leaf development and growth environments across two distinct forests suggests 578 

that even leaf samples from a small set of individuals, if designed to encompass this breadth, 579 

may provide a powerful tool to predict leaf developmental trajectories and ages across additional 580 

tropical forests, and even forest systems in other biomes. Future studies could use multiple sites, 581 

biomes, and plant types to investigate the feasibility of developing general globally-applicable 582 

algorithms for leaf age. 583 

     Finally, leaf traits and associated spectra evolve with development, but similarly 584 

developmental stages may be reached at different ages depending on individuals, canopy 585 

environments, and biomes. This suggests that leaves with varying lifespans should be adjusted to 586 

a common developmental trajectory (as in Chavana-Bryant et al., 2016) in work seeking to 587 

generalize models of leaf age to accommodate for leaves with different lifespans. For canopy 588 

leaves in Peru versus Brazil, the difference between development-adjusted age (used for Peru 589 

leaves by Chavana-Bryant et al., 2016) and absolute age (used here for Brazil leaves) was not 590 

large, as indicated by the comparably good age model fits for Peru and Brazil canopy leaves 591 

(Figs. 4,9). However, middle-canopy and understory leaves can have differences in early 592 

developmental pathways (as we have shown for reddish leaves in this study) and can have 593 

lifespans several folds longer than canopy leaves (Reich et al., 2004). This implies that for a 594 

given absolute age, understory leaves are at an earlier developmental stage, leading to an 595 

underestimation of their predicted ages and a decreased in overall model performance when 596 

leaves at different developmental stages have the same absolute age. This is evident from the 597 

steeper slopes of observed versus predicted age for understory environments compared to other 598 
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environments (Fig. 9). We therefore expect that modeling of middle-canopy and understory leaf 599 

age would be improved by extending observations of these leaves throughout their life cycle, 600 

until senescence (which can take up to several years). We hypothesize that in general, adjusting 601 

leaves with varying lifespans to a common developmental trajectory would reveal local (within 602 

canopy) to inter-biome convergence in relative leaf aging processes. 603 

604 

5. Conclusion605 

     Our results show the convergent correlations among leaf traits, spectra, and age across 606 

various tree species, sites, and growth environments. These results support the development of a 607 

general spectra-age model and we have shown that this model can effectively predict leaf age 608 

across the observed ontogenic and environmental variation. This study has three important 609 

implications for the broader plant science and remote sensing communities.  610 

     First, leaf spectra can allow rapid and effective estimation of leaf ages across tropical forests 611 

and various canopy environments. Our work, building on previous studies of spectral-leaf traits 612 

correlations (Asner et al., 2012, 2014; Serbin et al., 2012, 2014) and age-dependence (Chavana-613 

Bryant et al., 2016), shows that reconstructing life cycles of multiple physiochemical properties 614 

of leaves across forest sites and canopy environments is possible. Future spectrally-derived 615 

studies should give insights into the fundamental mechanisms that regulate the life-cycle of 616 

resource investments and return in leaves. 617 

     Second, the convergent spectra-age correlation suggests that remotely sensed observations 618 

using imaging spectroscopy (also known as “hyperspectral”) data could enable the monitoring 619 

and mapping of leaf age compositions across tree crowns and whole landscapes, and provide 620 

insights into temporal dynamics of leaf age demography in forest canopies. The generality of 621 

these correlations across sites and growth environments also implies that leaf age dependencies 622 

of commonly used vegetation indices (VIs) seen at the Peru site (Chavana-Bryant et al., 2016), 623 

likely affect these VIs across broad regions. Therefore, remote sensing-based studies of tropical 624 

forest seasonality and phenology should account for leaf age effects.  625 

     Finally, these findings have important theoretical implications. Leaf traits have been 626 

observed to vary substantially over their life cycles, exhibiting as much or more within-species 627 

variation than between-species variation in both temperate (McKown et al., 2013; Fajardo & 628 

Siefert, 2016) and tropical (Chavana-Bryant et al., 2016) trees. Our extension of this observation 629 
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across sites and growth environments suggests that fundamental evolutionary rules constrain the 630 

co-variations among spectra, traits, and age both within and between species, and that studies 631 

that seek insights into these rules (e.g, via analysis of leaf economics, Wright et al., 2004; Osnas 632 

et al., 2013) should be expanded from their traditional focus on species (generally collected at 633 

peak season) to include various leaf developmental stages and their effects on key physiological 634 

traits.   635 
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Table 1. Tree-environment combinations and associated canopy environments for leaf traits and 931 

spectra measurements at two tropical forests in Brazil and Peru. (Tree-environment combinations 932 

were coded by “species name_canopy position”, with four canopy position codes: ‘SU’ sunlit, 933 

