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ABSTRACT 28 

Nitrogen (N) is a key, possibly limiting, nutrient in ombrotrophic peat ecosystems, and enrichment 29 

by pollutant N in atmospheric deposition (Ndep, g m-2 a-1) is of concern with regard to peatland 30 

damage.  We collated data on the N content of surface (depth ≤ 25 cm, mean 15 cm) ombrotrophic 31 

peat (Nsp) for 215 sites in the UK and 62 other sites around the world, including boreal, temperate 32 

and tropical locations (wider global data), and found Nsp to range from 0.5 % to 4%.  We examined 33 

the dependences of Nsp on surface peat phosphorus (P) content (Psp), mean annual precipitation 34 

(MAP), mean annual temperature (MAT) and Ndep.  Linear regression on individual independent 35 

variables showed highly significant (p < 0.001) correlations of Nsp with Psp (r2 = 0.23) and MAP (r2 = 36 

0.14), and significant (p < 0.01) but weaker correlations with MAT (r2 = 0.03) and Ndep (r2 = 0.03).  A 37 

multiple regression model using log-transformed values explained 36% of the variance of the UK 38 

data, 84% of the variance of the wider global data, and 47% of the variance of the combined data, all 39 

with high significance (p < 0.001).  In all three cases, most of the variance was explained by Psp and 40 

MAP, but in view of a positive correlation between MAP and MAT for many of the sites, a role for 41 

MAT in controlling Nsp cannot be ruled out.  There is little evidence for an effect of Ndep on Nsp.  The 42 

results point to a key role of P in N fixation, and thereby C fixation, in ombrotrophic peats.   43 
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INTRODUCTION 58 

The role of nitrogen (N) in peatland ecosystem dynamics has received much recent attention, 59 

primarily due to concern about the effects of anthropogenically-driven elevated atmospheric N 60 

deposition (Ndep) on carbon sequestration (Turunen et al. 2004; Bragazza et al. 2006; Wu et al. 2014;) 61 

and biodiversity (Berendse et al. 2001; Chapman et al. 2003; Limpens et al. 2011).  Ombrotrophic 62 

peats can have a range of N contents; for example in northern peatlands the range is 0.2% to 3% 63 

(Loisel et al. 2014).   Such variation likely has implications for carbon fixation, peat functioning and 64 

sensitivity to increased N inputs. 65 

Peat N contents depend upon inputs from N fixation and atmospheric deposition, and losses by 66 

burial into the anaerobic catotelm, leaching, erosion and microbial processing including 67 

denitrification.  Data compiled by Loisel et al. (2014) imply an average long-term (i.e. thousands of 68 

years) burial rate of N in northern peatlands of the order of 0.5 g m-2 a-1.  Since Ndep values of this 69 

magnitude are a phenomenon of only the last half-century (Vitousek et al., 1997; Fowler et al., 70 

2004), this accumulation is due almost entirely to inputs by N fixation, which must also account for 71 

losses by processes other than burial.  Nitrogen fixation rates of the required magnitude, or even 72 

greater, have indeed been reported for ombrotrophic bogs (Martin and Holding, 1978; Hemond 73 

1983; Vile et al., 2014).   74 

Whereas N can be acquired by fixation from the atmosphere, P cannot, and this may be significant 75 

because P is required for N fixation both as a constituent of the responsible organisms and through 76 

the ATP energy-transferring function (Sprent and Raven 1985; Elser et al. 2007; Augusto et al. 2013; 77 

Batterman et al. 2013; Reed et al. 2013; Vitousek et al. 2013).  Although in most soils, the supply of P 78 

is primarily from mineral weathering, this is not the case for ombrotrophic peat, which by definition 79 

receives most or all of its inputs from the atmosphere in rain, dust, biological debris from other 80 

ecosystems, and the activities of insects, birds and mammals (Rydin and Jeglum 2013; Tipping et al. 81 

2014).  Therefore P acquisition is likely a major determinant of variations amongst peats with 82 

respect to nutrition, including N fixation.  Indeed, the role of P as a limiting factor of biomass growth 83 

and functioning in peatlands has been clearly demonstrated (Fritz et al. 2012; Larmola et al. 2013; 84 

