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Abstract submarine landslide deposits have been mapped around many volcanic islands, but interpreta-
tions of their structure, composition, and emplacement are hindered by the challenges of investigating
deposits directly. Here we report on detailed observations of four landslide deposits around Montserrat col-
lected by Remotely Operated Vehicles, integrating direct imagery and sampling with sediment core and
geophysical data. These complementary approaches enable a more comprehensive view of large-scale
mass-wasting processes around island-arc volcanoes than has been achievable previously. The most recent
landslide occurred at 11.5-14 ka (Deposit 1; 1.7 km®) and formed a radially spreading hummocky deposit
that is morphologically similar to many subaerial debris-avalanche deposits. Hummocks comprise angular
lava and hydrothermally altered fragments, implying a deep-seated, central subaerial collapse, inferred to
have removed a major proportion of lavas from an eruptive period that now has little representation in the
subaerial volcanic record. A larger landslide (Deposit 2; 10 km®) occurred at ~130 ka and transported intact
fragments of the volcanic edifice, up to 900 m across and over 100 m high. These fragments were rafted
within the landslide, and are best exposed near the margins of the deposit. The largest block preserves a
primary stratigraphy of subaerial volcanic breccias, of which the lower parts are encased in hemipelagic
mud eroded from the seafloor. Landslide deposits south of Montserrat (Deposits 3 and 5) indicate the wide
variety of debris-avalanche source lithologies around volcanic islands. Deposit 5 originated on the shallow
submerged shelf, rather than the terrestrial volcanic edifice, and is dominated by carbonate debris.

1. Introduction

Extensive submarine landslide deposits are common around volcanic islands [Moore et al,, 1989; Deplus et al.,
2001; Masson et al., 2002; Coombs et al., 2007; Silver et al., 2009]. Such landslides profoundly modify island morphol-
ogy and affect the marine environment through sudden deposition of material. They also pose major hazards
through direct inundation [Siebert, 1984], their potential association with explosive volcanic blasts [Bogoyavien-
skaya et al., 1985], and tsunamis [Ward and Day, 2003; Satake, 2007]. Much of our current understanding of large
landslide deposits around volcanic islands is based on geophysical surveys [e.g., Deplus et al., 2001; Coombs et al.,
2007; Watt et al,, 2012a] and distal core samples of associated turbidites [Hunt et al.,, 2011; Trofimovs et al., 2013].
Only a few submarine volcanic landslide deposits have been observed or sampled directly [Yokose, 2002; Morgan
et al,, 2007; Croff Bell et al,, 2013; Day et al., 2015]. Such observations provide structural and lithological information
relating to the landslide source and emplacement processes that cannot be obtained by other means.

In this paper, we summarize results from two Remotely Operated Vehicle (ROV) surveys of four landslide depos-
its offshore the volcanic island of Montserrat. Our aim is to provide detailed information on the source (e.g., sub-
aerial edifice, submarine flank, surrounding seafloor), lithology (e.g., pyroclastic rock, dense lava, carbonate reef),
and structure (e.g., heterogeneous, disaggregated material; intact primary blocks) of material within the deposits.
This informs our understanding of the relationship between the dominant lithology and morphology of land-
slide deposits [cf. Masson et al., 2006] and helps interpret landslide emplacement processes and interaction with
the seafloor, which is a significant control on the magnitude of landslide-generated tsunamis [Watt et al., 2012a].
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Figure 1. Topographic and bathymetric map of Montserrat, showing the offshore debris-avalanche deposits 1, 2, 3, and 5 [Lebas et al.,
2011; Watt et al., 2012b]. Deposits 1, 3, and 5 are well exposed near the seafloor, while Deposit 2 is partially buried but evident from the
bathymetric expression of individual large blocks. Dive sites discussed in the text are marked: Isis dives, from cruise JC83, are prefixed I;
Hercules dives, from cruise NA037, are prefixed H. Selected vibracore locations, collected on cruise JCR123 [Trofimovs et al., 2008, 2010],
are also marked. Points prefixed NA037 show the location of samples discussed in the text, and numbered points refer to images in subse-
quent figures. Isopachs for the 12-14 ka turbidite are taken from Trofimovs et al. [2010].