‘SH’ shaded, ‘MC’ mid-canopy, and ‘US’ understory). 934 

Field 

Site 

Tree-environment 

combination 

Species Family DBH 

(m) 

Canopy 

Position 

Branch 

Height (m) 

Branch 

Depth 

(m) 

Old LMA 

(g/m2) 

Old LWC 

(%) 

Brazil E. uncinatum _SU Erisma uncinatum 

Warm. 

Vochysiaceae 1.48 Canopy Sun 39.0 1.0 192.60 49.63 

Brazil E. uncinatum _SH Erisma uncinatum 

Warm. 

Vochysiaceae 1.48 Canopy 

Shade 

30.0 10.0 130.79 48.33 

Brazil Ocotea sp _SU Ocotea sp. Lauraceae 0.73 Canopy Sun 37.0 1.0 131.37 47.57 

Brazil Ocotea sp _SH Ocotea sp. Lauraceae 0.73 Canopy 

Shade 

32.5 5.5 91.17 45.28 

Brazil M.huberi _SU Manilkara huberi 

(Ducke) A. Chev. 

Sapotaceae 0.92 Canopy Sun 37.5 0.5 229.94 49.18 

Brazil M.huberi _SH Manilkara huberi 

(Ducke) A. Chev. 

Sapotaceae 0.92 Canopy 

Shade 

31.2 6.8 218.25 50.39 

Brazil C.scleroxylon _SU Chamaecrista 

scleroxylon 

(Ducke) H.S.Irwin 

& Barneby 

Leguminosae-

Caesalpinioideae 

0.47 Canopy Sun 24.5 1.0 80.47 49.79 

Brazil C.scleroxylon _SH Chamaecrista 

scleroxylon 

(Ducke) H.S.Irwin 

& Barneby 

Leguminosae-

Caesalpinioideae 

0.47 Canopy 

Shade 

20.0 5.5 59.31 55.74 

Brazil E.uchi_MC Endopleura uchi 

(Huber) Cuatrec. 

Humiriaceae 0.46 Middle 

Canopy 

24.5 16.5 114.19 46.01 

Brazil E.coriacea_MC  Eschweilera 

coriacea 

Lecythidaceae 0.25 Middle 

Canopy 

22.8 15.2 122.01 44.63 

Brazil H.courbaril_MC Hymenaea 

courbaril L. 

Leguminosae-

Caesalpinioideae 

0.45 Middle 

Canopy 

30.0 11.0 117.21 52.02 

Brazil Miconia sp_US Miconia-sp. Melastomataceae 0.14 Understory 13.7 29.3 58.62 61.37 

Brazil G.amazonicum_US Glycydendron 

amazonicum 

(Ducke) 

Euphorbiaceae 0.11 Understory 7.7 33.3 54.74 62.96 

Brazil M.ruficalyx_US Miconia ruficalyx 

Gleason 

Melastomataceae  0.14 Understory 13.5 12.0 54.73 59.8 

Brazil V. elongate_US Virola elongata 

(Benth.) Warb. 

Myristicaceae 0.17 Understory 19.0 6.5 75.65 59.84 

Peru L.brittoniana_SU Licania 

brittoniana 

Chrysobalanaceae 1.88 Canopy Sun 29.5 0.5 121.09 49.89 

Peru Q.simaruba_SU Quassia simaruba  Simaroubaceae 1.62 Canopy Sun 29.0 0.5 188.04 44.49 

Peru 
R.ovale_SU 

Ruizodendron 

ovale  
Annonaceae 1.23 

Canopy Sun 32.6 0.5 91.27 50.53 

Peru 
A.parvifolium_SU 

Aspidosperma 

parvifolium  
Apocynaceae 1.57 

Canopy Sun 33.7 0.5 110.94 55.09 

Peru C.macrosperma_S

U 

Couratari 

macrosperma  
Lecythidaceae 1.43 

Canopy Sun 33.7 0.5 170.65 45.78 

Peru L.longistyla_SU Licania longistyla  Chrysobalanacea 1.43 Canopy Sun 30.3 0.5 125.87 37.70 

