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Abstract
Conservation biologists have only finite resources, and so must prioritise some species

over others. The EDGE-listing approach ranks species according to their combined evolu-

tionary distinctiveness and degree of threat, but ignores the uncertainty surrounding both

threat and evolutionary distinctiveness. We develop a new family of measures for species,

which we name EDAM, that incorporates evolutionary distinctiveness, the magnitude of de-

cline, and the accuracy with which decline can be predicted. Further, we show how the

method can be extended to explore phyogenetic uncertainty. Using the vascular plants of

Britain as a case study, we find that the various EDAMmeasures emphasise different spe-

cies and parts of Britain, and that phylogenetic uncertainty can strongly affect the prioritisa-

tion scores of some species.

Introduction
Global biodiversity is declining [1, 2], forcing conservation biologists to prioritise their finite
conservation budgets in order to save as many species as possible (the ‘Noah’s Ark problem’;
[3]). The EDGE approach [4] prioritises species according to a combination of how evolution-
ary distinctive (‘ED’) and how globally endangered (‘GE’) they are. EDGE listing is a popular
approach (cited over 100 times onWeb of Knowledge), and has been applied to mammals [4]
and amphibians [5], and related methods have been used for birds [6, 7]. Evolutionary distinc-
tiveness is an appealing metric to many biologists [8]; beauty and utility are difficult to quanti-
fy, but the millions of years of evolutionary history a species or clade uniquely represents
are not.
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EDGE listing has proven a useful tool, but its components are not optimised for local-scale
prioritisation. Red Listing status (the GE component) is a global ranking, as its maintainer
(IUCN) acknowledges by funding the ‘National Red List’ project (http://www.nationalredlist.
org/). Similarly, calculating evolutionary distinctiveness with a global phylogeny will underesti-
mate the national distinctiveness of species with close relatives living only in other countries
[9]. Such clades might be distinctive and important local components of many ecosystems, but
could paradoxically be prioritised in none of them.

More fundamentally, EDGE does not attempt to distinguish between the magnitude of a
threat and the extent to which we understand that threat. A species undergoing a large decline
that is understood to be a transient part of a natural cycle may be of lesser concern than a spe-
cies undergoing a smaller decline that we do not understand or know how to reverse. Distin-
guishing among the finer points of species’ threats is impractical when dealing with the
thousands of species in the global Red Lists, but individual countries have fewer species and
often have more detailed, comparable within-country data.

We propose a family of prioritisation strategies (‘EDAM’) that extends the EDGE system, in-
corporating species’ evolutionary distinctiveness, magnitude of decline, and the accuracy with
which we can predict declines in the absence of successful conservation intervention. Each of
these components is transformed to be on a common numerical scale, making their implicit
trade-off in EDGE explicit in EDAM. Using a novel genus-level phylogeny for the majority of
vascular plant species in Britain, we report the species and parts of Britain that EDAM and
EDGE prioritise.

EDAM framework
EDGE consists of two components: evolutionary distinctiveness (‘ED’; the phylogenetic diversi-
ty of a clade split equally among its members [4], which is related to how much branch length
is unique to each species), and how globally endangered (‘GE’) a species is according to the
IUCN Red List. We propose a general family of prioritisation indices (‘EDAM’), which incor-
porate ED, the accuracy with which decline (or threat) can be predicted (‘A’), and the magni-
tude of that decline (or threat) (‘M’). There are many ways of assessing all of these
components; subscripts can be used to distinguish among them where there is ambiguity, but
where there are no subscripts we use precision to measure accuracy, and range change to mea-
sure magnitude. We describe the specific evolutionary, accuracy, and magnitude components
that we use in this study in the next section, and Table 1 summarises each of them as well.

Table 1. Summary of measures. Note that all measures prioritise evolutionary distinctiveness (‘ED’ above),
and that all components are scaled such that their means are zero and standard deviations one unless stated.
As discussed in the text, in the EDAM framework EDGE values could be called EDMRL, although EDGE com-
ponents are not scaled.

