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Summary  21 

 22 

Soil in a changing world is subject to both anthropogenic and environmental stressors. Soil 23 

monitoring is essential to assess the magnitude of changes in soil variables and how they 24 

affect ecosystem processes and human livelihoods. However, we cannot always be sure of 25 

which sampling design is best for a given monitoring task. 26 

We employed a rotational stratified simple random sampling (rotStRS) for the estimation of 27 

temporal changes in the spatial mean of saturated hydraulic conductivity (Ks) at three sites in 28 

central Panama in 2009, 2010 and 2011. To assess this design’s efficiency we compared the 29 

resulting estimates of the spatial mean and variance for 2009 to those gained from stratified 30 

simple random sampling (StRS) which was effectively the data obtained on the first sampling 31 

time, and to an equivalent unexecuted simple random sampling (SRS). 32 

The poor performance of geometrical stratification and the weak predictive relationship 33 

between measurements of successive years yielded no advantage of sampling designs more 34 

complex than SRS. The failure of stratification may be attributed to the small large-scale 35 

variability of Ks. Re-visiting previously sampled locations was not beneficial because of the 36 

large small-scale variability in combination with destructive sampling, resulting in poor 37 

consistency between re-visited samples. We conclude that for our Ks monitoring scheme, 38 

repeated SRS is equally effective as rotStRS. Some problems of small-scale variability might 39 

be overcome by collecting several samples at close range to reduce the effect of fine-scale 40 

variation. Finally, we give recommendations on the key factors to consider when deciding 41 

whether to use stratification and rotation in a soil monitoring scheme.  42 

 43 

 44 
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Introduction 45 

 46 

Soil in a changing world is subject to both anthropogenic and environmental stresses. Yet soil 47 

provides the basis for food production and various ecosystem services. Changes in soil 48 

properties, their magnitude, rate and associated processes, are thus becoming increasingly 49 

important for management of natural resources and human livelihoods. For example, in many 50 

regions undergoing land-use change, soil is increasingly susceptible to erosion, leading to a 51 

decrease in fertility of agricultural areas and larger sediment loads in rivers (for example 52 

Giertz et al., 2005; Huth et al., 2012). In order to assess changes in soil properties on relevant 53 

spatial and temporal scales, soil monitoring studies, the repeated measurement of soil 54 

properties, are essential (Arrouays et al., 2009).  55 

When designing soil sampling schemes for monitoring purposes the first decision usually 56 

is whether to use a model-based or design-based approach (Brus & de Gruijter, 1993; Papritz 57 

& Webster, 1995; Brus & de Gruijter, 1997). A model-based approach is based on the 58 

assumption that the values of a soil variable in the study area can be modelled as a stochastic 59 

process. Because the model is the source of randomness in the subsequent data analysis the 60 

sampling need not be randomized and is commonly performed on a grid, which distributes the 61 

samples regularly over the study area and is especially suited for constructing maps of the soil 62 

variable. Inferences from these data are based on the model. However, if the assumptions of 63 

the model are not met, statistical inference from this design is invalid (Brus & de Gruijter, 64 

1997; Arrouays et al., 2012). Design-based methods, in contrast, do not assume an underlying 65 

model of the soil variable and base statistical inference solely on the inclusion probabilities of 66 

the sampling locations which are determined by the applied sampling design. They are often 67 

reported to be more suitable than model-based approaches for the determination of the spatial 68 

mean of an area and when only a small sample size is feasible (Brus & de Gruijter, 1993; 69 

1997; Lark, 2009).  70 
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If the aim of a soil sampling scheme is to assess the spatial mean of a soil variable and 71 

having selected a design-based approach, the next step is to decide on the details of the 72 

sampling design. Two widely used designs are simple random sampling (SRS) and stratified 73 

simple sandom sampling (StRS), described in depth by de Gruijter et al. (2006). Whereas SRS 74 

uses the whole study area to select random samples, in StRS the study area is first sub-divided 75 

into strata before sampling randomly within the strata. Stratification can be based on previous 76 

knowledge of underlying processes influencing the target soil variable or simply by dividing 77 

up the study area into compact strata. To determine the average status and change of a soil 78 

variable over large regions, stratified designs have been shown to be more efficient than SRS 79 

in various studies (Papritz & Webster, 1995; Black et al., 2008; Arrouays et al., 2012). 80 