Peru 
B.excelsa_SU 

Bertholletia 

excelsa  
Lecythidaceae 2.30 

Canopy Sun 34.0 0.5 147.93 45.07 

Peru 
T.chrysaloides_SU 

Tachigali 

chrysaloides  
Caesalpinioideae 2.10 

Canopy Sun 29.7 0.5 180.51 47.29 

Peru 
C.racemosa_SU 

Clarisia 

racemosa  
Moraceae 1.58 

Canopy Sun 33.8 0.5 120.86 49.76 

Peru 
E.coriacea_SU 

Eschweilera 

coriacea  
Lecythidaceae 1.88 

Canopy Sun 33.3 0.5 157.55 46.61 

Peru 
G.boliviana_SU 

Gautteria 

boliviana 
Annonaceae 1.17 

Canopy Sun 31.9 0.5 113.31 52.22 

Peru 
P.franciscana_SU 

Pouteria 

franciscana 
Sapotacea 2.37 

Canopy Sun 35.4 0.5 124.72 48.31 

DBH, diameter at breast height; LMA, leaf mass per area; LWC, leaf water content; Old: leaf 935 

age greater than 300 days (and senescent leaves were excluded).  936 

937 

938 
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Figure Legends 939 

Figure 1.  Location of sites in the Amazon basin, including the Tapajos National Forest in Brazil 940 

(red circle) and the Tambopata National Reserve in Peru (red triangle). The black curve indicates 941 

the boundary of the Amazon basin. The background is a map of dry season length (in months; 942 

see color legend), which is derived from Tropical Rainfall Measuring Mission (TRMM) satellite 943 

data from 1998 to 2013.   944 

945 

Figure 2. Leaf trait variation with leaf age and canopy environment at the Brazil site for 11 tree-946 

environment combinations (see Table 1): (a) Leaf Mass per Area (LMA), and (b) Leaf Water 947 

Content (LWC). Each colored line represents a tree in a particular environment (indicated by a 948 

“species name_canopy position” label in the legend, where “canopy position” is represented by 949 

four codes: ‘SU’ sunlit, ‘SH’ shaded, ‘MC’ mid-canopy, and ‘US’ understory). Solid colored 950 

lines indicate canopy sunlit environment (R
2
=0.31 for LMA and R

2
=0.60 for LWC) and canopy 951 

shade environment (R
2
=0.23 for LMA and R

2
=0.80 for LWC), dashed lines indicate mid-canopy 952 

(MC, R
2
=0.76 for LMA and R

2
=0.74 for LWC) or understory (US, R

2
=0.39 for LMA and 953 

R
2
=0.61 for LWC), and black lines indicate community average relationships: R

2
is the 954 

proportion of variation in the trait that is explained by leaf age (model:  log(trait) = a * log(age) 955 

+b). *** indicates p<10
-5

.956 

957 

Figure 3. Leaf age and canopy environment induced spectra variation at the Brazil site. (a) Age-958 

dependent leaf level hyperspectral reflectance across all canopy environments for: young (blue 959 

lines), mature (green lines), and old (red lines) leaves (mean value in solid lines with shaded 95% 960 

confidence interval); (b) Canopy environment-dependent leaf level hyperspectral reflectance 961 

across all leaf ages for:  canopy sun (in red lines; n=4 trees), canopy shade (in purple lines; n=4), 962 

mid-canopy (in green lines; n=3), and understory (in blue lines; n=4); (c) Normalized differences 963 

of young, mature, and old leaf spectra from the mean leaf spectra (solid lines +/- shaded 95% 964 

confidence interval); (d) Normalized environment differences of canopy sun, canopy shade, mid-965 

canopy and understory leaf spectra from the mean leaf spectra (solid lines +/- shaded 95% 966 

confidence interval). Note: Normalized difference = (mean reflectance within age scenario – 967 

mean reflectance across all scenarios)/standard deviation of reflectance across all scenarios.   968 

969 
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Figure 4. Cross-site spectra-age model results for data from both Peruvian and Brazilian sites, 970 

based on fitting variation of the Peru reference Partial Least Squares Regression (PLSR) models 971 

to a subset of observations at the Peru site only (i.e., the Peru training dataset): (a): Root Mean 972 