Hill et al. 2014).  Whilst there have been no studies looking specifically at P effects on biological N 85 

fixation in peatlands, the findings that P additions increase both peatland plant N uptake (Limpens et 86 

al. 2004) and microbial N processing (White and Reddy 2000) illustrate the importance of P in 87 

peatland N cycling.  88 

Given the influences of ambient temperature and moisture regimes on biological N cycling (Rustad 89 

et al. 2001; Houlton et al. 2008; Ollivier et al. 2011), it is likely that climate also affects N acquisition 90 
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by peats.  Positive effects of temperature on the N dynamics of peat bogs (Weedon et al. 2012) and 91 

on biological N fixation by bryophytic symbionts (Houlton et al. 2008; Lindo et al. 2013) have been 92 

demonstrated.  Moisture has also been shown to be important for feathermoss-associated N fixation 93 

(Gundale et al. 2009; Jackson et al. 2011).   94 

To obtain a wider picture of the possible controlling effects of P and climate on the variation of the N 95 

content of ombrotrophic peats, we conducted a meta-analysis of data for a total of 277 sites across 96 

boreal, temperate and tropical regions.  97 

  98 
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METHODS 99 

We defined three data sets as follows (Table 1): UK-only, wider global (all data except UK), combined 100 

(all data).  The data were divided between UK and wider global sites because of the much greater 101 

number of UK data (see Results).  Values for surface peat total N concentrations (Nsp) and surface 102 

peat total P concentrations (Psp) measured simultaneously at the same ombrotrophic peatland sites 103 

were collated from both published literature and previously unpublished data (Table S1). The 104 

previously unpublished data were for UK sites from the Centre for Ecology and Hydrology (A F 105 

Harrison pers. comm.), Scottish Soils Database (Hudson et al. 2012), and for Finnish sites from the 106 

University of Helsinki (R Laiho, pers. comm.).  In total our database comprises data from 277 107 

ombrotrophic peatland sites including 215 from the UK, 14 from other temperate localities, 14 from 108 

boreal regions and 34 from the tropics (see Table S1 and Figure 1). ‘Surface’ peat was defined as 109 

peat sampled from starting depths of 0-10 cm from the surface down to a maximum of 25 cm from 110 

the surface.  The mean sample depth was 15 cm.   Analytical methods for measurements of Nsp and 111 

Psp for each data source are summarised in Table S1.  All peat samples had a C concentration ≥ 40%, 112 

the mean C concentration across all sites being 51%.  We assume that both N and P in these organic 113 

rich soils are overwhelmingly in organic forms.  None of the sites considered have been afforested or 114 

fertilised.  For the UK, however, some sites may have been subjected to variable intensities of 115 

drainage.   116 

Values for mean annual precipitation (MAP, m), mean annual temperature (MAT, oC), and total 117 

annual N deposition (Ndep, g m-2 a-1) were collated for each site (Table S1).  For the UK sites, MAP and 118 

MAT are 1970-2000 means from the UK Meteorological Office, and Ndep data are 2006-2008 means 119 

derived by the CBED model (Smith et al. 2000).  For sites not in the UK, MAP and MAT are either 120 

values reported in each publication, or 1930-1960 means from the global data set of Cramer and 121 

Leemans (2001), with months summed or averaged to give annual values.  For all non-UK sites, Ndep 122 

data are modelled values for 1993 (Dentener 2006).  123 

  124 
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RESULTS 125 

The collated data cover appreciable ranges of Nsp, Psp, MAP, MAT and Ndep (Table 1).  The values of 126 

Nsp vary by a factor of 7 and those of Psp by a factor of 19, while the NP ratio ranges from 6 to 138.  127 

The mapped data (Figure 1) show that the wider global data come from a broad range of locations, 128 

although remote peatland localities such as northern Canada and Russia are under-represented.  129 

From Table S1 it can be seen that tropical and UK locations have the highest values of Nsp, while NP 130 

ratios are lowest for non-UK temperate and boreal sites, and highest for tropical sites, with UK sites 131 

in between.  Values of MAP and MAT were not significantly correlated for the UK sites, but for the 132 

wider global set we found a strong positive correlation which can be parameterised as MAP = 0.49 133 

e0.077 MAT (r2 = 0.96, p < 0.001), and for the combined data set the relationship is MAP = 0.93 e0.053 MAT 134 