However, an increase in efficiency depends on a substantial proportion of the variation of the 81 

soil variable being accounted for by the stratification, resulting in smaller within-stratum 82 

variances compared to the overall variance.  83 

The aims of sampling and the options for design are more complex in the case of 84 

monitoring. One key design decision is whether or not to re-visit some or all previously 85 

sampled locations in order to form a set of direct observations of change between the two 86 

sampling times. This approach is generally most efficient if the primary objective is to 87 

estimate change (Lark, 2009). However, if we are also interested in the spatial means for each 88 

sampling time, as in the present study, it may be advantageous to use a sampling design in 89 

which only a proportion of the sampling locations is re-visited and some additional locations 90 

are included in the second sampling time to increase the spatial extent of the sample (de 91 

Gruijter et al., 2006). This is termed a rotational design. The best sampling strategy depends, 92 

among other factors, on logistical constraints (maximum sample size, the challenges of re-93 

locating sample sites and costs of repeated sampling campaigns) along with the spatio-94 

temporal characteristics of the soil variable.   95 
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The target monitoring variable of this study is the saturated hydraulic conductivity (Ks) of 96 

the soil, a critical parameter in the water cycle. In the humid tropics, Ks changes mainly 97 

because of shifts in land use. Conversion of tropical forest to pasture has been widely shown 98 

to affect top-soil soil hydrological properties including Ks (Alegre & Cassel, 1996; Martinez 99 

& Zinck, 2004).  A consequence of this process can be the increased frequency of occurrence 100 

of overland flow and risk of top-soil erosion as the vertical water flow path is increasingly 101 

hindered by reduced Ks (Bonell & Gilmour, 1978; Hanson et al., 2004; Germer et al., 2010). 102 

In the last two decades, a different trend in land-use change has been observed; pastures and 103 

fields are being actively replanted with timber species or recolonized by secondary 104 

succession. With one exception (Zimmermann et al., 2010a), the consequences of this 105 

reforestation for soil hydraulic properties have all been examined with space-for-time 106 

approaches which assume that soils at different sites under varying stages of reforestation can 107 

be regarded as examples of the temporal trend in soil properties under reforestation at a fixed 108 

location (Zimmermann et al., 2008; Hassler et al., 2011b; Nyberg et al., 2012; Peng et al., 109 

2012). However, the space-for-time approach relies on various assumptions which have been 110 

criticised (Tye et al., 2013). In particular, this will not work if the likelihood of reforestation 111 

happening in a particular part of the landscape is not independent of the soil properties at that 112 

location. In order to provide definitive information on how hydraulic properties change under 113 

reforestation, unconfounded with possible spatial variation and space-time interactions, it is 114 

essential to monitor variables such as Ks at reforestation sites: however, it is not obvious 115 

which particular sampling design should be used for this task.  116 

The aim of this study was twofold. (i) To employ a rotational stratified simple random 117 

sampling design (rotStRS) for the estimation of the temporal change of the spatial mean in Ks 118 

at three reforestation sites in Central Panama. In this design a proportion of sampling 119 

locations are re-visited at consecutive sampling times while new locations are also added. 120 

Furthermore, the random sampling is done within strata. (ii) To assess the efficiency of the 121 
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employed design by comparing estimates of spatial mean and variance of the first sampling 122 

time to those of a StRS design, which effectively represents the first-year sampling of 123 

rotStRS. Additionally, we calculate the equivalent variance if the sample had been obtained 124 

from a SRS.  125 

 126 

 127 

Sampling designs 128 

 129 

This section gives an overview of the sampling designs that we considered, in addition to the 130 

rotStRS design used for sampling, and lists the equations to calculate their means and 131 

variances (adapted from de Gruijter et al., 2006). A schematic to visualize the differences 132 

between the three designs is shown in Figure 1.  133 

 134 

Simple random sampling (SRS) 135 

Sampling points are selected at random within the study area. Equations are adapted from de 136 

Gruijter et al. (2006), page 82ff.  In this presentation the ith observation of the target variable 137 

is denoted by ݖ௜.   138 

With sample size ݊ the estimated spatial mean for SRS across the study area is calculated 139 

by 140 

መௌோௌ̅ݖ ൌ 	
ଵ

௡
∑ ௜ݖ
௡
௜ୀଵ .         (1) 141 

The sampling variance of the estimated spatial mean is given by  142 

෠ܸ ሺ̅ݖመௌோௌሻ ൌ 	
ଵ

௡ሺ௡ିଵሻ
∑ ሺݖ௜ െ
௡
௜ୀଵ  መௌோௌሻଶ,       (2) 143̅ݖ

and the spatial variance is estimated by: 144 

ܵଶௌோௌ෣ ሺݖሻ ൌ 	 ଵ

௡ିଵ
∑ ሺݖ௜ െ
௡
௜ୀଵ  መௌோௌሻଶ.      (3) 145̅ݖ

 146 
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Stratified simple random sampling (StRS) with compact geographical stratification 147 