Square Error (RMSE) between observed and modeled leaf age plotted against the number of 973 

latent variables incorporated for PLSR models; (b): The proportion of variation in leaf age 974 

explained by PLSR models (R
2
) plotted against the number of latent variables incorporated.975 

Different symbols in (a) and (b) represent different datasets, as indicated (see also Table 1): the 976 

performance of the original 7-latent variable model for each dataset is indicated by the points in 977 

the blue shaded box in a, b); an optimal model for prediction across sites (RMSE minimized and 978 

R
2
 maximized for Brazil validation datasets not used in model fitting) emerges for 5 latent979 

variables (gray shaded box in a, b).  (c): Spectral regression coefficients for the optimized PLSR 980 

model with 5 latent variables; (d): Variable Importance in Projection (VIP) for the optimized 981 

PLSR model with 5 latent variables (spectral features greater than 0.8 represent the important 982 

spectral regions for leaf age modeling).   983 

984 

Figure 5. Example of developmental trajectory in a mid-canopy tree in Brazil (E.uchi_MC), 985 

including:  (a) the appearance of leaves versus age in RGB photos, showing reddish leaves when 986 

leaf ages are 40 days or younger; (b) the aging of leaves as revealed by leaf reflectance 987 

hyperspectra (measured by an ASD spectradiometer); and (c) comparison between spectra-age 988 

model coefficients of seven latent variables (in red) and five latent variables (in black), (see Fig. 989 

4; as derived from the model parameterized by Peruvian sunlit canopy leaves, which do not have 990 

reddish young leaves).  Coefficients in the spectral region marked by the blue window are near-991 

zero in the 5-variable model, which more accurately predicts leaf age in three mid-canopy or 992 

understory trees: (d) E.uchi_MC, (e) G. amazonicum_US, and (f) M. ruficalyx_US). The non-993 

zero coefficients in the 7-variable model make it more sensitive to reddish shifts in the 994 

understory Brazilian leaves, a confounding effect which causes significant over-prediction of 995 

young leaf age in these same trees when the 7-variable model is applied (in g, h, i).     996 

997 

Figure 6. (a) Branch height probability distribution for Peru (grey line) and Brazil (dark green), 998 

with color symbols indicating branch height for each sample; (b) Leaf trait scatter plot showing 999 

leaf water content (LWC) versus leaf mass per area (LMA) for Peru and Brazil leaf samples from 1000 
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the old leaf age class (Table 1). Red rectangles in (a) and (b) bound the sample space for mid- to 1001 

upper canopy leaves from Peru and Brazil sites. 1002 

1003 

Figure 7. Performance (observed versus predicted leaf age) of the optimal Peru-trained spectral 1004 

leaf age model (Fig 4, 5-variable model) as applied to Brazilian samples from four canopy 1005 

environments (a)-(d): canopy sun; (e)-(h): canopy shade; (i)-(k): mid-canopy; (l)-(o): understory. 1006 

OLS regressions (black lines) quantify the deviation of the scatterplots from the ideal 1:1 line 1007 

(dashed lines). R
2
 quantifies the fit of the regression line – i.e., the variation in leaf age explained1008 

by combining the Peru leaf age model (applied to the whole dataset) with the individual tree 1009 

regressions – and RMSE is the corresponding Root Mean Square Error. 1010 

1011 

Figure 8. The regression line slopes and intercepts of each tree-environment combination (from 1012 

Fig. 7) plotted against branch height and leaf mass per area (LMA) for the Brazil site: (a) Slope 1013 

vs. branch height; (b) Slope vs. LMA; (c) Intercept vs. branch height; (d) Intercept vs. LMA. 1014 

1015 

Figure 9. Performance of leaf age models for the Brazilian leaf samples under four scenarios: (a) 1016 

the Peru model (parameterized by using Peruvian leaf spectra only; the same model as presented 1017 

in Chavana-Bryant et al., 2016 using seven latent variables); (b) the Peru reference model 1018 

(parameterized by using Peruvian leaf spectra only); (c) the “Peru Spectra+all Trait” model 1019 

(parameterized by using Peruvian leaf spectra and traits); (d) the “All Spectra” model 1020 

(parameterized by using both Brazilian and Peruvian leaf spectra); (e) the “All Spectra+ all Trait” 1021 

model (or parameterized by using both Brazilian and Peruvian leaf spectra and traits). Four 1022 

different color circles represent the leaf samples from Brazil canopy sun (red circles; n=4 trees), 1023 