(r2 = 0.53, p < 0.001).  For neither the UK nor the wider global data set was Ndep correlated to MAP or 135 

MAT. 136 

Regression analysis of the relationships of Nsp to individual potential driving variables for the 137 

combined data set revealed highly significant (p < 0.001) positive correlations with Psp and MAP, and 138 

significant (p < 0.01) positive correlations with MAT and Ndep (Figure 2).  However, none of the 139 

relationships explained very much of the variation in Nsp (r2 ≤ 0.23).  The NP ratio varied positively 140 

and significantly with both MAT (r2 = 0.10, p < 0.001) and MAP (r2 = 0.11, p < 0.001).   141 

Because increased Ndep is a fairly recent phenomenon, and most prevalent in temperate regions, we 142 

also conducted a separate analysis of the observations made after 2000 for temperate sites only (n = 143 

68).  This increased the value of r2 from 0.03 for the combined dataset (n = 277) to 0.07, but the 144 

significance was lower (p < 0.05).  Furthermore, we found that neither UK Nsp nor the UK NP ratio in 145 

surface ombrotrophic peat increased with time between 1963 and 2009. 146 

We applied the following multiple regression model to the data; 147 

log Nsp = c1 x log Psp  + c2 x log MAP  + c3 x log (MAT+10)  + c4 x log Ndep  +  c5  (1) 148 

We used log-transformed data to meet the requirements for a normal distribution of the residuals, 149 

and added 10 to the MAT values to make them all positive.  Because of the imbalance in the spatial 150 

distribution of the data, in particular the large number of UK sites, we conducted separate multiple 151 

regression analyses of relationships between Nsp and the drivers for UK sites only, wider global data, 152 

and combined data.  The overall picture was the same in each case, with highly significant 153 

dependences on Psp and MAP and weaker ones on MAT and Ndep (Table 2, Figure 3).  Furthermore, 154 

the values of the coefficients c1 and c2 were similar for the three data sets, whereas c3 and c4 were 155 

variable, and only in two cases are their values significant.  The model explained 36%, 84% and 47% 156 
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of the Nsp variance in the UK, wider global, and combined data sets respectively.  The standard errors 157 

in log Nsp (0.12, 0.09, 0.13) were less diverse than the r2 values.   158 

A simplified model using only Psp and MAP explained 29%, 84% and 44% of the variances in the UK, 159 

wider global, and combined data sets respectively, with standard errors of 0.12, 0.09 and 0.13 (Table 160 

S2).   If MAT was used with Psp, the fits were poorer although still highly significant (p < 0.001), 161 

explaining 27%, 76% and 31% of the variances, with standard errors of 0.12, 0.11 and 0.15 (Table 162 

S3).     163 
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DISCUSSION 164 

The results show that ombrotrophic peat Nsp depends strongly upon Psp and MAP.  The results of the 165 

multiple regression analyses are consistent with a multiplicative effect, which can be expressed as; 166 

Nsp = k  Psp
c1  MAPc2      (2) 167 

with values of k, c1 and c2 of 3.9. 0.35 and 0.44 respectively (Table S2).  Because c1 and c2 are both 168 

less than one, Nsp is most sensitive to Psp and MAP when the two drivers have low values, and the 169 

relative response decreases as they get larger (Figure S1).  The dependence on Psp is consistent with 170 

the need for this element in N fixation (see Introduction), and raises the question as to whether 171 

ombrotrophic peats might be P-limited.  Indeed P has been found to limit Sphagnum growth at sites 172 

receiving high N deposition (Aerts et al. 1992; Gunnarsson and Rydin 2000; Bragazza et al. 2004) and 173 

increased investment in P acquisition via phosphatase activity has been observed with peatland N 174 

additions (Phuyal et al., 2008).    175 

Both temperature and moisture are likely to affect N accumulation, either through N fixation or by 176 

affecting other biogeochemical processes in peats (see Introduction).  It also seems possible that the 177 