Measure Formula Prioritises

EDGE
(EDMRL)

unscaled ln(ED) + Red List Global threat

EDM ln(ED) + range change British threat

EDAM ln(ED) + range change + precision of
decrease

Range change and low precision of
decrease

EDAM0 ln(ED) + reversed range change + precision
of increase

Range change and low precision of
increase

ED(AM)max ln(ED) + max(range change, precision) Greatest value of threat and accuracy of
prediction

doi:10.1371/journal.pone.0126524.t001

EDAM: Evolutionary Distinctiveness, Accuracy, and Magnitude of Decline
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EDAM indices, like EDGE, are the sum of their components, but under EDAM each of these
components is scaled to have a mean of zero and standard deviation of one. Thus, each compo-
nent contributes equally to the measure, and judgements about which components are more
important can readily be made explicit by multiplying components by a weighting factor.

An EDAMmeasure need not contain all three terms. For instance, EDMRL incorporates
only evolutionary distinctiveness and Red Listing status; and differs from EDGE only in that its

components are scaled. However, EDM
0
RL incorporates evolutionary distinctiveness and the ne-

gation of Red Listing status (indicated by the prime)—this would prioritise species that are evo-
lutionarily distinct and not threatened. Such species are not of conservation concern, but
evolutionarily distinct species with increasing ranges could be potentially damaging invasive
species (as discussed with EDAM0 in the case study below). If components are to be multiplied
by scaling factors, we suggest they are represented in the superscripts of the measures; for ex-
ample, EDM2 would weight the magnitude of decline as twice as important as evolutionary dis-
tinctiveness, and vice-versa for ED2M. This labelling scheme has been chosen such that
superscript signifies multipliers of the quantitative effect of a term, while subscript denotes
modifiers that indicate a different kind of measure. There are also precautionarymeasures such
as ED(AM)max, for which evolutionary distinctiveness (ED) is added to the greatest of the accu-
racy (A) and magnitude (M) measures, emphasising species that are either declining rapidly, or
with range dynamics we understand poorly. Such a measure would not be possible if both accu-
racy and magnitude had not been transformed to be on a common scale.

Weighting conservation actions according to the confidence we place in the composition of
clades in a phylogeny (e.g., bootstrap values) would be unhelpful, but it is useful to know the ef-
fect that phylogenetic uncertainty has on prioritisation. Most methods of phylogeny construc-
tion produce a set of credible, but not optimal, trees, and repeating analyses across this subset
accommodates phylogenetic uncertainty. Estimates could be weighted by the likelihood of the
tree across which each measure was calculated, estimating the impact of
phylogenetic uncertainty.

Case study: British vascular plants
EDAMmeasures have three components: evolutionary distinctiveness, accuracy of decline or
threat, and magnitude of decline or threat. Below we describe how each of these components
was generated, and then how each EDAMmeasure was calculated. For comparison, EDGE
scores were also calculated. Note that the EDAM results are based on decline, whereas the Red
Listing data upon which the EDGE scores are based somewhat blur the distinction between de-
cline and threat depending upon the criterion under which a species is listed [10].

Phylogeny building (evolutionary distinctiveness)
Samples from 548 species were collected from natural British populations, each representing a
different plant genus. All samples were collected as part of the UK Flora DNA Bank Project,
under licence from Natural England. The rbcL locus was amplified either as a single fragment,
or two overlapping, PCR product(s) to obtain the whole region. Ten primers were utilised in a
number of different combinations to obtain rbcL sequences from diverse groups of plant taxa.
Eight of these primers were from previous publications: 1F, 1460R (50 TCC TTT TAG TAA
AAG ATT GGG CCG AG 30), 724R, 636F [11]; 724Rm [12]; 1360R [13]; 32F, 1367R [14]. The
remaining primers were developed at RBG Kew (Genetics Section): 1FA (50 ATG TCA CCA
CAA ACA GAG AC 30) and 627F (50 CAT TTA TGC GCT GGA GAG ACC G 30).

