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Abstract

The block correlation is the correlation between the block kriging prediction of a variable1

and the true spatial mean which it estimates, computed for a particular sampling configu-2

ration and block size over the stochastic model which underlies the kriging prediction. This3

correlation can be computed if the variogram and disposition of sample points are known. It4

is also possible to compute the concordance correlation, a modified correlation which mea-5

sures the extent to which the block kriging prediction and true block spatial mean conform6

to the 1:1 line, and so is sensitive to the tendency of the kriging predictor to over-smooth.7

It is proposed that block concordance correlation has two particular advantages over krig-8

ing variance for communicating uncertainty in predicted values. First, as a measure on a9

bounded scale it is more intuitively understood by the non-specialist data user, particularly10

one who is interested in a synoptic overview of soil variation across a region. Second, because11

it accounts for the variability of the spatial means and their kriged estimates, as well as the12

uncertainty of the latter, it can be more readily compared between blocks of different size13

than can a kriging variance.14

Using the block correlation and concordance correlation it is shown that the uncer-15

tainty of block kriged predictions depends on block size, but this effect depends on the16

interaction of the autocorrelation of the random variable and the sampling intensity. In17

some circumstances (where the dominant component of variation is at a long range relative18

to sample spacing) the block correlation and concordance correlation are insensitive to block19

size, but if the grid spacing is closer to the range of correlation of a significant component20

then block size can have a substantial effect on block correlation. It is proposed that (i)21

block concordance correlation is used to communicate the uncertainty in kriged predictions22

to a range of audiences (ii) that it is used to explore sensitivity to block size when plan-23

ning mapping and (iii) as a general operational rule a block size is selected to give a block24

concordance correlation of 0.8 or larger where this can be achieved without extra sampling.25
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1. Introduction27

In conventional soil survey the scale of the published map plays a tacit role in commu-28

nicating to the user an understanding of the uncertainty in the information that it conveys.29

The intensity of field effort affects the uncertainty of predictions made from the resulting soil30

map in terms of soil classes and soil properties (Beckett and Burrough, 1971). Soil survey31

organizations have conventionally required that maps be supported by some fixed density32

of field observations on the published map (Burrough and Beckett, 1971). For example, soil33

maps in British Columbia should be supported by about 1 observation per cm2 of published34

map, with an acceptable range of 0.2–2 observations cm−2 (Resources Inventory Committee,35

1995). In Australia it has been recommended that the density of observations is in the range36

0.25–1 cm−2 (Gunn et al, 1988). The larger the density of observations on the ground the37

larger the cartographic scale of the map which these observations can support. For this38

reason, the larger the scale ratio of a map the greater confidence a user can have in predict-39

ing likely soil conditions at a site. Maps published at different scales are therefore suitable40

for different purposes. Large scale maps (e.g. 1:10 000–1:25000) are called ‘detailed’ maps41

and are recommended for agricultural extension and irrigation planning, whereas maps at42

1:120 000 –1:500000 are called ‘reconnaissance’ maps and are recommended for national-43

scale land use planning and tentative selection of project locations (Dent and Young, 1981).44

The printed map with a particular cartographic scale ratio is increasingly superseded45

by the raster layer in a Geographical Information System (GIS), a digital soil map. As46

GIS technology emerged cartographers explored how their traditional questions about scale47

ratios should be addressed in this new setting. They made a link with the spatial resolution,48

expressed by the dimension of the raster cell or pixel (I assume square pixels in this paper).49

Tobler (1988) proposed a heuristic rule by which information that could be communicated50

effectively on a map of scale ratio no smaller than 1:s requires raster cells length r such that51

r ≤ s/2000 m. Hengl (2006) reviewed and proposed a similar set of rules, for example, if the52
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effective range of the variogram of a continuous variable is a units then this variable should53

be mapped on pixels of length r ≤ a/2.54

The question of the resolution of a raster soil map, here I focus on maps of individual55

soil properties, has received revived attention with the emergence of the GlobalSoilMap56

project (Hempel et al., 2014). The project specification (Arrouays et al., 2014a) requires57

that, in addition to a grid of predictions on a notional 2×2-m ‘pedon’ support (first tier58

information), the spatial mean of soil properties, to a specified depth, is predicted over a59