1.1. Data Collection

Two research expeditions of the RRS James Cook (JC83; March 2013) and the R/V Nautilus (NA037; October
2013) deployed Remotely Operated Vehicles (ROVs) offshore Montserrat to investigate submarine landslide
deposits through high-definition video filming, still images, and a remotely manipulated sampling arm.
Expedition JC83 deployed the Isis ROV, collecting footage during four dives SE of Montserrat (Figure 1; Isis
dive numbers are prefixed I). Dimensions of outcrops and rocks were estimated using two laser points in
the ROV field of view, which are 10 cm apart. A vibrocore attachment collected a single core during Dive
1213, but this attachment, as well as the manipulator arm, was not operational during the remainder of the
cruise. Expedition NAO37 [Carey et al., 2014] deployed a two-vehicle ROV system (Hercules and Argus) dur-
ing three dives south and east of Montserrat. In addition to imagery, it collected 61 samples via a manipula-
tor arm (Figure 1; Hercules/Argus dive numbers are prefixed H). The largest rocks or consolidated-sediment
samples that could be collected were 20 cm in diameter.

ROV-based technology has been used in Hawaii to investigate submarine volcanic-island landslide proc-
esses [Yokose, 2002; Coombs et al., 2004; Yokose and Lipman, 2004; Morgan et al., 20071, but our work is
among the first to apply such methods elsewhere [cf. Croff Bell et al., 2013].

1.2. Terminology

Following past studies around volcanic islands [e.g., Moore et al., 1989; Masson et al., 2002], we use landslide
as a general term for any slope failure and the resulting mass movement. The landslide deposits described
here originated as failures of rock on the subaerial and submerged island flanks, which fragmented to form
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a debris avalanche, where the disintegrating mass is dispersed between clearly defined source and deposi-
tional regions. Progressive fragmentation and spreading results in the characteristic hummocky topography
of debris-avalanche deposits [Siebert, 1984; Glicken, 1996; Paguican et al., 2014], but the specific character of
the debris avalanche (and its deposit) may depend on the nature of material within the landslide (e.g., den-
sity, strength, homogeneity) [Naranjo and Francis, 1987; Masson et al., 2006; Dufresne and Davies, 2009; Watt
et al, 2014]. Debris avalanches originating in clay-rich terrains, such as hydrothermally altered portions of
volcanic edifices, may be relatively cohesive. The incorporation of basal sediment (e.g., hemipelagic mud
from the seafloor) may also promote more cohesive flow characteristics. For simplicity, we use debris-ava-
lanche deposit to refer to all deposits, rich in volcanic rock fragments, that directly result from the initial
landslide. In marine environments, seafloor-sediment failure [Watt et al., 2012b, 2014] associated with
debris-avalanche emplacement may produce more extensive deposits. In addition, landslides around vol-
canic islands may generate dilute and highly mobile turbidity currents [Talling et al., 2012] from the mixing
of primary landslide material or disrupted marine sediment with seawater, depositing turbidites.

2, Study Region

Montserrat is located in the northern Lesser Antilles Arc and comprises four volcanic centers dating back to
at least 2.5 Ma (Figure 1) [Harford et al., 2002]. The andesitic Soufriere Hills volcano has been active since
250 ka [Harford et al., 2002; Smith et al., 2007], interrupted by a short episode of basaltic volcanism at ~130
ka that formed the South Soufriere Hills center. An important aspect of the geological history of Soufriere
Hills (and of Montserrat in general) is the occurrence of large landslides. Several debris-avalanche deposits,
with volumes between 0.3 and 10 km?, have been identified offshore southern Montserrat from geophysical
surveys [Le Friant et al.,, 2004; Lebas et al., 2011; Watt et al., 2012a, 2012b]. In addition to these surveys, the
identification and correlation of tephra fall deposits and turbidites within marine sediment cores provides a
detailed record of past activity on the island [Le Friant et al., 2009, 2015; Trofimovs et al., 2013; Cassidy et al.,
2013; Wall-Palmer et al., 2014]. These studies provide age constraints on landslide deposits and contribute
to understanding the context of major landslides in the broader volcanic history of the island. However,
direct core sampling of the block-rich volcanic landslide deposits has been unsuccessful, because of their
coarse and heterogeneous nature.