Brazil canopy shade (yellow circles; n=4), Brazil mid-canopy (green circles; n=3), and Brazil 1024 

understory trees (blue circles; n=4). Four different color lines represent the corresponding 1025 

ordinary least regression (OLS) between predicted and observed leaf ages; central grey line 1026 

represents the OLS analysis for all Brazil samples. The “All Spectra” model (d) is our 1027 

“recommended” general model. The number of optimal latent variables in panel b was identified 1028 

in Fig. 4, and in panels c to e were identified in Fig. S6 1029 

1030 

1031 
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Main Figures and Tables 1032 

Figure 1.  Location of sites in the Amazon basin, including the Tapajos National Forest in Brazil 1033 

(red circle) and the Tambopata National Reserve in Peru (red triangle). The black curve indicates 1034 

the boundary of the Amazon basin. The background is a map of dry season length (in months; 1035 

see color legend), which is derived from Tropical Rainfall Measuring Mission (TRMM) satellite 1036 

data from 1998 to 2013.   1037 

1038 
1039 

1040 
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Figure 2. Leaf trait variation with leaf age and canopy environment at the Brazil site for 11 tree-1041 

environment combinations (see Table 1): (a) Leaf Mass per Area (LMA), and (b) Leaf Water 1042 

Content (LWC). Each colored line represents a tree in a particular environment (indicated by a 1043 

“species name_canopy position” label in the legend, where “canopy position” is represented by 1044 

four codes: ‘SU’ sunlit, ‘SH’ shaded, ‘MC’ mid-canopy, and ‘US’ understory). Solid colored 1045 

lines indicate canopy sunlit environment (R
2
=0.31 for LMA and R

2
=0.60 for LWC) and canopy 1046 

shade environment (R
2
=0.23 for LMA and R

2
=0.80 for LWC), dashed lines indicate mid-canopy 1047 

(MC, R
2
=0.76 for LMA and R

2
=0.74 for LWC) or understory (US, R

2
=0.39 for LMA and 1048 

R
2
=0.61 for LWC), and black lines indicate community average relationships: R

2
is the 1049 

proportion of variation in the trait that is explained by leaf age (model:  log(trait) = a * log(age) 1050 

+b). *** indicates p<10
-5

.1051 
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Figure 3. Leaf age and canopy environment induced spectra variation at the Brazil site. (a) Age-1053 

dependent leaf level hyperspectral reflectance across all canopy environments for: young (blue 1054 

lines), mature (green lines), and old (red lines) leaves (mean value in solid lines with shaded 95% 1055 

confidence interval); (b) Canopy environment-dependent leaf level hyperspectral reflectance 1056 

across all leaf ages for:  canopy sun (in red lines; n=4 trees), canopy shade (in purple lines; n=4), 1057 

mid-canopy (in green lines; n=3), and understory (in blue lines; n=4); (c) Normalized differences 1058 

of young, mature, and old leaf spectra from the mean leaf spectra (solid lines +/- shaded 95% 1059 

confidence interval); (d) Normalized environment differences of canopy sun, canopy shade, mid-1060 

canopy and understory leaf spectra from the mean leaf spectra (solid lines +/- shaded 95% 1061 

confidence interval). Note: Normalized difference = (mean reflectance within each scenario – 1062 

mean reflectance across all scenarios)/standard deviation of reflectance across all scenarios.   1063 

1064 
1065 

1066 
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Figure 4. Cross-site spectra-age model results for data from both Peruvian and Brazilian sites, 1067 

based on fitting variation of the Peru reference Partial Least Squares Regression (PLSR) models 1068 

to a subset of observations at the Peru site only (i.e., the Peru training dataset): (a): Root Mean 1069 

Square Error (RMSE) between observed and modeled leaf age plotted against the number of 1070 

latent variables incorporated for PLSR models; (b): The proportion of variation in leaf age 1071 

explained by PLSR models (R
2
) plotted against the number of latent variables incorporated.1072 

Different symbols in (a) and (b) represent different datasets, as indicated (see also Table 1): the 1073 

performance of the original 7-latent variable model for each dataset is indicated by the points in 1074 

the blue shaded box in a, b); an optimal model for prediction across sites (RMSE minimized and 1075 