Double stranded PCR amplification of rbcL was performed in an ABI thermal cycler, using
pre-made 2.5mMMgCl2 PCR Mastermix (ABgene), 14μM of forward and reverse primer,
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1.0μl BSA (0.4% w/v), and between 50–100ng of total DNA, in 50μl reaction volumes. Thermal
cycler conditions were (1) 96°C, 1min; (2) 96°C, 1min, (3) 48°C, 30sec, (4) 72°C, 1min; cycle
(2)-(4) was repeated for 28 cycles, (5) 72°C, 7min; (6) 4°C. Products were cleaned using QIA-
quick PCR Purification Kit (Qiagen) according to the manufacturer’s protocol. These DNA
fragments were sequenced using 2.0μl BigDye™ ABI PRISM™ (Perkin-Elmer), 10–20ng of PCR
DNA, and either 50 forward or 30 reverse primer (1.4μM) in 5.25μl reaction volumes. ABI ther-
mal cycler conditions for dye-terminating reactions were 96°c, 1min; 66°c, 5sec; 72°c, 45sec; for
26 cycles. The sequencing products were analysed on an ABI 3100 automated DNA Sequencer
(Perkin-Elmer). Both 50 (forward) and 30 (reverse) DNA sequences were obtained from each
PCR product, and assembled and edited using Autoassembler (Version 1.4.0).

All samples sequenced as above have been released onto GenBank [15] (see S1 File for acces-
sion numbers), but only 364 of them were used for this project. An additional 312 different
rbcL sequences were downloaded from GenBank using phyloGenerator [16], meaning the
alignment altogether represents 91% of native genera in Britain (according to PLANTATT;
[17]). We constructed a family-level constraint tree based on the APG III classification [18] in-
cluded with Phylomatic [19]. After these analyses were performed, fourteen of the sequences
were found to have sequencing errors that caused frame-shifts at the extreme 30 end of the se-
quences. The corrected sequences were uploaded to GenBank, but the uncorrected sequences,
along with a demonstration that these sequence-changes do not alter phylogenies built with
them, are presented in S1 File.

We aligned the sequences usingMAFFT [20, 21], and chose the phylogeny with the greatest
likelihood (under a GTR-γ DNA substitution model) from two separate RAxML [22] runs.
Each run partitioned the alignment into three codon positions, used the ‘GTR-PSR’ (previously
called ‘GTR-CAT’) DNA substitution model, and was constrained using the constraint tree de-
scribed above. The first run used 500 random starting trees (the log likelihood of the best tree
was −93656.22), and the second was an integrated rapid bootstrap search with 2000 random
bootstrap searches and 400 subsequent thorough maximum likelihood searches (the log likeli-
hood of the best tree was −93669.50). Since the best-scoring tree was found in the first search,
we annotated that tree with the 2000 rapid bootstrap trees from the second search, and rate
smoothed it using PATHd8 [23], setting the root age to 1.

Genera in the phylogeny containing more than one species were replaced with a polytomy
containing all the species listed in PLANTATT in that genus, with the polytomy placed either
half-way along the branch that led to the representative of that genus in the phylogeny, or at
the 80th quantile of genus age in the phylogeny, whichever was smaller. This reduces bias intro-
duced by particularly isolated sister species; many of the gymnosperm genera are distantly re-
lated to one another, and excessively long branches within genera could have biased the results.
While more complex algorithms are available to assign ages to polytomies (e.g., [24]) the quan-
tile at which the cut is made does not affect these results (see S1 Fig), and it is practical to apply
this method to large numbers of phylogenies (see below).

Evolutionary distinctiveness was calculated across the phylogeny using the ed.calc function
in caper [25] with the Isaac correction for polytomies. The natural logarithm of these ED values
was used to calculate EDGE, and the same (log-transformed) data were scaled to have a mean
of 0 and standard deviation of 1 for use in the EDAMmeasures. In the original EDGE list 1 was
added to the ED values before taking their logarithm to normalise the result [4]; doing so was
not necessary in this case since the data were normally distributed, and in fact would have
made the data extremely non-normally distributed. The entire procedure of rate smoothing,
species addition, and ED calculation was additionally performed using each of the 2000 phylog-
enies produced during the rapid bootstrap search.

EDAM: Evolutionary Distinctiveness, Accuracy, and Magnitude of Decline
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Magnitude of decline or threat
We used the Telfer et al. [26] relative change index (RCI) to measure species decline, using the
same methods as in [27]. Briefly, RCI was defined for each species as the residuals from a re-
gression of the logit-transformed proportion of occupied 10km × 10km cells in 1987–1999
(taken from [28]) against the logit-transformed proportion of occupied cells in 1930–1969
(taken from an update to [29]). RCI is not an absolute measure of decline; the observed decline
is relative to the other species in the dataset, but for the purpose of prioritisation this distinc-
tion is unimportant. Range change values were reversed so that greater numbers indicate a
greater decline, and scaled to have a mean of 0 and standard deviation of 1. When calculating
EDGE, Red List category (taken from the 2011 update of [30]) was treated as a continuous vari-
able on a coarse scale (Least Concern = 0, Near Threatened and Conservation Dependent = 1,
Vulnerable = 2, Endangered = 3, Critically Endangered = 4; as in [4]).