100×100-m block (second tier information).60

As Arrouays et al. (2014b) acknowledge, this selection of a cell size was not un-61

controversial. In particular they note that the data user is likely make inferences about62

uncertainty from block size (resolution), and that a map of global extent on 100-m blocks,63

given available data, may seem implausibly ambitious. They observe, however, that in the64

context of digital soil mapping the uncertainty of an individual prediction, on a block of any65

size, can be quantified directly. Uncertainty, therefore, should not be tacitly communicated66

by scale or block size, and one is free to select a block size on the basis of other criteria such67

as the resolution of ancillary data to be used in the prediction.68

This argument is correct, but it is necessary to reflect on how this approach adds to69

the challenge of successfully communicating the uncertainty attached to soil information to70

the user of this information. Three points are particularly germane.71

First, if one presents a data user with a map with predictions made on 100-m blocks,72

it is reasonable for the user to infer that one is making a tacit claim to be able to identify73

differences between those blocks, and that features of variation that can be resolved should74

be assumed to be genuine.75

Second, while it is true, as Heuvelink (2014) points out, that one can create sets of76

geostatistical maps in which precision and resolution are decoupled, other things being equal77

(the sampling grid, the covariates), decreasing the block size reduces the precision of kriged78

predictions as measured by their mean-square error. Heuvelink (2014) created his sets of79
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precise or imprecise and coarse- or fine-resolution maps by working from sparse or dense80

data sets. In practice one cannot reduce the grid cell size while maintaining the precision of81

predictions unless more data or covariates are used for prediction.82

Third, one may state to the data user that the block size is selected on purely op-83

erational grounds, and that they should examine the corresponding uncertainty map to84

understand the claims made for the information. However, while uncertainty measures such85

as a kriging variance have considerable value, and are understood by statisticians and sci-86

entists, it is not clear that they always succeed in conveying to the general data user a clear87

understanding of uncertainty. Even if one changes the kriging variance to a standard error,88

so that it is on the scale of the original measurement, the user, particularly one who is89

interested in the overall variation across a region rather than decision making at one or a90

few locations, may be challenged to make a judgement as to which features of the mapped91

pattern can be interpreted with confidence and which cannot.92

In this paper I propose a new measure of the uncertainty of block kriging predictions.93

This is the block correlation, the expected correlation of the block prediction with the value94

that it estimates: the spatial mean of the target variable across the block. The block95

concordance correlation (after Lin, 1989) can also be calculated, and may be more useful for96

communicating uncertainty of kriged predictions. This is because it measures not simply the97

linear correlation between variables but their conformity to the 1:1 line. In the case of the98

correlation between the block spatial mean and the kriging predictor systematic deviations99

from the 1:1 line are due to over-smoothing by kriging, as the procedure is unbiased.100

The block correlation has two particular advantages over kriging variance, which make101

it pertinent to the questions above. First, it can be compared between blocks of different sizes102

more readily than the prediction error variance, because changing block size also changes103

the variance of the block means. This makes the block correlation conceptually useful104

for investigating the effects of block size on prediction uncertainty. Second, as a bounded105

and dimensionless quantity, correlations may be more readily interpreted by the general106
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user as a measure of information quality than a kriging variance, although this remains a107

key uncertainty measure for quantitative assessments of uncertainty either through error108

propagation or the comparison of prediction distributions to threshold values. For reasons109

explained in the previous paragraph, the block concordance correlation is particularly useful110

for communication. The user can understand that a concordance correlation of 1 implies111

that the block prediction is perfect, and zero that the prediction includes no information,112

with intermediate values implying some degree of deviation from the 1:1 line.113

In this paper I develop the concept of the block correlation and concordance correla-114

tion and show how they can be computed for block kriging. I then use them to examine the115

extent to which, ceteris paribus, the block length for the kriged map serves as a proxy for116

information quality. In particular I consider how the block concordance correlation might be117

used to select both block size and sample density for a soil map where there is some freedom118

to select a block size. In principle the block correlation could be fixed at some value as a119

quality standard and block size adjusted so as to achieve this.120

2. Theory121

2.1. Block correlation122

Supports are defined in two dimensions, assuming sampling to some fixed depth for123

intensive properties such as concentrations. The region of interest is denoted by R ∈ R
2.124