R
2
 maximized for Brazil validation datasets not used in model fitting) emerges for 5 latent1076 

variables (gray shaded box in a, b). (c): Spectral regression coefficients for the optimized PLSR 1077 

model with 5 latent variables; (d): Variable Importance in Projection (VIP) for the optimized 1078 

PLSR model with 5 latent variables (spectral features greater than 0.8 represent the important 1079 

spectral regions for leaf age modeling).   1080 

1081 
1082 

1083 
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Figure 5. Example of developmental trajectory in a mid-canopy tree in Brazil (E.uchi_MC), 1084 

including:  (a) the appearance of leaves versus age in RGB photos, showing reddish leaves when 1085 

leaf ages are 40 days or younger; (b) the aging of leaves as revealed by leaf reflectance 1086 

hyperspectra (measured by an ASD spectradiometer); and (c) comparison between spectra-age 1087 

model coefficients of seven latent variables (in red) and five latent variables (in black), (see Fig. 1088 

4; as derived from the model parameterized by Peruvian sunlit canopy leaves, which do not have 1089 

reddish young leaves).  Coefficients in the spectral region marked by the blue window are near-1090 

zero in the 5-variable model, which more accurately predicts leaf age in three mid-canopy or 1091 

understory trees: (d) E.uchi_MC, (e) G. amazonicum_US, and (f) M. ruficalyx_US). The non-1092 

zero coefficients in the 7-variable model make it more sensitive to reddish shifts in the 1093 

understory Brazilian leaves, a confounding effect which causes significant over-prediction of 1094 

young leaf age in these same trees when the 7-variable model is applied (in g, h, i).     1095 

1096 
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Figure 6. (a) Branch height probability distribution for Peru (grey line) and Brazil (dark green), 1098 

with color symbols indicating branch height for each sample; (b) Leaf trait scatter plot showing 1099 

leaf water content (LWC) versus leaf mass per area (LMA) for Peru and Brazil leaf samples from 1100 

the old leaf age class (Table 1). Red rectangles in (a) and (b) bound the sample space for mid- to 1101 

upper canopy leaves from Peru and Brazil sites. 1102 

1103 
1104 

1105 
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Figure 7. Performance (observed versus predicted leaf age) of the optimal Peru-trained spectral 1106 

leaf age model (Fig 4, 5-variable model) as applied to Brazilian samples from four canopy 1107 

environments (a)-(d): canopy sun; (e)-(h): canopy shade; (i)-(k): mid-canopy; (l)-(o): understory. 1108 

OLS regressions (black lines) quantify the deviation of the scatterplots from the ideal 1:1 line 1109 

(dashed lines). R
2
 quantifies the fit of the regression line – i.e., the variation in leaf age explained1110 

by combining the Peru leaf age model (applied to the whole dataset) with the individual tree 1111 

regressions – and RMSE is the corresponding Root Mean Square Error. 1112 

1113 
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Figure 8. The regression line slopes and intercepts of each tree-environment combination (from 1114 

Fig. 7) plotted against branch height and leaf mass per area (LMA) for the Brazil site: (a) Slope 1115 

vs. branch height; (b) Slope vs. LMA; (c) Intercept vs. branch height; (d) Intercept vs. LMA.  1116 

1117 

1118 
1119 
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Figure 9. Performance of leaf age models for the Brazilian leaf samples under four scenarios: (a) 1120 

the Peru model (parameterized by using Peruvian leaf spectra only; the same model as presented 1121 

in Chavana-Bryant et al., 2016 using seven latent variables); (b) the Peru reference model 1122 

optimized for multiple environments (parameterized by using Peruvian leaf spectra only); (c) the 1123 

“Peru Spectra+all Trait” model (parameterized by using Peruvian leaf spectra and traits);  (d) the 1124 

“All Spectra” model (parameterized by using both Brazilian and Peruvian leaf spectra); (e) the 1125 

“All Spectra+ all Trait” model (parameterized by using both Brazilian and Peruvian leaf spectra 1126 

and traits). Four different color circles represent the leaf samples from Brazil canopy sun (red 1127 

circles; n=4 trees), Brazil canopy shade (yellow circles; n=4), Brazil mid-canopy (green circles; 1128 

n=3), and Brazil understory trees (blue circles; n=4). Four different color lines represent the 1129 

corresponding ordinary least regression (OLS) between predicted and observed leaf ages; central 1130 

grey line represents the OLS analysis for all Brazil samples. The “All Spectra” model (d) is our 1131 