Accuracy of decline
Correlative species distribution models (SDMs) predict species’ potential range expansions and
contractions based on the redistribution of the species’ realised environment over time and/or
space [31]; the predictive accuracy of SDMs in new environmental domains is therefore a good
measure of how well species’ declines may be predicted based on given environmental vari-
ables. We modelled distribution data at the 10km square resolution for each plant species in
the period 1930–1969 as a function of climate and land use using generalised boosted models
(GBMs; [32]); we then quantified the predictive accuracy of models by comparing model fore-
casts to independent observations for the period 1987–1999. We used the same underlying
data and methods as [33], but in addition accounted for historic change in land use using data
from [34] for the 1930–1969 period and [35] for 1987–1999 period.

The predictive accuracy of SDMs over time is generally calculated by comparing model pre-
dictions with independent observations using widespread discrimination measures such as the
AUC (e.g., [36, 37]). Here, however, we use one of three new measures of temporal validation
for SDMs—AccTV [38]—which has two main advantages over most commonly-used alterna-
tives: it makes use of modelled probabilities of presence over time directly, without requiring
the choice of arbitrary probability thresholds, and it focuses on accuracy over portions of spe-
cies’ ranges that have been either observed or predicted to change, thus quantifying a model’s
ability to predict decline. Briefly, AccTV can be derived from temporal validation (TV) plots,
which are extensions of presence-absence calibration plots [39] for use with data from two
time periods. TV plots model observed gains and losses as a function of changes in modelled
probability of presence between time periods using natural splines (see Rapacciuolo et al. [38]
for detailed methods). Ideally, summing interpolated gains and losses across values of change
in modelled probability of presence should result in an ideal TV curve: a line with a slope of 1,
passing through the origin (0, 0). AccTV is the weighted average distance between the model’s
and the ideal TV curve, subtracted from 1. It can be calculated using the following formula:

AccTV ¼ 1�
Pn

q¼1 Dmweighted;qjymodel;qj
Pn

q¼1 Dmweighted;q

ð1Þ

where ymodel and yideal are the y values of the model curve and ideal curve, respectively, at each
observed site q, and xq are the proportional changes in modelled probability of presence at each
site q. Species’ AccTV estimates were scaled to have a mean of zero and a standard deviation
of one.

EDAM: Evolutionary Distinctiveness, Accuracy, and Magnitude of Decline
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Calculating the measures
We calculated the measures listed in Table 1 using the range change and predictive accuracy
data described above, and evolutionary distinctiveness values from the best-scoring phyloge-
netic tree. We compared EDGE and EDM by regressing them against each other and their com-
ponents; all components of EDAM were uncorrelated with each other (all jrj< 0.11).
Additionally, we calculated EDM across all 2000 rapid bootstrap trees, to assess the impact of
phylogenetic uncertainty on its values.

Although the various measures may rank the importance of species differently, many con-
servation efforts are targeted at the habitat-level and so this variation might be of little impor-
tance if prioritised species frequently co-occur. To see whether the indices prioritised different
parts of Britain, we map the top-fifty ranked species according to each index of the species
within each grid cell of the Preston et al. distribution data for Britain [28]. Means of prioritisa-
tion scores are difficult to interpret due to shifts in species richness across Britain; however,
maps of this mean richness are available in S2 Fig.

Results

Phylogeny
All novel rbcL sequences have been uploaded to GenBank [15], and the accession numbers of
all sequences used are given in S1 File. The optimal phylogeny and the bootstrap phylogenies
are available in S1 File (all rate-smoothed and in Newick format), as is a OneZoom [40] file that
allows the tree to be interactively explored.

Comparing EDGE and EDMRC

EDGE and EDM were strongly correlated, but many more species were tied for EDGE values
(Fig 1), suggesting that EDGE was less discriminating (reflecting the coarser nature of the Red
List data). Both measures were significantly correlated with their components, but EDGE was
more correlated with ED than Red Listing status (Fig 2a and 2b), suggesting EDGE is driven by
ED in this dataset. EDM was correlated almost equally with ED and range change (Fig 2c and
2d), confirming that it reflects its two components equally.