The 1995-to-recent eruption of Soufriere Hills has involved the growth and collapse of a series of andesitic
lava domes, generating pyroclastic flows [Wadge et al., 2014]. The largest dome collapse, in 2003, involved
>0.21 km?® of material [Herd et al,, 2005]. East of Montserrat, submarine deposits from several collapse-
driven pyroclastic flows have formed lobes with a cumulative thickness of 100 m, extending 7 km from the
coastline (Figure 1) [Trofimovs et al., 2008; Le Friant et al., 2009].

2.1. Terrestrial Morphology and Landslide Scars

Prior to its recent activity, Soufriére Hills consisted of a series of lava domes surrounding a prominent
crescent-shaped collapse scar (English’s Crater). This scar was open to the east and led directly into the Tar
River valley (Figure 1). English’s Crater has been the location of lava extrusion since 1995, and is presently
occupied by a lava dome with a volume of >0.19 km? [Stinton et al., 2014]. Dating of material within Eng-
lish’s Crater shows that two eruptive or mass-wasting events, of unconstrained size, occurred at ~2 and ~6
ka [Smith et al., 2007; Boudon et al., 2007]. This indicates that the crater formed at >6 ka.

East of the Tar River valley, a 3.5 km wide chute is cut into the submerged SE flank of Montserrat (Figure 1)
[Le Friant et al., 2004]. This chute is attributed to a 1arge landslide that formed an elongate offshore deposit
named Deposit 2 [Le Friant et al., 2004]. Within the northern part of the chute, a 1.2 km wide depression
aligns closely with the Tar River valley and English’s Crater. Collectively, these structures may mark the
source and pathway of an offshore landslide deposit named Deposit 1 [Le Friant et al.,, 2004; Lebas et al.,
2011]. Deposit 1 has a volume of 1.7 km?, while English’s Crater represents ~0.5 km® of missing rock [Le
Friant et al,, 2004]. The submerged chute has a volume of ~0.5 to 1.1 km? [Watt et al., 2012b] but may be
partly infilled by later aggradation. Notwithstanding the large uncertainties (owing, e.g., to a lack of con-
straints on preexisting topography), these estimated volumes suggest that Deposit 1 comprises both subae-
rial material from English’s Crater and submerged material from the northern part of the chute. A reduced
bulk density and seafloor-sediment incorporation may account for some increase in the deposit volume ver-
sus the inferred failure volume.
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Two further landslide deposits, termed Deposits 3 and 5, are located south of Montserrat (Figure 1; note
that Deposit 4 is buried beneath Deposit 3 and is not discussed further here). These deposits align with
scars in the island shelf but are not associated with any visible subaerial collapse structures.

2.2. Morphological Description of Landslide Deposits

Deposits 1, 2, 3, and 5 are all defined by mounded, irregular areas of seafloor (Figure 1). Within each deposit,
the mounded surface may either represent hummocks—hills of amalgamated landslide material, typical of
subaerial debris-avalanche deposits [Siebert, 1984] —or individual scattered blocks, representing largely
intact fragments of the initial landslide mass [cf. Watt et al., 2014].

2.2.1. Deposit 1

The margin of Deposit 1 is defined as the limit of a hummocky, fan-shaped deposit that extends 10.5 km
offshore the Tar River valley, to water depths of 1000 m, and covers ~50 km? The deposit contains many
tens of hummocks that are up to 200 m long and protrude tens of meters above surrounding seafloor. The
hummocks are evenly distributed, without preferential accumulation at the margins or center of the
deposit. Seismic reflection data resolve no prominent internal structures within Deposit 1 [Crutchley et al.,
2013; Karstens et al., 2013].

2.2.2, Deposit 2

Deposit 2 is partially buried beneath Deposit 1 and is more extensive and voluminous than the other depos-
its considered here, comprising ~10 km> of material [Lebas et al,, 2011; Watt et al,, 2012a, 2012b]. It has
been proposed that the central, blocky part of Deposit 2 originated as a collapse of the volcanic edifice,
which then triggered extensive failure of the surrounding seafloor sediment [Watt et al., 2012b, 2014]. IODP
drilling (Figure 1) confirms that the distal part of Deposit 2 comprises seafloor sediment [Le Friant et al.,
2015].