“recommended” general model. The number of optimal latent variables in panel b was identified 1132 

in Fig. 4, and in panels c to e were identified in Fig. S6 1133 
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The following supporting information is available for this article: 1147 

Figure S1. Leaf age monitoring at the Brazil site was carried out by using metal tags and in-situ 1148 

photo-documentation. In-situ photographs acquired on three different dates illustrate leaf 1149 

development with age (dates shown are critical time periods for significant changes in leaf size 1150 

and color as leaf aged) for M.ruficalyx (a-c; Table 1), for C.scleroxylon (d-f; Table 1), and for 1151 

E.uncinatum. (g-i; Table 1). 1152 

1153 
1154 

1155 

1156 

1157 

1158 

1159 

1160 

1161 
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Figure S2. Flow-chart for spectra-trait analysis by using Partial Least Squares Regression 1162 

(PLSR). 1163 

1164 
1165 

1166 

1167 
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Figure S3. In situ Leaf light environments (approximated by gap fraction, derived from 1168 

hemispherical photos taken above each sampled branch) versus (a) branch height above the 1169 

ground, and (b) branch depth below the local canopy top. Each point represents one tree-1170 

environment combination. Branch depth is a significantly better proxy of light environment 1171 

(R
2
=0.71) than branch height above the ground is (R

2
=0.41).1172 

1173 
1174 
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Figure S4. Mature leaf traits versus branch height of sampled leaves above the ground (left 1175 

column) and branch depth (a strong proxy of light environment, see Fig. S3) of sampled leaves 1176 

below the local canopy top (right column) at the Brazil site. Traits are: (a-b) leaf mass per area 1177 

(LMA), (c-d) leaf water content (LWC), and (e-f) leaf level reflectance values (Red at 680 nm 1178 

and NIR at 800 nm), (g-h) leaf level vegetation indices (NDVI (680, 800 nm) and PRI (531, 570 1179 

nm)). Samples include all 40 tree species surveyed at the Brazil site (grey circles); the subset of 1180 

11 trees whose ages were precisely known and were the basis for the main part of this study 1181 

(black squares) follow the same pattern as the larger community. Branch height (a proxy 1182 

integrating effects of both light environment and gravitational component of leaf water potential) 1183 

is generally a better predictor of leaf traits than branch depth (a proxy of light environment).  1184 
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Figure S5. Leaf age residuals (observed age – modeled age) plotted against observed age, where 1187 

the ”All Spectra” model was used here (optimal 5-variable model, Fig. 9d). (a): Peru data; (b): 1188 

Brazil data. The grey circles indicate each individual leaf, and the black lines indicate the 1189 

quadratic fitting curve.   1190 

1191 
1192 

1193 
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Figure S6. Metrics of fit for PLSR leaf age models versus number of latent variables included in 1194 

the model for models shown in Fig. 9. (a) RMSE and (b) R
2

for the “Peru Spectra+all Trait” 1195 

model; (c) RMSE and (d) R
2 

for the “All Spectra” model; (e) RMSE and (f) R
2

for the “All 1196 

Spectra+all Trait” model. Different symbols in (a) and (b) represent different datasets: Peru 1197 

training data (grey triangles, n=12 trees); Peru testing data (black triangles, n=12); Independent 1198 

data from the Brazil site, including canopy sun (red circles, n=4), canopy shade (yellow circles, 1199 

n=4), mid-canopy (green circles, n=3), and understory (blue circles, n=4). Different color lines in 1200 

(c), (d), (e) and (f) represent different datasets: grey lines—the training data (10 out of 12 trees 1201 

from Peru, 3 out of 4 trees from Brazilian canopy sun, canopy shade, and understory, 1202 

respectively, and 2 out of 3 trees from Brazilian mid-canopy); red lines—independent validation 1203 

data from the remaining data which were not used for model training. The grey shading in all 1204 

panels indicates the optimum number of latent variables (minimizing RMSE and maximizing R
2 

1205 

for the independent dataset), including 6 latent variables for the “Peru Spectra+all Trait” model, 1206 

5 latent variables for the “All Spectra” model, and 6 latent variables for the “All Spectra+all 1207 

Trait” model.  1208 

1209 
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Figure S7. Mean leaf level hyperspectral reflectance for three leaf age classes at the Brazil site: 1212 