The study area is divided into strata of equal size, random sampling is then done within the 148 

strata. Equations are adapted from de Gruijter et al. (2006).  149 

For StRS the spatial mean can be estimated by 150 

መௌ௧ோௌ̅ݖ ൌ 	∑ ܽ௛	̅ݖመ௛
ு
௛ୀଵ ,         (4) 151 

where ̅ݖመ௛ is the sample mean in stratum h, ܪ	is the number of strata and ܽ௛	is the relative area 152 

of stratum h. 153 

The variance of ̅ݖመௌ௧ோௌ can be estimated by 154 

෠ܸ ሺ̅ݖመௌ௧ோௌሻ ൌ 	∑ ܽ௛
ଶ	 ෠ܸ ሺ̅ݖመ௛ሻ

ு
௛ୀଵ ,        (5) 155 

with  ෠ܸ ሺ̅ݖመ௛ሻ being the estimated variance of ̅ݖመ௛ calculated as follows: 156 

෠ܸ ሺ̅ݖመ௛ሻ ൌ 	
ଵ

௡೓ሺ௡೓ିଵሻ
∑ ሺݖ௛௜ െ
௡೓
௜ୀଵ  መ௛ሻଶ.         (6) 157̅ݖ

Here ݊௛is the sample size in stratum	݄. 158 

The spatial variance, that is to say the variance of the variable across the sampled area. 159 

can be estimated by 160 

ܵଶௌ௧ோௌ෣ ሺݖሻ ൌ 	 ଶതതത෢ௌ௧ோௌݖ െ ሺ̅ݖመௌ௧ோௌሻଶ ൅	 ෠ܸሺ̅ݖመௌ௧ோௌሻ,      (7) 161 

where ݖଶതതത෢ௌ௧ோௌ is the estimated mean of the target variable squared. It is calculated in the same 162 

way as ̅ݖመௌ௧ோௌ, but using squared values of the target variable.  163 

For comparisons between sampling designs we can calculate the variance of the sample 164 

mean that we would obtain if we would sample applying SRS with the same total sample size, 165 

n , as StRS; ݊ ൌ 	∑ ݊௛	
ு
௛ୀଵ ,	   166 

ෘܸ ሺ̅ݖመௌோௌሻ ൌ 	
ௌమ෢౏౪౎౏ሺ௭ሻ

௡
,         (8) 167 

where the breve accent on ෘܸ  indicates that this variance is based on the estimate of the sample 168 

mean, and is not itself a design-based variance for a mean from a  simple random sample. 169 

 170 

Rotational stratified random sampling (rotStRS) 171 
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Rotational sampling is applied for soil monitoring, for example, if the spatial mean of a target 172 

variable is estimated at multiple sampling times. It includes the re-visiting of some sampling 173 

locations at consecutive sampling times, called the matched sample. If these observations are 174 

correlated, the efficiency of estimation of the spatial mean at the second sampling time can be 175 

increased by including a regression estimator gained from the matched sample. Not all 176 

sampling locations are re-visited, and at each subsequent sampling time, additional locations 177 

are established. The locations that are not re-visited and that are unique to one sampling time 178 

are called the unmatched sample. When the rotational design is based on stratified sampling in 179 

space, some of the points within each stratum are kept, and new ones are additionally 180 

established for consecutive sampling times. Equations are adapted from de Gruijter et al. 181 

(2006), page 226ff. 182 

The spatial mean for the second sampling time is estimated by the composite estimator 183 

መଶ௖̅ݖ ൌ መଶ௚௥̅ݖ	ෝଵݓ
ሺ௠ሻ ൅	ݓෝଶ	̅ݖመଶగ

ሺ௨ሻ	.        (9) 184 

The second component of this estimator, ̅ݖመଶగ
ሺ௨ሻ, is the ߨ -estimator for the mean of ݖଶ estimated 185 

only from the unmatched sample, according to the stratification (Equation 4). The first 186 

component, ̅ݖመଶ௚௥
ሺ௠ሻ	 is a regression estimator of the spatial mean of ݖଶ. This is calculated by  187 