The EDAM values were stable across the bootstrap phylogenies. All sets of EDAM values
calculated using the bootstrapped phylogenies, when compared with the EDAM values from
the optimal phylogeny, had correlation coefficients greater than 0.92. However, Fig 3a reveals
EDM estimates for some species vary considerably across the bootstraps. The species with the
greatest standard deviation of bootstrapped EDM is shown in Fig 3b, where three distinct
groupings of EDM values can be seen.

Conservation priorities
The highest ranking twenty species for each measure are listed in Tables 2 and 3; Fig 4 plots the
values of each species under each metric against one-another for comparison. EDGE and
EDAM-family values for all 1060 species in the study are available in S1 File. Although EDM,
EDAM, and ED(AM)max species scores are correlated with one another, EDAM0, with its focus
on range expansion, highlights a different set of species (Fig 4).

Maps of the distribution of the top-fifty species for each measure are shown in Fig 5. EDGE
and EDM are correlated (r = 0.81, t2811 = 72.12, p< 0.0001); both prioritise the Scottish High-
lands, North of Wales, and patches of Northern and Southern England. In general, EDGE
prioritises more diffuse areas of Britain, while more intense clusters of species are detected with
EDM. EDAM and ED(AM)max highlight similar grid cells to EDM (correlations of grid cells’

EDAM: Evolutionary Distinctiveness, Accuracy, and Magnitude of Decline
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values; all r> = 0.85, t2811 > = 84.10, p< 0.0001). EDAM0 places a greater emphasis on En-
gland and Wales, prioritising large parts of the South-West andWales. Maps of the mean
scores of the species in each grid cell are shown in the S2 Fig.

Discussion

Performance of EDAM
EDM was more discriminating than EDGE, which we suggest means EDM provides a more
useful prioritisation of British plant species. If species are to be compared and prioritised, it is

Fig 1. Plot of EDGE scores against EDM, showing they are strongly correlated (red regression line; F1,1051 = 1846, r2 = 0.64, p < 0.0001). The
standard deviations of the EDM and EDGE values’ bootstrapped estimates are shown as grey whiskers around each point; these were not incorporated in the
regression quoted above. There are 553 tied EDGE scores, and no tied EDM scores; a line of tied EDGE species can be seen at the left of the plot. The
greater number of tied EDGE species suggest EDGE is worse at discriminating among species.

doi:10.1371/journal.pone.0126524.g001

EDAM: Evolutionary Distinctiveness, Accuracy, and Magnitude of Decline
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Fig 2. EDGE and EDM plotted against their components. In (A) and (B), EDGE is plotted against Red List category (increasing in threat level from left-to-
right; r2 = 0.20) and the logarithm of evolutionary distinctiveness (r2 = 0.78) respectively. The larger r2 when regressed against log(ED) suggests EDGE is
more strongly related to ED thanGE. (C) and (D) show EDM against change index (r2 = 0.47) and the logarithm of evolutionary distinctiveness (r2 = 0.56)
respectively. EDM is related almost equally strongly to its components, and so is less biased than EDGE. All models above were statistically significant
(p < 0.0001) and were linear regressions, with the exception of comparison of EDGE and Red Lists status, which was an ANOVA. Note that EDM is
calculated with scaled values, but is not regressed against them above.

doi:10.1371/journal.pone.0126524.g002

EDAM: Evolutionary Distinctiveness, Accuracy, and Magnitude of Decline
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Fig 3. Variability of EDM values across bootstrap phylogenies. In (A), the ranks of the best phylogeny’s EDM values are plotted against the median
ranks across all the bootstrap phylogenies, with grey whiskers showing the standard deviations of those ranks. (B) plots the rank of EDM forWahlenbergia
hederacea in each bootstrap phylogeny against the log. likelihood of that phylogeny.Wahlenbergia hederacea is the species with the largest standard
deviation in (A). Three distinct groupings of EDM values can be seen in (B), probably reflecting equally likely islands in treespace (see discussion).

doi:10.1371/journal.pone.0126524.g003

Table 2. Species rankings according to EDGE and EDM.