Here we attribute the notably large blocks to the east of Montserrat to Deposit 2 (Figure 1), based on inter-
pretations of available seismic and bathymetric data [Watt et al, 2012b]. The most prominent of these
blocks lies close to the eastern margin of Deposit 1, and has an angular, steep-sided form that contrasts
with the rounded hummocks of Deposit 1. It is 900 m long, 700 m wide, and 100 m high, and may have a
similar buried extent, indicating a total volume of ~0.05-0.08 km? [Crutchley et al., 2013]. To place this vol-
ume into context, it is approximately 10 times that of Wembley Stadium in London (0.004 km®), one of the
world’s largest sports grounds. A 2 km arc of blocks with comparable dimensions to the “Wembley” block
(as it is referred to here) marks the proximal southern margin of Deposit 2 (Figure 1). More very large blocks
or hummocks occur further east, within the central part of Deposit 2, but are partially buried by younger
sediment.

2.2.3. Deposit 3

Deposit 3 extends 10.5 km to the south of Montserrat, reaching water depths of 950 m. Seismic reflection
profiles suggest that it is thinner than Deposit 1, and mainly comprises scattered large blocks [Lebas et al.,
2011; Watt et al.,, 2012b] with a total volume of <1 km?>.

2.2.4. Deposit 5

Deposit 5 has a poorly constrained volume of ~0.3 km? [Le Friant et al., 2004] and is associated with a scar
on the submerged coastal shelf on the south-western side of Montserrat. It is defined by a hummocky field
of debris that can be traced 7 km offshore to a water depth of about 830 m.

2.3. Ages of Landslide Deposits

Dating of submarine landslide deposits is best achieved by constraining the age and accumulation rate of
hemipelagic sediment both above and below the deposit. However, given the difficulties of coring through
landslide deposits, ages are often based either on the oldest sediment overlying the deposits or on the age
of turbidites that have been correlated with them. In the former approach, the distance between the base
of a sediment core and the top of the landslide deposit may be unknown, and any age thus derived is a
minimum. In the latter approach, it is potentially difficult to correlate a specific turbidite with a landslide
deposit, given that neither necessarily has a unique composition in terms of chemistry or componentry.

2.3.1. Deposit 1
The best direct age constraint for Deposit 1 comes from core JR123-54 (collected in 2005; Figures 1 and 2)
[Trofimovs et al., 2013], located on a hummock. The basal unit in the core is a mixed bioclastic and
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Figure 2. ROV images from hummocks within Deposit 1. (a) Map of image locations (see Figure 1) in this and subsequent figures. Core locations have the prefix JR123, while NA037
marks sample locations referred to in the text. (b) A dense, shattered lava block in contact with yellow, hydrothermally altered material and fresh lava breccia along convolute margins.
(c) Dense lava breccias in contact with hydrothermally altered red and yellow deformed domains. (d) Sheared and stretched deformation within hydrothermally altered domains.

(e) Vein-like hydrothermal alteration cutting across clast-supported dense lava breccias. (f) Lava block with clear division between fresh and colonized surfaces, potentially indicating

a submarine origin for some material mobilized in the Deposit 1 landslide. Figures 2b-2d and 2f are from dive H1308 and Figure 2e from 1219.

volcaniclastic turbidite, the lowest part of which comprises poorly sorted gravel containing altered lava
clasts, which may correspond to the top surface of Deposit 1 [Trofimovs et al., 2013]. Multiple radiocarbon
dates (Table 1) indicate an age of ~11.5 ka for this turbidite (a potentially bioturbated sample within the
uppermost part of the turbidite provides a maximum age of 12.3 ka).

Deposit 1 may correlate with a large (>0.4 km?) turbidite that extends over 30 km to the south of
Montserrat (Figure 1), dated by multiple radiocarbon ages at 12-14 ka [Trofimovs et al., 2013]. The turbi-
dite is by far the largest-volume and most erosive event in the offshore stratigraphy during the past 110
ka, and its thickest part coincides with the margin of Deposit 1. The timing, distribution, and magnitude
of the two deposits thus support their correlation. The stratigraphy of the turbidite is complex and
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Table 1. Radiocarbon Ages of Monospecific Planktonic Foraminifera (Globigerinoides ruber) Picked From Hemipelagic Mud in Core
Samples Constraining the Ages of Deposits 1 and 2