The variable of interest, measured at location x ∈ R, is denoted by z(x) and is treated125

as a realization of a random variable Z(x). I denote some block of support B centred126

at location x by xB; so, for example, if B is a square support of 200 m × 200 m then127

s ∈ xB → maxi=1,2 |si − xi| ≤ 100. The quantity of interest is the spatial mean of z across128

xB,129

z̄(xB) =

∫

s∈xB

z(s) ds. (1)

The ordinary kriging estimate of this quantity is denoted by Z̃(xB), and the ordinary130
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kriging variance, σ2

K
(xB) is obtained with the estimate where131

σ2

K(xB) = E

[

{

Z̃(xB)− z̄(xB)
}2

]

. (2)

By the block correlation we mean132

ρB = Corr
[

Z̃(xB), z̄(xB)
]

, (3)

where Corr[·, ·] denotes the correlation of the two variables in the brackets. Note that133

this quantity is defined for a particular block, given the configuration of sampling points134

from which the prediction is derived, over the random model which underlies the kriging135

prediction. It is in this sense a superpopulation statistic, and a measure of confidence for136

the particular prediction. It should not be confused with a population statistic, such as137

the correlation of the spatial means of a set of distinct block with their respective kriging138

predictions from a particular set of data. Bishop et al. (2015) in a recent study attempted139

to estimate population validation statistics for spatial prediction of soil properties on blocks140

of different size.141

The block correlation can be computed directly from terms computed to solve the142

ordinary block kriging equation. Because the ordinary kriging predictor is unbiased the143

ordinary kriging variance is the variance of the difference between the ordinary kriging144

predictor, Z̃(xB), and the true spatial mean of the block which it predicts, z̄(xB), and145

therefore146

Cov
[

Z̃(xB), z̄(xB)
]

=
Var

[

Z̃(xB)
]

+Var [z̄(xB)]− σ2

K
(xB)

2
, (4)

where Cov[·, ·] denotes the covariance of the two variables in the brackets and Var[·] denotes147

the variance of a variable.148

The block kriging prediction is obtained from a set of N observations, and the covari-149

ance matrix of these observations under the model used for kriging is denoted by C, which150

is a submatrix of a matrix in the ordinary kriging equation. If λ is the vector of ordinary151

block kriging weights then it follows from the familiar properties of linear combinations of152
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random variables that153

Var
[

Z̃(xB)
]

= λ
TCλ. (5)

We now require the variance of the block spatial mean. This can be obtained by154

applying Krige’s relation (Journel and Huijbregts, 1978) to give155

Var [z̄(xB)] = Var[Z]− σ2

D,B, (6)

where the variance of Z is the a priori variance of the variable and σ2

D,B is the dispersion156

variance of Z within the block of support B defined as157

σ2

D,B =

∫

s1∈xB

∫

s2∈xB

γ(s1 − s2) ds2 ds1, (7)

where γ(h) is the variogram function used for kriging. Again, this term is calculated as part158

of the computation for ordinary block kriging.159

It is therefore possible to calculate all the terms required to find the covariance of the160

block mean with the ordinary kriging predictor, Eq[4], and this can then be standardized to161

obtain the block correlation162

ρB =
Cov

[

Z̃(xB), z̄(xB)
]

√

Var
[

Z̃(xB)
]

Var [z̄(xB)]

. (8)

The correlation is a measure of the strength of the linear relationship between two163

variables, and takes values in the interval [−1, 1]. Because the variances and covariance in164

Eq [8] are derived from a common stochastic model with authorized (negative semi-definite)165

variograms, it follows that ρB ∈ [−1, 1] for arbitrary real-valued weights in λ. When λ are166

kriging weights the worse-case scenario for spatial prediction is where Z is a pure nugget167

random variable with no spatial correlation, and in this case ρB = 0 (see appendix).168

One disadvantage of the correlation as a measure of the reproduction of some quan-169

tity by a predictor is that it is simply a measure of strength of linear association, and so170

may take large values even when the predictions are biased, or over- or under-estimate the171

variance. This was recognized by Lin (1989) who developed the concordance correlation as172

an alternative. The concordance correlation measures the extent to which a variable and its173
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associated predictor fall near the 1:1 line. If predictions are perfect (all observations on the174