EDM EDGE

Selaginella selaginoides Lycopodiella inundata

Pteridium aquilinum Pilularia globulifera

Galeopsis angustifolia Osmunda regalis

Pilularia globulifera Selaginella selaginoides

Himantoglossum hircinum Hymenophyllum wilsonii

Hymenophyllum wilsonii Daphne mezereum

Sinapis arvensis Wolffia arrhiza

Lycopodiella inundata Isoetes echinospora

Botrychium lunaria Isoetes lacustris

Osmunda regalis Zostera noltei

Ranunculus arvensis Adonis annua

Cryptogramma crispa Spartina maritima

Huperzia selago Astragalus danicus

Dioscorea communis Cuscuta epithymum

Hymenophyllum tunbrigense Botrychium lunaria

Oxalis acetosella Frankenia laevis

Scleranthus annuus Myriophyllum verticillatum

Mentha pulegium Colchicum autumnale

Narthecium ossifragum Ruppia cirrhosa

Tofieldia pusilla Pteridium aquilinum

Species rankings according to EDGE and EDM. The highest ranking species is listed first.

doi:10.1371/journal.pone.0126524.t002
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helpful if the scheme according to which they are compared is unambiguous as to the ranking
of those species (there are no tied rankings). We also argue that, since EDM gives explicit (and,
in our case, equal) weight to both evolutionary distinctiveness and decline, EDM gives a clearer
prioritisation scheme. It is important to note that rankings mask the magnitude of differences
among species; that one species out-ranks another does not mean it does so by much. We
would advise against binning EDGE and EDAM lists (e.g., into ‘highly ranked’ and ‘low-ranked’
species, etc.) where possible since this would remove information from the data. It is better to
rank species with more information and simply to be more cautious about closely-ranked spe-
cies, and if necessary collect more information such as the likelihood of successful conservation
intervention (see below).

The data required for the EDAM approach means it is unlikely to supplant EDGE as a global
prioritisation scheme. Predictive accuracy is difficult to quantify, and species distribution mod-
els, although tractable and relatively quick to produce, typically ignore biotic interactions [41]
and assume species’ distributions are at equilibrium with their environment [31]. However,
other methods of assessing predictive accuracy, such as literature reviews and community-
based models, can be prohibitively time-consuming and difficult to directly compare
among taxa.

EDM ranks of some species vary greatly among the bootstrap phylogenies, which is con-
cerning in species where there is no obvious relationship between EDM rank and the likelihood
of the phylogeny across which it was calculated (Fig 3). In particular, the three distinct group-
ings in Fig 3b suggest that three islands in treespace were sampled (discussed in [42]); since
each island seems equally likely, there may be no correct score for such species. Accurately

Table 3. Species rankings according to EDAM, EDAM0, and ED(AM)max.

EDAM EDAM0 ED(AM)max

Himantoglossum hircinum Polypodium vulgare Cicendia filiformis

Cicendia filiformis Tripleurospermum inodorum Radiola linoides

Radiola linoides Polygonum arenastrum Lycopodiella inundata

Lycopodiella inundata Polypodium interjectum Osmunda regalis

Mentha pulegium Sedum album Zostera marina

Zostera marina Osmunda regalis Selaginella selaginoides

Galeopsis angustifolia Dryopteris expansa Drosera intermedia

Spartina maritima Tripleurospermum maritimum Spartina maritima

Cuscuta epithymum Tilia platyphyllos Hymenophyllum tunbridgense

Scleranthus annuus Isoetes echinospora Adoxa moschatellina

Drosera intermedia Polystichum setiferum Pinguicula lusitanica

Pinguicula lusitanica Papaver somniferum Viola lactea

Jasione montana Equisetum telmateia Equisetum telmateia

Silene gallica Agrostis stolonifera Polypodium vulgare

Viola lactea Polystichum aculeatum Cuscuta epithymum

Hymenophyllum tunbrigense Adoxa moschatellina Pteridium aquilinum

Pteridium aquilinum Vulpia ciliata Galeopsis angustifolia

Oxalis acetosella Cicendia filiformis Narthecium ossifragum

Adonis annua Radiola linoides Pilularia globulifera

Erica tetralix Lycopodiella inundata Himantoglossum hircinum

Species rankings according to EDAM, EDAM0, and ED(AM)max. The highest ranking species is listed first.