Calibrated
Depth below Conventional Age
Publication Core Top Age (yr BP) Range®
Sample name Code (cm) (10 Error) (cal yr BP) 513CVPDE%0 +0.1
Jc83-vci-10P 52752 10-11 1340 (37) 964-781 12
Jc83-vC1-31° 52753 31-32 3857 (37) 3930-3689 1.6
JC83-VC1-44° 52754 44-45 5615 (37) 6135-5906 13
JR123-21-C10 402765 10-11 1870 (30) 1510-1331 0.5
JR123-21-C25 402766 25-26 4760 (30) 5188-4870 14
JR123-21-C39 402767 39-40 7450 (30) 7978-7833 1.2
JR123-21-C62 393246 62-65 38940 (400) 43,139-42,035 0.8
JR123-21-C84 402768 84-85 >43,500 NA 0.4
JR123-21-B10 402769 99.5-100.5 >43,500 NA 0.1
JR123-21-B22 393247 112-113 30,280 (150) 34,266-33,692 0.6
JR123-21-B71 402770 160.5-161.5 39,150 (470) 43,311-42,141 0.4
JR123-21-B76 402771 166.5 38,390 (380) 42,763-41,710 0.5
JR123-21-B83 393248 173-174 39,180 (320) 43,191-42,263 03
JR123-54P¢ 12994 235 6802 (35) 7406-7294 0.9
JR123-54P¢ 12995 242 6330 (35) 6895-6685 0.9
JR123-54°¢€ 23055 273 8794 (37) 9525-9395 1.0
JR123-54° 333973 280 8700 (40) 9465-9269 0.1
JR123-54¢ 333974 284 8600 (40) 9391-9121 1.7
JR123-54¢ 333975 2945 9350 (40) 10,272-10,109 44
JR123-54¢ 333976 303 10830 (50) 12,534-12,085 1.1

“Calibrated using OxCal4.2 [Bronk Ramsey, 2009] and the Marine13 calibration curve [Reimer et al., 2013]. Calibrated ranges reported
at the 95.4% confidence interval. BP refers to years before 1950 A.D.

PAnalyzed at the NERC Radiocarbon Facility in East Kilbride, UK, following the procedure described in Trofimovs et al. [2013]. Publica-
tion codes are SUERC—followed by the listed number; all other samples analyzed at Beta Analytic Inc. Laboratories, Miami.

“Ages previously published in Trofimovs et al. [2013].

spatially variable [Trofimovs et al., 2010], but taken as a whole it comprises equal proportions of biological
(calcium carbonate) and volcanic clasts. This contrasts with turbidites derived from pyroclastic flows in
the present eruption of Soufriére Hills, which are >95% volcaniclastic [Trofimovs et al., 2008]. Thus, the
source event of the 12-14 ka turbidite must have mobilized a significant proportion of submarine,
carbonate-rich material, either by contemporaneous failure and disaggregation of carbonate-rich litholo-
gies (i.e., from the island’s carbonate shelf), or by erosion of carbonate-rich seafloor sediment. Combining
the age determinations from JR123-54 and the mixed turbidite, Deposit 1 occurred at 11.5-14 ka.

2.3.2. Deposit 2

Sediment cores from IODP Expedition 340 (Figure 1) [Le Friant et al., 2015] place the top of Deposit 2 at
~130 ka [Cassidy et al., 2015], based both on oxygen isotope stratigraphy of younger hemipelagic mud and
on the correlation of basaltic deposits, which immediately overlie Deposit 2, with volcanism at South Sou-
friere Hills (dated at 130 ka by Ar-Ar ages of subaerial lavas [Harford et al., 2002]). This age is consistent with
an earlier estimate of ~140 ka derived from regional sediment accumulation rates [Watt et al., 2012b].

2.3.3. Deposit 3

A spatial correlation with a mafic volcaniclastic turbidite [Cassidy et al., 2014], dated at 60-130 ka, provides a
possible age constraint for Deposit 3. If correct, the correlation implies a mafic source lithology for the land-
slide. Seismic reflection profiles indicate a sedimentary cover of 5-10 m over Deposit 3, implying an age of
100-200 ka (based on local sedimentation rates of 0.05 m kyr~ ' [Watt et al,, 2012b]).