መଶ௚௥̅ݖ
ሺ௠ሻ ൌ 	 መଶగ̅ݖ

ሺ௠ሻ ൅ ܾሺ̅ݖመଵగ െ	̅ݖመଵగ
ሺ௠ሻሻ,                (10) 188 

where  ̅ݖመଶగ
ሺ௠ሻ is the ߨ-estimator for the mean of ݖଶ estimated from the stratified matched 189 

sample and ܾ is the regression coefficient from the regression of the matched sample from the 190 

second sampling time on the matched sample from the first sampling time. The estimate ̅ݖመଵగ 191 

is the mean of the stratified entire sample at the first sampling time, and ̅ݖመଵగ
ሺ௠ሻ is the mean of 192 

the stratified matched sample only at the first sampling time. The two separate estimates of 193 

the spatial mean at the second sampling time are combined in Equation (9) by weights that 194 

sum to one. These weights are calculated by 195 
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ෝଵݓ ൌ 1 െ	ݓෝଶ ൌ 	
௏෡	ቀ௭̅መమഏ

ሺೠሻቁ

௏෡	ቀ௭̅መమ೒ೝ
ሺ೘ሻቁ	ା	௏෡	ቀ௭̅መమഏ

ሺೠሻቁ
                (11) 196 

where ෠ܸቀ̅ݖመଶగ
ሺ௨ሻቁ is the estimated variance of the ߨ-estimator for the mean of ݖଶ from the 197 

stratified unmatched sample, calculated according to Equation (6) and ෠ܸ ቀ̅ݖመଶ௚௥
ሺ௠ሻቁ is the 198 

estimated variance of the regression estimator. The variance of the regression estimator is 199 

given by  200 

෠ܸ ቀ̅ݖመଶ௚௥
ሺ௠ሻቁ ൌ 	

ௌమ෢ሺ௘ሻ

௠
൅	

ௌమ෢ሺ௭మሻି	ௌమ෢ሺ௘ሻ

௡
,              (12) 201 

where  ܵଶ෢ሺ݁ሻ  is the estimated variance of the regression residuals (from the matched sample, 202 

ignoring stratification) and  ܵଶ෢ሺݖଶሻ  is the estimated spatial variance of the stratified whole 203 

sample at the second sampling time, calculated according to Equation (7). 204 

Finally, the variance of the composite estimator is estimated by 205 

෠ܸ 	ሺ̅ݖመଶ௖ሻ ൌ 	
ଵାସ	௪ෝభ௪ෝమ	ቀ

భ
೘షభ

ା
భ

೙ష೘షభ
ቁ

భ

ೇ෡	൬೥ത෠మ೒ೝ
ሺ೘ሻ

൰
ା

భ

	ೇ෡	൬೥ത෠మഏ
ሺೠሻ൰

.        (13) 206 

Similarly, the spatial mean of the first sampling time can be estimated with these 207 

equations by incorporating the appropriate information gained from the second-year data-set 208 

and the regression estimator based on the regression of the first-year matched sample on the 209 

second-year matched sample.  210 

 211 

 212 

Materials and methods 213 

 214 

Study site 215 

The study was conducted in central Panama in the watersheds of Río Agua Salud and Río 216 

Mendoza, which drain into the Panama Canal, partly covering the project area of the Agua 217 
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Salud Project (Figure 1A). The study area is characterised by a strongly dissected pre-Tertiary 218 

basalt plateau at an elevation between 53 and 331 m above mean sea level, with narrow 219 

interfluves, linear slopes averaging 42% and narrow or no valley floors. Top-soil textures in 220 

the area vary from silty clay to clay, pH values (in water) range from 4.4 to 5.8 (J.S. Hall et 221 

al., unpublished data). 222 

The climate of the study area is tropical with a distinct dry season from mid-December to 223 

April. According to long-term records from nearby Barro Colorado Island, annual rainfall 224 

averages 2641 ±485 mm (mean ±1 standard deviation, n = 82, data from 1929 to 2010, by 225 

courtesy of the Environmental Science Program, Smithsonian Tropical Research Institute, 226 

Republic of Panama), and mean daily temperature varies little throughout the year, averaging 227 

27 °C (Dietrich et al., 1996). 228 

Land use in the area varies over short spatial and temporal scales and includes pastures, 229 

timber plantations and secondary forests of different ages. This study was focussed on three 230 

catchments undergoing reforestation. The first site was a 34-ha plantation with native species, 231 

established in 2008. Formerly the catchment had been actively used as pasture, but included 232 

some larger trees. The second site was also a small former pasture catchment, covered by 233 