MAP effect arises from seasonal variation, with disruption of N cycling processes occurring during 178 

times of moisture deficiency - for example, during periods of low temperature and precipitation in 179 

boreal winters and periods of low rainfall in temperate summers.  Although significant temperature 180 

effects appear when only Psp and MAT are used as explanatory variables (Table S3), stronger 181 

relationships are found with MAP as the second explanatory variable (Table S2), and when both MAP 182 

and MAT are included in the multiple regression model, the former is selected as the more 183 

explanatory (Table 2).  Interpretation here is confounded by the correlation between MAP and MAT, 184 

especially in the wider global data set.  However, with the UK data set this correlation is not seen, 185 

and it may be significant that this is the one instance where both MAP and MAT are significant 186 

predictors (Table 2).  Therefore we cannot rule out a separate dependence on MAT of Nsp, and it 187 

may be that our data are insufficient to draw it out.  Nonetheless, it is quite clear that climate exerts 188 

a strong effect on the N content of ombrotrophic peats. Furthermore, the positive correlations of 189 

peat NP ratio to MAT and MAP suggest that in warmer, wetter regions, proportionally more N is 190 

incorporated into surface peat per unit P than in colder, drier regions, which suggests a greater 191 

efficiency of P utilisation for N acquisition where climatic conditions favour biological activity. 192 

Our results show that Nsp does not depend strongly on Ndep, even when data are selected to make a 193 

fairer comparison by considering only samples collected over a constrained time period, or in a 194 

restricted climate zone.  There are significant positive responses, but the relationships explain little 195 

variation in the data.  Although there is evidence that current N deposition influences the N 196 
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concentration of Sphagnum moss (Bragazza et al. 2005), because elevated Ndep is a recent 197 

occurrence, there probably has not been sufficient time for it to affect Nsp as considered here, most 198 

of which has instead accumulated via N fixation.   Furthermore, it is known that, at least in forest 199 

ecosystems, Ndep down-regulates N fixation (DeLuca et al., 2008), and this will tend to cancel any 200 

effects of deposition.     201 

The wider global data set is explained very well by equation (2), but not so well the UK data, in terms 202 

of r2, and this may partly be a statistical artefact because the wider global data are more evenly 203 

spread.  The SE values (Tables 2, S2, S3) in predicted Nsp are not so different among the three data 204 

sets considered, although it is still true that the SE values for the UK-only and combined data sets are 205 

higher than that for the wider global set.  Whilst to our knowledge the sites included in our analysis 206 

were all subject to minimal human disturbance, current and past management practices such as 207 

drainage, grazing and burning may have affected their nutrient status (Ramschunder et al. 2009; 208 

Jauhiainen et al. 2012; Andersen et al. 2013). This is particularly the case for the UK with its long 209 

history of upland management for livestock and grouse rearing (JNCC 2011), and site specific 210 

variations in land-management practices may therefore have contributed to the weaker correlation 211 

between surface peat N and surface peat P concentrations and climate for the UK sites.  Other 212 

factors which might account for the unexplained variance in the data include plant type, the effects 213 

of atmospherically-deposited contaminants (sulphur, heavy metals, persistent organic pollutants), 214 

and the availability of other nutrients. 215 

The great current interest in the role of peatlands in regional and global carbon cycles has resulted in 216 

the publication of major reviews (e.g. Limpens et al. 2008; Lindsay 2010; Yu 2012), and the 217 

development of sophisticated models (Frolking et al. 2010; Heinemeyer et al. 2010), but only 218 

recently has attention has been focused on the role of nutrients and nutrient stoichiometry in 219 

carbon fixation (Wu and Blodau 2013; Wang et al. 2014, 2015).  As noted by Vile et al. (2014), 220 

ombrotrophic peats are highly efficient at fixing C, having net primary production values typically of 221 

several hundred g m-2 a-1 despite their low nutrient status.  This is due to the low nutrient contents 222 

of their vegetation and high nutrient use efficiency (Small 1972; Wang et al 2014).  223 

However, accumulating peats have to combat the loss of nutrients by burial in the catotelm, and 224 

while peatland plants may actively hold nutrients  in the top layers of peat bogs (Malmer 1998) 225 

perhaps by mycorrhizal uptake (Wang et al. 2014), they still bury a good deal of N (Loisel et al. 2014), 226 

which necessitates high rates of N fixation.  Indeed, the N fixation rates of 1 to 3 gN m-2 a-1 reported 227 

for bogs by Martin and Holding (1978), Hemond (1983) and Vile et al. (2014) are comparable to the 228 

highest rates estimated for different global ecosystems by Cleveland et al. (1999).   Our results 229 
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strongly suggest that a key factor in the ability of peatlands to carry out N fixation, and thereby C 230 

fixation, is P availability, with important modification by climatic conditions, especially precipitation.  231 