doi:10.1371/journal.pone.0126524.t003
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Fig 4. Scatter plots of the EDAMmeasures against each another (lower panels), histograms of their distributions (along the diagonal), and correlation
coefficients of the measures (upper panels). Note the poor correlation between EDAM0 and EDM.

doi:10.1371/journal.pone.0126524.g004
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Fig 5. Distribution of top-fifty ranked species across Britain. The sub-panels show EDGE (A), EDM (B), ED(AM)max (C), EDAM (D), and EDAM0 (E). Each
map has a legend to the right hand side, splitting the counts of species into twenty ‘Jenks’ quantiles (classIntervals function in the R package classInt [58]).
The greatest four quantiles have been coloured differently, to emphasise the high-priority sites.

doi:10.1371/journal.pone.0126524.g005
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prioritising species that are difficult to place in a phylogeny (rogue taxa; see [43]) without more
sequence data may not be possible, potentially affecting the potential value of phylogenetic di-
versity (see [44]). However, rogue taxa are the exception, not the rule, and on the whole the
bootstrap replicates were strongly correlated with the rankings of the best phylogeny. Rogue
taxa pose no problem for a prioritisation system as long as they are identified, but testing prior-
itisation lists by recalculating across candidate trees (as in [5, 45]) will not detect them. Our
phylogeny was built using a single DNA locus; future phylogenetic work with more data will
likely revise our listing in ways we cannot readily predict or account for with randomisations.

Prioritisation
At first glance, the number of common species in the lists of prioritised species (e.g., Pteridium
aquilinum, bracken; table 2) might be surprising. Such surprises reflect how evolutionarily dis-
tinct British non-angiosperm plants are relative to each other (i.e., ignoring close relatives out-
side the UK), but the measures also prioritise several severely declining species (e.g., Galeopsis
angustifolia—red hemp-nettle). Limiting the lists to angiosperms or down-weighting evolu-
tionary distinctiveness would alter the rankings if desired, and we consider it a strength of the
EDAM (and EDGE) approach that we can make our decisions explicit in this way. More impor-
tantly, the purpose of a quantitative prioritisation exercise is not necessarily to produce a single,
definitive list for conservation, but to help us consider how we prioritise nature. For example,
Selaginella selaginoides is fairly uncharismatic (even for a clubmoss), yet it has the highest
EDM score. This species is declining in Britain, and gives its name to an entire (declining) spe-
cies group in one text [46], yet is not a UK Biodiversity Action Plan species [47] (and has not
been added to the subsequent Section 41 list published under the Natural Environment and
Rural Communities Act). S. selaginoides is widespread throughout mainland Europe but de-
clining with Britain; these EDM rankings re-open the question of whether distinct, declining
components of our flora should be conserved regardless of their status elsewhere.

Ours is not the first study to examine the phylogenetic pattern of threat in the UK flora (e.g.,
[48]), however, we are the first to prioritise species (not clades) and parts of the country. EDGE
and EDM prioritise broadly similar parts of the Britain, but the intensity and resolution of
prioritised areas is much greater for EDM. This greater intensity likely directly stems from the
dependence of EDM on range change data and as such is unsurprising, but it shows the EDAM
approach can give a more precise, and thus feasible, set of geographic priorities. The precau-
tionary ED(AM)max measure seems intermediate between the EDM and EDAM, which is per-
haps to be expected since it is essentially a compound measure, but EDAM0 is different in
highlighting large parts of southern England. There is potentially a causal link between the
high concentration of species with high EDM values in the Scottish Highlands (known to spe-
cies with contracting southern ranges [27]) and the emphasis EDAM0 places on Southern En-
gland. As with the highlighting of S. selaginoides, we suggest this is another example of how
systematic prioritisation can (re-)draw attention to potentially important conservation issues.