1:1 line) the concordance correlation (and correlation) are 1, if the variable and predictions175

are independent the expected concordance correlation (and correlation) are zero. However,176

the predictions and variable may be strongly linearly correlated, but differ markedly with177

respect to mean, variance or both. In this case the concordance correlation is smaller than178

the correlation, and a more useful measure of association. The concordance correlation has179

been used elsewhere in soil science (e.g Corstanje et al., 2008).180

The concordance correlation for two variables can be written as181

ρc =
2 Cov [x, x′]

Var [x] + Var [x′] + {E [x]− E [x′]}
2
. (9)

Because ordinary kriging is unbiased the difference between the means in the denom-182

inator goes to zero, and so we can write the block concordance correlation as183

ρB,c =
Cov

[

Z̃(xB), z̄(xB)
]

Var
[

Z̃(xB)
]

+Var [z̄(xB)]
. (10)

Substituting the expression for the covariance in Eq [4] gives184

ρB,c = 1−
σ2

K
(xB)

Var
[

Z̃(xB)
]

+Var [z̄(xB)]
. (11)

From Eqs [8] and [10] it can be seen that185

ρB,c = 2ρB

√

Var
[

Z̃(xB)
]

Var [z̄(xB)]

Var
[

Z̃(xB)
]

+Var [z̄(xB)]
, (12)

from which it follows that the two correlations are identical if and only if Var
[

Z̃(xB)
]

=186

Var [z̄(xB)], and that otherwise ρB,c < ρB. If the block concordance correlation is smaller187

than the block correlation this is due to differences in the variance because of the smoothing188

effect of the kriging predictor, which will be most pronounced when observations are collected189

on sampling grids which are coarse relative to the range of spatial correlation.190

2.2. Hypothetical examples191

The expressions given above were used to compute block correlations and concordance192

correlations in different settings. In each case I considered the block correlation and concor-193

dance correlation for a cell-centred square block using the nearest 400 observations from a194
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square sampling grid. Note that in this paper ‘grid spacing’ always denotes the spacing of195

the sample grid. Grid spacings from 100 to 1000 m were considered, and correlations were196

computed for square blocks of length 10 m to 500 m.197

Three spatial models were considered. In each case there was a nugget component198

with variance c0, and two nested spherical components one of range 250 m (comparable199

to the shorter grid spacings considered) and variance c1 and one of range 5 000 m (longer200

than any grid spacings) and variance c2. The first model was ‘nugget-dominated’ with201

c0 = 0.7, c1 = 0.1, c2 = 0.2. The second model was dominated by the short range term:202

c0 = 0.1, c1 = 0.7, c2 = 0.2. The third model was long-range-dominated: c0 = 0.1, c1 =203

0.2, c2 = 0.7. Figure 1 shows the block correlations and block concordance correlations204

for each model plotted as contours to show the effect of grid spacing and block length, and205

Figure 2 shows block correlation and block concordance correlation plotted against block206

length for a 300-m sampling grid.207

The following key properties of the block correlation emerge208

i. For any grid spacing the block correlation increases with block length, but the effect209

of block length depends on the dominant scales of variation relative to block size and210

grid spacing. In the short-range-dominated case the block correlation increases more211

rapidly with block length with smaller grid spacings than with coarser ones. In the212

long-range-dominated case the block correlation is insensitive to block length, other213

factors remaining constant.214

ii. For any block size the block correlation declines with increasing grid spacing. The215

sensitivity to grid spacing depends on the correlation structure of the random variable,216

and on the grid spacing in the short-range-dominated case.217

iii. For any fixed grid spacing and block size the block correlation is smallest in the short-218

range dominated case and largest in the long-range dominated case.219

The first point shows that the effect of block length on uncertainty of the prediction220

depends strongly on the important scales of spatial variation and the sampling intensity.221
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The effect may be small, in which case there is no strong reason to take uncertainty and its222

communication into account when selecting a block length. However, in other conditions (as223

in the short-range dominated case), with sampling on a grid of spacing similar in order to224

the range of correlation of a component of the variable, the uncertainty of a block prediction225

may be very sensitive to block size.226

Note, in respect of point (iii) that the variance at lags greater than 250 m is the same227