It seems especially important to understand how peatlands, especially remote ones, acquire P, and 232 

how this may have varied over time, given for example Holocene-scale variations in dust transfer 233 

(Cockerton et al. 2014) and recent anthropogenic enhancement of this flux (Neff et al. 2008).  The 234 

incorporation of N and P cycling into models of peat growth is a pressing need. 235 

 236 
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Table 1.  Summary of data.  See Table S1 for details. 471 

Data source n time  Nsp Psp N:P MAP MAT Ndep 

  period % %  m oC g m-2 a-1 

UK1 215 1963-2009 0.5 - 3.6 0.01 - 0.19 11 - 138 0.8 - 2.8 2.7 - 10.8 0.4 - 3.0 

Wider global2 62 1971-2012 0.5 - 2.9 0.02 - 0.15 6 - 85 0.4 - 4.0 -3.8 - 26.4 0.0 - 1.9 

Combined 277 1963-2012 0.5 - 3.6 0.01 - 0.19 6 - 138 0.4 - 4.0 -3.8 - 26.4 0.0 - 3.0 

 472 

1 From: Scottish Soils Database; Emmett et al. 2007; Tipping et al. 2003; AF Harrison pers commun; 473 

Hayati and Proctor, 1991 474 

2 From: Minkkinen et al. 1999; Moore et al. 2008; Bragazza et al. 2005; Turetsky et al. 2000; 475 

Pakarinen and Gorham 1984; Richardson et al. 1978; Damman 1978; R Laiho pers commun; Keller et 476 

al. 2006; Bragazza and Gerdol 1999; Bragazza and Gerdol 2002; Clarkson et al. 2004a; Clarkson et al. 477 

2004b; Bridgham et al. 1998; Hill et al. 2014; Cheesman et al. 2012; Page et al. 1999; Anderson 1983; 478 

Pajunen 1994 479 

 480 

 481 
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Table 2.  Multiple regression analysis results; dependence of Nsp on Psp, MAP, (MAT+10) and Ndep for 483 

log-transformed data; coefficients c1-c5 refer to equation (1) 484 

 Variable Psp MAP MAT+10 Ndep const r2 SE p 
 Coefficient c1 c2 c3 c4 c5    

          
UK Value 0.30 0.35 0.89 -0.09 -0.52 0.36 0.12 1.6 x10-19 
 SE 0.04 0.07 0.21 0.05 0.27    
 p 1.2 x10-10 2.9 x10-7 4.4 x10-5 0.057 0.055    
          
Wider global Value 0.43 0.56 0.03 -0.02 0.51 0.84 0.09 8.2 x10-22 
 SE 0.07 0.11 0.17 0.03 0.23    
 p 8.2 x10-8 2.2 x10-6 0.87 0.51 0.032    
          
Combined Value 0.33 0.37 0.11 0.09 0.44 0.47 0.13 6.2 x10-37 
 SE 0.04 0.06 0.10 0.02 0.12    
 p 2.0 x10-14 4.2 x10-9 0.30 6.0 x10-5 3.1x10-4    
          

 485 

 486 

 487 

488 
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Figure captions 489 

 490 

Figure 1.  Map showing ombrotrophic peat sites. The numbers insider the symbols are the numbers 491 

of data for each country or region.   492 

Figure 2.  Relationships between surface peat %N (Nsp) and surface peat %P (Psp), mean annual 493 

precipitation (MAP), mean annual temperature (MAT) and atmospheric N deposition (Ndep) for the 494 

combined dataset. Trend lines and r2 are for linear regression (n = 277); the regressions are all 495 

significant, %P and MAP both p < 0.001, MAT and Ndep both p < 0.01. 496 

Figure 3.  Observed Nsp vs. values predicted from linear multiple regressions with Psp, MAT, MAP and 497 

Ndep as independent variables.  The 1:1 lines are shown.  Numbers of data points are given in Table 1. 498 

 499 
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