5.7 ha of 3-year old secondary succession. The third catchment holds a 10.9-ha teak plantation 234 

planted in 2008, formerly covered by a mixed land use which was partly pasture and partly 235 

shrub-land.  236 

 237 

Sampling design 238 

Each site was sampled to determine the spatial mean of Ks in the years 2009, 2010 and 2011 239 

in a rotStRS design with compact geographical stratification. We first divided each of our 240 

catchments into twenty compact strata of equal area (19 in the case of the secondary-241 

succession catchment) with a k-means clustering algorithm (Brus et al., 1999) from the R 242 

package SPCOSA (Walvoort et al., 2010). Within each stratum, we randomly selected two 243 
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sampling locations in the first year (2009) and marked them after sampling. In the following 244 

year we kept one of these two points per stratum, discarded the other and randomly chose a 245 

new sampling point. For the third-year campaign the sampling points in the matched sample 246 

for 2009 and 2010 were discarded, the unmatched sample points from 2010 were retained 247 

(now the matched set for 2010/2011) and a new sample point was randomly selected within 248 

each stratum to constitute the unmatched sample set for 2011; see Figure 2 for an example. 249 

The re-sampling of points in the matched set in any year took place within a maximum 250 

distance of one metre from the previous year’s sampling point. Note that this initial sampling 251 

design is not appropriate for rotStRS because there is only one matched and one unmatched 252 

sample point per stratum in any year (which does not permit the calculation of a within-253 

stratum variance).  For this reason we merged adjacent strata so that each of the new strata 254 

contained (ideally) two matched and two unmatched points in any one year.  In the case of the 255 

secondary-succession catchment (19 initial strata) one cluster of 3 strata were merged, and the 256 

remainder were merged in pairs. 257 

 258 

Field sampling of saturated hydraulic conductivity (Ks) 259 

The saturated hydraulic conductivity (Ks) was measured on undisturbed soil cores. Two soil 260 

cores of 8.9 cm diameter were simultaneously extracted at depths 0–6 cm and 6–12 cm on 261 

levelled ground using a standard coring device (Soilmoisture Equipment Corporation, Santa 262 

Barbara, USA). Core ends were cut flat with a sharp knife and the samples were slowly 263 

saturated upside down over a period of 64 hours to prevent air entrapment. We measured Ks 264 

by applying a constant water head and following a simplified version of the methodology of 265 

Reynolds et al. (2002). After establishing a constant flow rate, Ks can be calculated according 266 

to Darcy’s Equation for saturated conditions: 267 

ݍ  ൌ 	െܭ௦ 	d݄ dݏ⁄ ,	         (14) 268 
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where ݍ is the flux density [m s-1], ܭୱ is the saturated hydraulic conductivity [m s-1] and  269 

d݄ dݏ⁄  is the hydraulic gradient. The flux density can be expressed as ݍ ൌ 	ܳ ⁄ܣ  with ܳ being 270 

the water flux [m3 s-1] and ܣ the cross-section of the sample [m2].  271 

 272 

Data analysis 273 

Our data exhibited the well-known skewness for Ks. To obtain normally distributed data-sets 274 

for the analysis of the different sampling design estimates, we performed a Box-Cox 275 

transformation (Box & Cox, 1964). A common Box-Cox exponent was estimated for all data-276 

sets (grouped by site, year and depth), and the BOXCOX procedure from the MASS package in R 277 

(Venables & Ripley, 2002) was used for estimation by maximum likelihood. The estimated 278 

value of the exponent was 0.16. Thus, all analyses were carried out with the transformed Ks 279 

values as follows:  280 

୆େݖ ൌ
ሺ௭బ.భలିଵሻ

଴.ଵ଺
 .           (15) 281 

After estimating means and variances of the means, we calculated 95% confidence 282 

intervals around the means. The back-transformation of the means and confidence interval 283 

limits was done by 284 

ݖ ൌ ሺݖ୆େ ൈ 0.16 ൅ 1ሻଵ/଴.ଵ଺.        (16) 285 

Because the transformation is non-linear the simple back-transformation of the sample mean 286 

yields a value which is a biased estimate of the mean on the original scale of measurement. 287 

However, assuming normality of the transformed data, the back-transformed mean can be 288 

regarded as an estimate of the median on the original scale of measurement (Pawlowsky-289 