in the short-range and nugget-dominated cases. When most of this variance is in the nugget228

term then the effect of this on the uncertainty of the block mean is removed by any spatial229

aggregation, and the block size has little effect. It is the short-range component of variation230

which largely contributes to the increase in block correlation with block length. There is a231

practical consequence of this effect. Consider a case in which all information on a variable232

with the short-range dominated variability was available from a 400-m grid. In this case233

the short-range component would not be resolved, and its variance would all be attributed234

to a nugget component. This would result in overestimation of the block correlation. It is235

important to base sampling decisions on variograms estimated from sampling schemes that236

provide information on short lags relative to potential block sizes. However, a conservative237

approach would be to compute block correlations with a variogram function in which the238

nugget component is replaced with a nested spherical or other authorised model with vari-239

ance equal to the nugget and range equal to the shortest lag distance at which the variogram240

is estimated from supporting data. Note that the model substituted for the lag should be241

one like the spherical where the autocorrelation goes exactly to zero at the lag. If the mea-242

surement error of the variable is known independently then the nugget variance could be243

partitioned into a measurement error component and a component of variance correlated at244

fine scales. Only the latter component would be treated as correlated up to the shortest lag245

interval in the data, and the measurement error component treated as a nugget effect.246

The block concordance correlations in Figure 1 show similar behaviour to the block247

correlations, with similar effects of grid size and block length depending on the underlying248
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spatial dependence. In Figure 2 there is little difference between the block correlations and249

block concordance correlations for different block lengths with a sample grid spacing of 300-m250

in the long-range-dominated and nugget-dominated cases. However, the block concordance251

correlation decreases more markedly with block length than does block correlation in the252

short-range-dominated case.253

Figure 3 shows the ratio of block concordance correlation to block correlation for254

different block lengths and grid spacings in the short-range-dominated, nugget-dominated255

and long-range-dominated cases. In the latter two cases the ratio is nowhere very far from256

1.0, but in the short-range dominated case the minimum value over the cases explored is257

a little less than 0.6. The ratio is reduced by predicting means for smaller blocks or by258

increasing the grid spacing. This indicates that the tendency for the kriging predictor to259

smooth is increased by sparser sampling but also by predicting for smaller blocks. This latter260

effect is only made clear by the block concordance correlation. It would not be apparent in261

a visual assessment of block kriging on different supports because the absolute variance of262

the smaller blocks is larger.263

The block concordance correlation shows comparable effects of block length on pre-264

diction uncertainty to the block correlation. It is more useful than the block correlation as265

an absolute measure of uncertainty because it can be understood as a measure of scatter266

about the 1:1 line and not just a measure of linear association. I therefore suggest that267

the block concordance correlation is preferred for communication of the uncertainty of block268

kriging predictions, and the selection of a block size where there is flexibility to adjust this.269

3. A case study with soil data270

Next I present block correlations computed from a variogram for a soil property. The271

property is total nickel (Ni) content of topsoil determined from soil samples collected across272

the Humber–Trent region of eastern England as part of the Geochemical Baselines Survey273

of the Environment (Rawlins et al., 2003; Johnson et al., 2005). The data were obtained274

from sample sites at a mean density of about one per 2 km2 across the region. Each sample275
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was a composite formed from cores collected at the centre and vertices of a 20-m square.276

The cores were length 15 cm excluding surface litter. Material was subsequently air-dried,277

disaggregated and sieved to pass 2 mm and sub-sampled by coning and quartering. A 50-g278

sub-sample was ground in an agate planetary ball mill until 95% of the material was finer279

than 53 µm. Total concentration of Ni, along with 25 other elements was determined for280

each sample by wavelength dispersive X-Ray Fluorescence Spectrometry.281

Details of the analysis of these data are provided by Lark and Lapworth (2013). In282

summary, exploratory analysis suggested that there was no pronounced anisotropy in this283

variable. Isotropic variograms were estimated using the standard estimator of Matheron284

(1962) and alternative estimators, including the resistant estimator of Cressie and Hawkins285