Given our EDAM approach allows for any arbitrary (explicit) relative weighting of its three
components, it is reasonable to ask what weighting should be used in practice. We suggest that,
while rankings will be sensitive to the weighting used, there is little utility in deciding empirical-
ly what the “correct” weighting is. Instead, weighting should be chosen a priori based on beliefs
and wishes about the importance of species, or chosen as part of an ongoing discussion with
stakeholders and the general public. Such an iterative, reflective process should reveal more
about what we value about nature, and as such be of greater use than a static list generated by a
distant stranger. Conservation prioritisation (triage), and the making of prioritisation lists, is
controversial [49, 50]; we argue that the process of making lists forces us to confront our prior
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beliefs with hard data, and under an EDAM approach quantify and weight exactly what we
value about biodiversity. We feel that weighting everything equally reflects more readily the
naïve expectations of someone viewing a ranking, and that is why we have used it. There is no
objective criterion by which a person’s subjective beliefs and values can be measured, and open
dialogue is the best way to move through disagreement over beliefs. While we have made no at-
tempt to measure the relative costs or likelihood of success of saving these species (c.f. [51]), we
emphasise that such modifications to the EDAM approach are possible. An additional precau-
tionary measure such as EDAM(CS)min, where species are additionally ranked according to the
worst of their cost (C; which should be reversed as we reversed range change) and likelihood of
success (S), could make a good continuation of the EDAM approach. EDAM (and EDGE; [52])
exhibit spatial pattern; spatial clumping of threatened species may hinder or help conservation,
and this too could be incorporated in future prioritisation schemes.

Wider conservation issues
There is some evidence that species distantly related to an assemblage are more likely to invade
[53], and more damaging when they do [54], although there are counter-examples [55]. More
work is needed, but it is reasonable to highlight evolutionarily distinct species with expanding
ranges as potential future problems, particularly given that distantly related species tend to be
ecologically dissimilar (reviewed in [56]). Although precise ecological data on invasive species
are often missing, invasives can usually be placed (perhaps coarsely) within a phylogenetic tree
without much difficulty. Thus an EDAM approach could help identify potential problems, par-
ticularly in concert with information on the phylogenetic structure of protected areas. The UK
has excellent data on the species composition of most protected areas, and our phylogeny
based upon rbcL could be used for such analyses.

Prioritising species on the basis that their declines are poorly-understood might seem an un-
usual strategy for two reasons. Firstly, such species might be more difficult to save, although
this could make them of greater academic interest and investigating them may uncover new
conservation techniques. Secondly, it might seem better to weight the decline of a species ac-
cording to our confidence in that decline, rather than treat magnitude and accuracy as distinct.
However, to do so would not necessarily be precautionary (see [57]), and could lead us to prior-
itise species on the basis of sampling effort. Uncertainty is already enshrined in the Red List cri-
teria [10]; for example, a species qualifies as endangered under criterion A at a lower level of
decline if that decline is not understood (and continuing). Accuracy of prediction (ideally) re-
lates to our understanding of the drivers of range change, and, if desired, we could choose to
prioritise species with declines we understand well enough to reverse. The EDAM framework
could be extended to explicitly trade-off the cost of saving species with their distinctiveness or
magnitude of threat, along with any other species-specific data a conservation biologist
can quantify.

Conservationists can rarely achieve all their goals simultaneously, and instead several com-
ponents (e.g., evolutionary distinctiveness, species diversity, financial cost, likelihood of suc-
cess, and ecosystem services) must be traded off against one another. By scaling the
components of EDAM so that each is on the same scale, we have a starting point from which
we can explore the implications of prioritising different aspects of our biota, and make our sub-
jective decisions more explicit. The EDAM lists presented here are designed for different pur-
poses, and it is unlikely that a single priority list will ever suffice for British plants, let alone
other threatened taxa. However, we feel that the success of the EDGE program demonstrates
that incorporating evolutionary distinctiveness into conservation strategies strikes a chord with
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the majority of biologists; the measures we propose here allow uncertainty to be explicitly in-
corporated as well.
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S1 Fig. Evolutionary distinctiveness is relatively unaffected by the maximum age of genera.
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the scores when the genera were cut at the 1st quantile. In the figure, the correlation coefficients
are plotted against quantile at which the cuts were made.
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S2 Fig. Mean of prioritisation measures for species in grid cells across Britain. The sub-pan-
els show EDGE (A), EDM (B), ED(AM)max (C), EDAM (D), and EDAM0 (E). Each map has a
legend to the right hand side, splitting the values into twenty ‘Jenks’ quantiles (classIntervals
function in the R package classInt [58]). The greatest four quantiles have been coloured differ-
ently, to emphasise the high-priority sites. Note that the distributions of all five measures have
extremely long tails (as shown by the size of the quantiles in the legends).
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