Glahn & Olea, 2004) since the mean and median of a normal variable are coincident, and 290 

order statistics can be back-transformed simply for a monotonic transformation such as 291 

ours. Because of this monotonic property the upper and lower confidence interval limits can 292 

also be back-transformed directly.   293 
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The data analysis was split into three parts: First, we examined the temporal change in 294 

spatial mean of Ks according to the employed sampling design rotStRS, by plotting the means 295 

and confidence intervals for the different years, catchments and depths.  296 

Second, we assessed the efficiency of the three different sampling designs rotStRS, StRS 297 

and SRS for estimating the sample mean of the first sampling time, 2009, by comparing the 298 

width of the respective confidence intervals. Calculations were done according to the 299 

equations cited in the Sampling Design section. We can do this design comparison because 300 

the first-year sampling considered in isolation can be analysed as a StRS, and Equation (8) 301 

provides the means to calculate the variance of the sample mean for a notional SRS with the 302 

same sample size as the StRS. Analysis of the rotStRS requires merged strata without missing 303 

samples, whereas the calculations according to a StRS could also be based on the original 304 

stratification without merging strata and hence, on a larger sample size. In order to have the 305 

same sample size for the comparison of sampling design efficiency we used a reduced data-306 

set for each catchment and depth which satisfied the conditions for both rotStRS and StRS.  307 

Third, we examined the benefits of stratification by comparing the spatial variance of the 308 

first-year StRS according to Equation (7) with a pooled within-stratum variance based on 309 

Equation (6), calculated as follows: 310 

 ෠ܸ୮୭୭୪ୣୢ ൌ 	
ଵ

ேିு
∑ ∑ ሺݖ௛௜ െ

௡೓
௜ୀଵ መ௛ሻଶ̅ݖ

ு
௛ୀଵ ,       (17) 311 

where ܰ is the total sample size and ܪ is the number of strata. We then assessed the benefits 312 

of including the regression estimator by evaluating the consistency between re-visited 313 

sampling locations with the regression of the matched sample of the second sampling time on 314 

the matched sample of the first sampling time.  315 

All statistical analyses were carried out in the language and environment R (R 316 

Development Core Team, 2009).  317 

 318 

 319 
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Results 320 

 321 

Change in Ks in the three catchments from 2009 to 2011 322 

The estimated means in the native-species catchment suggested a decline in Ks from 2009 to 323 

2011 at both depths (Figure 3), with the largest change from 2009 to 2010. The differences 324 

were particularly pronounced for the 6–12-cm depth where the confidence intervals for the 325 

2009 and 2010/2011 estimates did not overlap. For the teak catchment at both depths any 326 

differences were small relative to the confidence intervals for the spatial mean in any one 327 

year. The secondary-succession catchment, however, showed an increase in Ks at the 0–6-cm 328 

depth which was large relative to the confidence intervals for 2009 and 2011. Ks at the 6–12-329 

cm depth also showed an increase, but this was smaller.   330 

 331 

Comparison of the different sampling designs 332 

We assessed the efficiency of the different sampling designs by comparing the resulting 333 

estimated spatial means of Ks and their confidence intervals after back-transformation for the 334 

common data-set from 2009. The confidence interval limits of StRS, SRS and rotStRS 335 

(Figure 4) showed only negligible differences, therefore there was no general increase in 336 

efficiency. A possible exception could be seen for the teak catchment at the 0–6-cm soil depth 337 

as the confidence intervals for SRS and rotStRS were slightly wider than for StRS.  338 

 339 

Analysis of spatial and within-stratum variance components and of the relationship between 340 

matched samples 341 

In StRS, an increase in efficiency would be expected if the within-stratum variance was 342 

smaller than the spatial variance of the variable across the whole area. We assessed this by 343 

comparing the spatial variance of StRS with a pooled within-stratum variance (Table 1). The 344 

results showed that these variances values were within the same range, in two cases the 345 
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pooled within-stratum variance was even larger than the spatial variance, thus hinting at only 346 

a very small or no increase in efficiency caused by stratification.   347 

The rotational sampling is dependent on the regression of matched samples in consecutive 348 

years. Exemplary scatterplots of the matched samples of 2010 on 2009 for the three 349 

catchments and two soil depths are illustrated in Figure 5. The plots showed that there was no 350 

strong relationship between the matched samples of the two years. Similar weak relationships 351 

could be seen for the matched samples for the years 2011 on 2010 (plots not shown).   352 

 353 

 354 

Discussion 355 

 356 

Change of Ks in the three catchments 357 

The observed decrease in Ks at both depths in the native-species catchment (Figure 3) could 358 

result from the consequences of rapid land cover change. In 2008, this catchment was an 359 

extensively managed pasture with some large trees, which were removed for reforestation 360 

with native species. During the felling and removal of the tree stumps, the soil was probably 361 

loosened to some extent, leading to an initial increase in Ks in 2009. The subsequent decrease 362 

back to values close to the baseline data might suggest a settling of the soil after the initial 363 

disturbance.  364 

In the teak catchment any differences were small relative to the confidence intervals 365 