(1980). Models were fitted to each set of estimates by weighted least squares and then tested286

by cross-validation. For each model the standardized squared cross-validation error, the287

square error divided by the point ordinary kriging variance, was computed for each datum288

and, following Lark (2000) the median value over all data was computed as a validation289

statistic. Lark and Lapworth (2013) tabulate the validation statistics. On the basis of290

these the model fitted to the empirical variogram obtained with the estimator of Cressie291

and Hawkins (1980) was selected. The estimates and fitted model are shown in Figure 4.292

Note that the model was fitted to variogram estimates at lag distances from approximately293

200 m to 30 000 m. The model is a double spherical with distance parameters of 2 535 and294

16 115 m and corresponding variance components of 42.5 and 82.7 respectively. The nugget295

variance is 11.6.296

The procedures described above were used to compute block correlations and block297

concordance correlations for Ni on square blocks from 10 m to 1 km in length from square298

grids of interval 2 to 5 km. Note that, as discussed in section 2.2, the block correlations299

were computed with a variogram model identical to the fitted one shown in Figure 4 except300

that the nugget component was replaced by a spherical variogram with range 200 m and301

variance equal to the nugget variance in the fitted model. Figure 5 shows contours of the302
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block correlation and concordance correlation over the range of block sizes and grid spacings303

considered. Over this space the block correlation varies from 0.60 to 0.86 and the block304

concordance correlation varies from 0.55 to 0.85. Figure 6 shows graphs of block correlation305

and concordance correlation against block length for 2-km and 5-km sample grids. With306

a 2-km square grid, the average sampling intensity of the Humber–Trent survey, the block307

concordance correlation is 0.8 for a 350-m block. This block length could be selected for308

kriging the variable to provide an overview of variation in nickel concentration when other309

operational factors do not determine the block size. However, the contour map for block310

correlations in Figure 5 shows that the sensitivity of the block correlation to block length is311

not very great for fixed grid spacing over the range considered. For example, if one preferred312

to use a 100-m block for practical reasons for prediction from a 2-km sampling grid the block313

concordance correlation is 0.76. This is because most of the variance (60%) is spatially314

correlated with a range of 2.5-km or more. With a 5-km sample grid — the sample intensity315

of the National Soil Inventory in England and Wales, (McGrath and Loveland, 1992) — the316

block concordance correlation for a 350-m block is 0.58. As seen in Figures 5 and 6, the317

block concordance correlation is not very sensitive to block length, and increasing the block318

length to 1000 m increases it to just 0.63. The dominant limitation on the confidence we319

can have in kriged results is the sampling density rather than the block size. For comparison320

Figure 7 shows block kriging variances for blocks up to 1000 m in length for prediction from321

2-km and 5-km sampling grids.322

Figure 8 shows block-kriged maps of Ni across the region with square blocks of 350-m323

length, and the local kriging variance, and Figure 9 shows the block correlations and block324

concordance correlations computed for each block over the stochastic model. Note that the325

concordance correlations are mostly larger than 0.8 (the median value is 0.88), which is the326

block correlation for a worst-case scenario prediction from a 2-km square grid: a cell-centred327

block as far as possible from any observations. The kriging variances, block correlations and328

block concordance correlations show some variation, since the sampling intensity is smaller329
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than planned in some areas due to problems of access.330

4. Discussion331

The key finding of this paper is that one cannot generalize about the relationship332

between block size and prediction quality. While increasing the block size increases block333

correlation and concordance correlation, the effect may be very small in cases where the334

variation is dominated by a component with a range of correlation which is long relative335

to grid spacing and block size. Thus, as in the Humber–Trent case, reducing the block336

length from 350 m to 100 m reduces block concordance correlation by a small amount (0.80337

to 0.76), particularly if one considers the inevitable uncertainty in the variogram estimate.338

The block length has no bearing on uncertainty of the predictions and can be selected on339

other criteria. If the block correlation is not deemed sufficient then this can be improved340

only by increasing the density of sampling, or finding an appropriate covariate.341

However, in cases where the sample grid spacing is of similar order to the correlation342

range of a significant component of the random variable, block correlation can be sensitive343

to block length. In the short-range-dominated hypothetical example (Figures 1 and 2) with344

a sample grid of 300 m, the block concordance correlation is increased from 0.35 to 0.80345

by using a 350-m block rather than a 50-m block. In these circumstances careful attention346

should be paid to both sample spacing and block length, and it could be concluded that347

making predictions on a 50-m block is not justified without increasing the sample density.348