2.3.4. Deposit 5

The thickest part of a mixed volcaniclastic and bioclastic turbidite is colocated with Deposit 5, suggest-
ing a correlation between the two deposits [Cassidy et al., 2013]. The high bioclastic content of the tur-
bidite is consistent with the identified landslide source scar on the submerged coastal shelf. The
turbidite has an erosive base in hemipelagic sediment dated at 35 ka, and lies directly beneath a volca-
niclastic turbidite dated at 8-12 ka. Deposit 5 is therefore similar in age to Deposit 1. The cluster of land-
slide and turbidite deposits at 8-14 ka suggests a period of relatively heightened mass-wasting activity
at Montserrat.
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3. New ROV-Based Observations

The principal ROV observations for each landslide deposit are described and interpreted in this section. This
interpretation draws on data from preexisting core samples and geophysical data. More specific discussion
of landslide processes relating to Deposits 1 and 2 is provided in section 4. In addition to the figures
described here, short video files of key exposures are provided as supporting information.

3.1. Deposit 1

3.1.1. Hummock Exposures

ROV observations made on seven hummocks in Deposit 1 (Figure 1) indicate broadly similar mixtures of lith-
ologies, with representative images shown in Figure 2. The top of individual hummocks provides the best
outcrops; a talus of scattered rocks and partially eroded sedimentary drape obscure surrounding slopes.
Outcrops expose volcanic breccia, with wide variation in grain size, sorting, presence or absence of a fine
matrix, presence or absence of layering, clast shape, and alteration. Lithologically diverse domains occur at
a range of scales, both within and between hummaocks.

A poorly sorted and matrix-supported breccia is the dominant lithology, displaying a range of colorations
and with generally sharp, but occasionally diffuse, irregular boundaries between colored domains. Pale col-
ored domains are interpreted as hydrothermally altered volcanic breccias; the diverse coloration (white and
pale-yellow are the most common, but green, yellow, orange, and brown also occur) indicates a range of
mineral assemblages, and suggests that different zones of hypogene alteration in the failure region [cf.
John et al, 2008] were efficiently mixed during debris-avalanche emplacement. Undulose boundaries
(Figures 2c and 2d) indicate shearing and stretching of altered domains during transport.

Altered breccias often lie in direct contact with dark gray, monomict, clast-supported to marginally matrix-
supported breccias. Clasts are angular to subangular and vary in size from a few meters to a centimeter (Fig-
ure 2b). This lithology is interpreted as unaltered autoclastic breccia associated with lava-dome extrusion.
Pink to red lava breccias also occur, with otherwise similar characteristics to the monomict gray breccias,
and are indicative of hematite formed in a subaerial setting. In one case (Figure 2e), narrow (10-30 cm) and
irregular zones of alteration were observed passing through a large outcrop of gray lava breccias.

Samples of the dense lavas (NA037-008 and NA037-011; see supporting information) show a phenocryst
assemblage dominated by plagioclase and orthopyroxene, with frequent amphibole largely replaced by an
alteration assemblage. This assemblage is typical of Soufriere Hills andesites erupted since ~110 ka [Harford
et al,, 2002]. We identified no unequivocal biological (carbonate) material or structures within Deposit 1. A
sample of orange-brown hydrothermally altered rock (NA037-009; Figure 2a) contained abundant clay min-
erals and hydrothermally altered ferromagnesian and feldspar crystals.

3.1.2. Deposit 1 Sedimentary Drape

The sedimentary drape that overlies Deposit 1 is well exposed on the sides of several hummocks, where it
has been eroded by bottom currents or local slope failures (Figure 3). Interpretations of these exposures
have drawn on the extensive previous core sampling of the top ~5 m of seafloor sediment in the area,
which comprises an interbedded sequence of hemipelagic mud and volcaniclastic, bioclastic or mixed turbi-
dites (JR123) [Trofimovs et al., 2010, 2013].