(Figure 3). The variation between the three years was probably also attributable to the rapid 366 

transformation of land cover, as here the formerly shrubby and diverse vegetation was 367 

removed for the teak plantation.   368 

The catchment under secondary succession did not suffer from these severe changes; 369 

cattle grazing stopped here in the summer of 2006, after which secondary succession took 370 

over. The data exhibited a pronounced increase at the 0–6-cm depth and a weak increase at 371 
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the 6–12-cm depth when compared with the baseline data. They showed the recovery of 372 

mainly top-soil Ks after abandoning pasture use and were consistent with other studies 373 

conducted in the same area (Hassler et al., 2011b) and in other regions in the humid tropics 374 

(Zimmermann et al., 2008; 2010a; Peng et al., 2012).   375 

 376 

Efficiency of stratification for better estimation of the variance 377 

Confidence interval widths as calculated for StRS and SRS were very similar (with the 378 

possible exception of the teak catchment for the 0-6-cm soil depth). The stratification did not 379 

increase efficiency because of the very small difference between the spatial variance and 380 

pooled within-stratum variance (see Table 1). As noted above, the benefits of stratification are 381 

seen when the strata are internally uniform with regard to the target soil variable and most of 382 

the variation is seen between the strata. For Ks these differences could result from land cover 383 

or marked changes in soil type. In our catchments, however, land cover and soil type were 384 

relatively uniform; consequently, we divided the catchment into compact geographical strata. 385 

This type of stratification may nonetheless be beneficial, but only if the target soil variable 386 

exhibits spatial structure at larger scales, when the range of spatial autocorrelation is large (de 387 

Gruijter et al., 2006; Walvoort et al., 2010; Zimmermann et al., 2010b). However, Ks 388 

frequently fails to exhibit large-scale structure, it is often characterized by substantial small-389 

scale variability, partly because of the biotic influences acting on this scale which determine 390 

soil structure and partly an artificial effect when Ks is sampled with limited support such as 391 

small soil cores (Bouma, 1983; Mallants et al., 1997; Sobieraj et al., 2004; Hassler et al., 392 

2011a).   393 

 394 

Efficiency of the rotational design 395 

Rotational designs increase efficiency by incorporating knowledge about change of a soil 396 

property via the regression of matched samples. In our study, the regression estimator 397 
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obviously did not improve the variance estimate substantially, as the confidence intervals of 398 

the rotational design rotStRS were similar or wider than for the non-rotational case StRS 399 

(Figure 4).   400 

The reason for this became clear when examining the scatterplots of the matched samples 401 

for the different catchments, soil depths, comparing the years 2009 with 2010 and 2010 with 402 

2011. The plots showed a weak relationship between the matched samples of all data-sets. 403 

The regression estimator will have advantages over alternatives estimating the spatial mean 404 

from single year data when there is a strong regression of the matched samples. With only a 405 

weak relationship the regression estimator may perform poorly because of the substantial 406 

uncertainty in the regression coefficient. We think that the reason why was there such little 407 

temporal consistency of samples taken at the same location was that we undertook destructive 408 

sampling by using soil cores. When re-sampling a sampling location, the core in the second 409 

year could be taken from no less than 50 cm from the previous year’s sampling location in 410 

order to sample undisturbed conditions. Sometimes it was necessary to sample further from 411 

the original location if the nearer sites were affected by compression or large roots and so 412 

could not be sampled. Consequently, in some cases matched samples were located about one 413 

metre apart, and because of the small sample support and large small-scale variability they 414 

may not have qualified as matched samples (Goidts et al., 2009). To overcome this problem, 415 

taking several samples at the same location to account for Ks small-scale variability could be a 416 

suitable approach. There are some examples in the soil organic carbon literature that detected 417 

significant temporal changes by expanding their support from locations to larger areas 418 

(Arrouays et al., 2012).  419 

 420 

 421 

Conclusions 422 

 423 
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The rotational stratified simple random sampling design that we used for our Ks monitoring 424 

studies did not yield the expected improvement in efficiency over simpler designs such as 425 

simple random sampling. The reasons for this were the small-scale variability and lack of 426 

large-scale structure in Ks: hence the strata were no less internally variable than the study site 427 

as a whole. Including a regression estimator of the spatial mean in the rotational design also 428 

did not yield benefits because of the poor consistency of the matched samples. The lack of 429 

consistency is probably because of the large short-range variability of Ks. Thus, when 430 

destructively sampling Ks using soil cores, matched samples, albeit close in space, might have 431 

very different Ks values.  432 

For Ks studies, taking more samples at the same location to better incorporate small-scale 433 

variability and reduce the uncertainty of estimates for the spatial mean might overcome some 434 

of these problems. Generally, we recommend that the spatial structure and temporal 435 

consistency of the target variable are given careful thought when designing monitoring 436 

schemes. Appropriate information on the spatial variability of the variable and the potential to 437 

make consistent estimates at matched sites can be collected in a pilot study.  438 