More generally one might adhere to an operational rule that, at least when mapping to349

provide a synoptic overview, the block length is selected to achieve a block concordance350

correlation of no less than 0.8, and if this is not achievable at the sample density available351

then this is flagged for the data user. If the blocks were fixed at 50 m for practical reasons352

(management zones, for example), then the data user should be aware of the weak block353

concordance correlations and encouraged to examine the kriging variances and assess the354

implications of this uncertainty for any decisions made with the data.355

In addition to these observations it is suggested that the block concordance correla-356
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tion is used as an alternative to the kriging variance as the primary means to communicate357

the uncertainty of geostatistical maps, particularly for general users interested in a synoptic358

overview of the soil variable rather than those making specific decisions from the predictions359

(e.g. on land remediation) where more focussed decision analysis is necessary. In partic-360

ular one might use a verbal scale to indicate the strength of correlation such as the one361

proposed by Campbell and Swinscow (2011) whereby a correlation in the interval 0–0.19 is362

called ‘very weak’, 0.2–0.39 is ‘weak’, 0.40–0.59 is ‘moderate’, 0.6-0.79 is ‘strong’ and >0.8363

is ‘very strong’. It would be advisable to include the numerical values of the concordance364

correlation along with the verbal labels to improve the consistency of these interpretations365

by data users, and to avoid regressive interpretations (Budescu et al., 2009). If the kriging366

variances are also provided then the user, having formed an initial impression of uncertainty367

from the concordance correlations may be able to consider the implications of the confidence368

intervals of the kriging predictions on the scale of measurement of the target variable. This369

approach is consistent with the recommended practice of ‘progressive disclosure’ of informa-370

tion about uncertainty (e.g. Wardekker et al., 2008). More accessible and general measures371

of uncertainty are provided initially as a prelude to more focussed measures, which may372

require greater statistical understanding and may not be needed by all data users.373

In this paper I have introduced the block correlation and concordance correlation in374

the context of ordinary univariate kriging. However, these statistics could be computed375

in a straightforward way for predictions obtained by other model-based methods. The376

formulation of the block concordance correlation in Eq [11], for example, shows that we377

require the prediction error variance, variance of the block spatial mean and variance of the378

block mean estimate. In the case of block cokriging the first of these terms is the block379

cokriging variance, and the second two terms can be obtained from equations in this paper380

and the autovariogram for the target variable in the linear model of coregionalization. In the381

case of a best linear unbiased prediction with one or more covariates (kriging with external382

drift) the block correlation or concordance correlation is conditional on the block mean of the383
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covariate(s) in addition to the spatial configuration of sample points (as is the prediction384

error variance), but can be computed in the same way for different values of this mean385

using the underlying variance parameters. In some cases block estimates and prediction386

error variances are formed by aggregating point estimates, but in these circumstances the387

prediction error variances are only approximated and so it cannot be guaranteed that block388

correlations or concordance correlations computed from them are in the interval [−1, 1, ].389

5. Conclusions390

This paper presents the block correlation and concordance correlation, measures of391

the quality of a block-kriging prediction of a random variable. Using these measures of392

uncertainty it is shown that the size of a block on which a variable is predicted is not always393

a good proxy of the uncertainty in the information, although in some circumstances it may394

be, specifically when the sample grid is of comparable order to the range of correlation of395

a significant component of the random variable. Given this, in the context of the Global-396

SoilMap project, it is likely that for much of the globe, with relatively sparse soil data, the397

communication of uncertainty is unlikely to have much bearing on the choice of block size.398

However, it would be advisable to include block correlations along with other uncertainty399

measures to aid communcation of uncertainty to the general data user, particularly as the400

output is likely to be of value as a general overview of soil variation, prior to planning more401

detailed sampling to support local projects.402
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Appendix. For ordinary block kriging with a pure nugget variogram, ρB and ρB,c

are zero.