(a) young (20-60 days), (b) mature (150-220 days), and (c) old (≥300 days) age classes. 1213 

Different tree-environment combinations are represented by different colored lines and ID codes 1214 

in the legend (indicated by a “species name_canopy position” label in the legend, where 1215 

“canopy position” is represented by four codes: ‘SU’ sunlit, ‘SH’ shaded, ‘MC’ mid-canopy, and 1216 

‘US’ understory). Solid lines are for canopy leaves, and dashed lines for others.   1217 

1218 

1219 

1220 

1221 
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Table S1. Summary statistics for leaf traits (LMA gm
-2

 and LWC %) and NIR reflectance (8001222 

nm) under 4 canopy environments and across 2 forest sites. M=mean, SD=standard deviation. 1223 

Range=minimum and maximum values, and N=number of leaf samples.  1224 

Scenarios Trait Type Brazil 

Canopy  

Sun 

Brazil 

Canopy 

Shade 

Brazil Mid-

Canopy 

Brazil  

Understory 

Brazil  

All 

Peru 

Canopy  

Sun 

Entire leaf life 

span (7days-

400 days) 

LMA M(SD) 149.8 (50.7) 123.0 (58.4) 94.8 (21.4) 58.5 (11.7) 112 (53.6) 116 (37.7) 

Range 69.7-269.5 51.8-245.4 35.3-134.8 40.4-92.0 35.3-269.5 34.6-210.5 

N 150 139 122 93 504 1072 

LWC M(SD) 52 (5) 55 (5) 53 (8) 66 (4) 56 (8) 56 (10) 

Range 42-68 43-72 42-83 59-79 42-83 34-81 

N 150 139 124 94 507 1072 

NIR M(SD) 0.51 (0.07) 0.50 (0.08) 0.46 (0.03) 0.47 (0.04) 0.49 (0.06) 0.51 (0.06) 

Range 0.36-0.64 0.38-0.64 0.35-0.52 0.36-0.57 0.35-0.64 0.35-0.69 

N 224 207 186 142 759 1072 

1225 

1226 

1227 

Page 55 of 56



56 

Table S2. Leaf age model performance assessment for Brazil data under four scenarios: the 1228 

“Peru Spectra” model (parameterized by using Peruvian leaf spectra only; five latent variables), 1229 

the “Peru Spectra+all Trait” model (parameterized by using Peruvian leaf spectra and traits; six 1230 

latent variables), the “All Spectra” model (parameterized by using both Brazilian and Peruvian 1231 

leaf spectra; five latent variables), and the “All Spectra+all Trait” model (parameterized by using 1232 

both Brazilian and Peruvian leaf spectra and traits; six latent variables). Three metrics are used to 1233 

measure the goodness of model fit, including coefficient of determination (R
2
), root-mean-square1234 

error (RMSE), and the Akaije Information Criterion (AIC; Akaike, 1974; Aho et al., 2014). The 1235 

AIC was calculated by using the formula AIC = N × log(δ 2 )+ 2×m , where N is the number of 1236 

leaves (summarized in Table S1), δ is RMSE (Fig. 9), and m is the optimum latent variable 1237 

number used for each PLSR modeling scenario (Fig. S6). 1238 

1239 

Scenarios Brazil Canopy Sun Brazil Canopy Shade Brazil Mid-Canopy Brazil Understory Brazil All 

R2 RMSE 

(days) 

AIC R2 RMSE 

(days) 

AIC R2 RMSE 

(days) 

AIC R2 RMSE 

(days) 

AIC R2 RMSE 

(days) 

AIC 

Peru 

Spectra 

0.77 61.8 1857.5 0.77 62.4 1721.3 0.71 79.9 1639.6 0.47 89.8 1287.3 0.64 72.3 6508.3 

All Spectra 0.76 75.1 1948.8 0.80 56.7 1682.0 0.77 78.1 1635.2 0.57 87.5 1283.9 0.69 73.7 6539.4 

All Spectra 0.84 45.1 1716.4 0.89 48.2 1614.4 0.82 48.2 1451.6 0.73 71.7 1223.4 0.79 53.2 6042.6 

All Spectra 

+all Trait 

0.85 46.7 1736.0 0.88 48.7 1622.7 0.78 47.0 1446.3 0.82 60.0 1176.8 0.81 50.4 5962.5 

1240 
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