We summarize these conclusions in some practical recommendations for designing an 439 

efficient sampling scheme for soil monitoring:  440 

 In a design-based approach, stratification is a good way to spread out the samples 441 

across the study site. However, in terms of improving the variance estimate, 442 

stratification is only useful either if the strata show marked differences in factors 443 

influencing the target variable, or, in the case of compact geographical strata, if 444 

the target variable exhibits large-scale spatial structure. A pilot study can give 445 

insights into the spatial structure of the variable or potential strata.  446 

 Rotational designs are helpful in estimating a temporal trend of a target variable in 447 

other circumstances. In order to take advantage of the regression estimator, there 448 

must be a strong consistency between repeated observations at the same location. 449 
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An assessment of the ‘best possible’ consistency between re-visited samples could 450 

be done in a pilot study: if a set of exploratory sampling locations were sampled 451 

and then re-sampled, this would indicate how consistent matched observations can 452 

be in the absence of temporal change. If the consistency is poor then it would be 453 

clear that a rotational design has no advantages. Additionally, sampling more 454 

points at close range and thus increasing the support of the sample can be 455 

beneficial if sampling is destructive and therefore cannot target the same soil 456 

volume at consecutive sampling times. 457 

 Judging how the target variable complies with the abovementioned conditions is 458 

the paramount step in deciding whether to include stratification or a rotational 459 

approach. If, as was the case for our Ks sampling, the conditions are not fully met, 460 

choosing SRS over more complicated designs will barely affect the efficiency of 461 

the estimates of the means and variances. In some cases SRS might even improve 462 

the estimates. Thus, if other considerations such as potential difficulties in re-463 

visiting the exact same sampling points for rotational sampling or 464 

straightforwardness of data analysis play a role, repeatedly applying SRS poses a 465 

very suitable design option.   466 
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FIGURE CAPTIONS  581 

 582 

Figure 1  Schematic representation of the three sampling designs that we compare in this 583 

study. Abbreviations are: SRS for simple random sampling (A), StRS for stratified simple 584 

random Sampling (B), rotStRS for rotational stratified simple random sampling (C), SP for 585 

sampling points, Y1 and Y2 for Year 1 and Year 2. 586 

 587 

Figure 2  (A) Location of the study in Central Panama, (B) Map of the sampling design in the  588 

native-species catchment in 2010. Shown are the sampling points of 2010, the matched 589 

sample that was sampled in 2009 and re-sampled in 2010 and the stratification. 590 

 591 

Figure 3  Means and confidence intervals of Ks calculated according to rotStRS (rotational 592 

stratified simple random sampling). Shown are the comparisons between the three years 2009, 593 

2010 and 2011, the three study sites, covered by native species, teak and secondary 594 

succession, and the two depths 0–6 cm and 6–12 cm. The dashed lines within the plots show 595 

the baseline data before reforestation, sampled according to a StRS, however, the strata were 596 

different from those for the rotStRS monitoring design.  597 

 598 

Figure 4  Means and confidence intervals of Ks for the year 2009, the three catchments and 599 

both depths, calculated according to StRS (stratified simple random sampling), SRS (simple 600 

random sampling) and rotStRS (rotational stratified simple random sampling). 601 

 602 

Figure 5  Exemplary scatterplots for the matched samples of 2009 and 2010, for the three 603 

catchments and two depths. The transformed data are shown.    604 

  605 
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Figure 2   609 
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Figure 4   613 

614 



 30

Figure 5   615 
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TABLES  617 

 618 

Table 1  Spatial variance and pooled within-stratum variance for the three different 619 

catchments and both depths. Abbreviations are Vsp for the spatial variance, Vpool for the 620 

pooled within-stratum variance  621 

Catchment   Depth /cm  Vsp /(mm hour‐1)2 Vpool /(mm hour‐1)2 

Native species  0–6   13.9  14.4 

Teak  0–6   21.3  18 

Secondary succession  0–6   11.4  9 

Native species  6–12   13.8  9.9 

Teak  6–12   17.7  18.7 

Secondary succession  6–12   7.8  6.5 

 622 