The ordinary block kriging weights for prediction from n unique observation sites,

λi, i = 1, 2, . . . n, are found by solution of the equation:

Aλk = b, (13)

where

b = [γ̄1, γ̄2, . . . , γ̄n, 1]
T

and γ̄i denotes the mean semivariance between the ith observation and the block. Matrix

A is (n+ 1)× (n+ 1) with all diagonal elements zero, and off-diagonal elements [i, j] equal

to the semivariance between the ith and jth observation if i ≤ n and j ≤ n. All off-diagonal

elements in the (n+ 1)th row and column are 1. In addition

λk = [λ1, λ2, . . . , λn, ψ]
T
,

where ψ is a Lagrange multiplier (Webster and Oliver, 2007). In the case of the pure nugget

variogram all observations are uncorrelated with each other and with the block so all weights

are equal, and, because of the Lagrange multiplier required by the unbiasedness condition

of ordinary kriging,

λi =
1

n
, i = 1, 2, . . . , n. (14)

In the case of the pure nugget variogram, all off-diagonal elements ofA [i, j] , i ≤ n and j ≤ n

are equal to Var[Z], as are the first n elements of b. Any of the first n equations in the

system in Eq [13] therefore takes the form

n− 1

n
Var[Z] + ψ = Var[Z],

and so

ψ =
Var[Z]

n
. (15)

The ordinary block kriging variance is

σ2

K
(xB) = bT

λk − σ2

D,B, (16)

(Webster and Oliver, 2007).

We can therefore write from Eqs [4],[6] and [16]

Cov
[

Z̃(xB), z̄(xB)
]

=
Var

[

Z̃(xB)
]

+Var [Z]− bT
λk

2
. (17)
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In the pure nugget case

Var
[

Z̃(xB)
]

= λ
TCλ =

Var [Z]

n
, (18)

as all elements in λ are 1

n
and C = diag {Var [Z]}; it is also the case that

bT
λk = Var [Z] + ψ. (19)

Substituting Eqs [18] and [19] into Eq [17], and noting Eq [15] gives

Cov
[

Z̃(xB), z̄(xB)
]

=
1

2

(

Var [Z]

n
− ψ

)

= 0, (20)

from which it follows that ρB and ρB,c are zero �
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Figure captions

1. Block correlation (left) and block concordance correlation (right) as a function of

grid spacing and block length for nugget-dominated, short-range-dominated and long-

range-dominated random variables.

2. Block correlation as a function of block length for nugget-dominated, short-range-

dominated and long-range-dominated random variables kriged from a 300-m square

grid.

3. The ratio of block concordance correlation to block correlation as a function of grid

spacing and block length for nugget-dominated, short-range-dominated and long-range-

dominated random variables.

4. Empirical variogram for topsoil Ni content in the Humber–Trent region with fitted

double-spherical model.

5. Block correlation (left) and block concordance correlation (right) as a function of grid

spacing and block length for Ni in the Humber–Trent region.

6. Block correlation (left) and block concordance correlation (right) as a function of block

length for Ni in the Humber–Trent region kriged from a 2-km or 5-km square grid.

7. Block kriging variance as a function of block length for Ni in the Humber–Trent region

kriged from a 2-km or 5-km square grid.

8. Kriged estimates of Ni content on discrete 350-m blocks across the Humber–Trent

region (Top) and corresponding block kriging variances (Bottom).

9. Block correlations (top) and concordance correlations (bottom) for kriged estimates

of Ni content on 350-m blocks across the Humber–Trent region.
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Figure 1: Block correlation (left) and block concordance correlation (right) as a function of
grid spacing and block length for nugget-dominated, short-range-dominated and long-range-
dominated random variables.
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Figure 2: Block correlation as a function of block length for nugget-dominated, short-range-
dominated and long-range-dominated random variables kriged from a 300-m square grid.
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Figure 3: The ratio of block concordance correlation to block correlation as a function of
grid spacing and block length for nugget-dominated, short-range-dominated and long-range-
dominated random variables.
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Figure 4: Empirical variogram for topsoil Ni content in the Humber–Trent region with fitted
double-spherical model.
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Figure 5: Block correlation (left) and block concordance correlation (right) as a function of
grid spacing and block length for Ni in the Humber–Trent region.
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Figure 6: Block correlation (left) and block concordance correlation (right) as a function of
block length for Ni in the Humber–Trent region kriged from a 2-km or 5-km square grid.
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Figure 7: Block kriging variance as a function of block length for Ni in the Humber–Trent
region kriged from a 2-km or 5-km square grid.
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