The observed exposures comprise a mixture of fine-grained, white to pale-gray hemipelagic sediment and
interbedded sandy turbidites. Hemipelagic mud intervals frequently contain coarse volcanic clasts (Figure
3), which are likely to be locally derived (e.g., by reworking from upslope on a hummock). These poorly
sorted beds of outsized volcanic clasts set in hemipelagic mud are similar to the talus deposits at the base
of the SW Wembley-block exposures (section 3.2.1 and Figure 4d). Bed dips are parallel to the local slope,
and sometimes up to 40° (Figure 3b). These heterogeneous beds were not sampled by the JR123 cores, but
we note that some attempts at coring failed, perhaps due to the coarse nature of this material.

In several exposures, the basal unit of the drape (i.e., the deposit immediately overlying Deposit 1) is a well-
sorted, monomict and clast-supported, matrix-free volcanic breccia of dense, gray centimeter-scale andesite
clasts. This unit appears to be relatively continuous over Deposit 1 (Figure 3e). This immature, matrix-free
breccia is similar to beds found within volcanic blast deposits on the surface of some subaerial debris-
avalanche deposits [Hoblitt et al, 1981; Bogoyavlenskaya et al., 1985; Clavero et al., 2004; Belousov et al.,
2007], and provides possible evidence of a lateral explosion accompanying the Deposit 1 landslide.
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Figure 3. Images from a hummock at the northern edge of Deposit 1 (Figure 2; dive 1219). (a) Patchy erosion of the hemipelagic cover over Deposit 1, providing a window into the
hummock surface and exposures through the overlying sediment. (b) Top surface of hummock, showing typical exposure of hydrothermally altered volcanic rock. (c) Exposure through
the sedimentary drape over Deposit 1, showing a basal layer of dense, gray, angular clasts overlain by a bedded sequence of hemipelagic sediment and mixed volcaniclastic gravel.

(d) Coarse, hemipelagite-matrix-supported to clast-supported lithic breccias beds overlying the hummock surface. The basal, monomict bed of angular gray lava clasts contrasts with the

overlying polymict beds.

An alternative possibility is that this unit represents a capping, coarse-grained turbidite generated by the
debris avalanche; it may correlate with the gray volcaniclastic beds in the widespread 12-14 ka turbidite
[cf. Trofimovs et al., 2013].

3.2. Deposit 2

3.2.1. Wembley Block

The Wembley block differs from the hummocks within Deposit 1 in its scale, componentry, and shape. It
also displays some differences in postemplacement sedimentary cover. Its angular, steep-sided form sug-
gests that it is a single fragment of the volcanic edifice. The exposed base of the block is not its true base,
which may be as much as 100 m below the seafloor [cf. Crutchley et al., 2013].

3.2.1.1. Surface Exposures

Continuous exposures on the SE side of the Wembley block are summarized in Figure 5 (Dive 1217). The
lower half of the block exposes a largely structureless breccia of angular, dense, gray andesite clasts set
within a uniform, white to pale-gray fine-grained matrix, which erodes with a sculpted, pitted appearance
(Figures 4a, 4b, and 4f). We interpret this matrix as hemipelagic mud, because of its similar appearance to
the hemipelagite exposed in scarps that cut the seafloor east of the block [this mud has been sampled in
numerous cores, Trofimovs et al., 2013]. The exposures change abruptly 26 m above the seafloor, to volcanic
breccias of dense angular clasts, either gray or red in color, displaying crude low-angle bedding (Figure 6d),
but without any pale mud matrix (Figure 5). The volcanic breccias are similar in appearance to unaltered
breccias in Deposit 1, but hydrothermally altered rocks are absent. Some clasts show fractures (Figure 6e)
that may reflect in situ brecciation acquired by vibration and collision during transport. Exposures vary from
matrix to clast-supported breccias. Although most are monomict, some beds contain mixtures of gray and
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Figure 4. Images of pale fine-grained sediment, interpreted as hemipelagic mud, within exposures of the Wembley block (locations in Figure 2a). (a) Hemipelagic mud-rich interval of
the block surface, near the base of the SE side of the block (position in Figure 5), with lava clasts defining crude stratification. (b) Mixed volcaniclastic breccia in the upper half of the
Wembley block, comprising dense gray, red and black lava clasts (position in Figure 5). Beneath a covering of recent gray volcaniclastic sand, pale mud (center) occurs in a small isolated
patch, encasing volcanic clasts. (c) Typical appearance of pale mud, with a pitted and sculpted surface, in places preserving stretched or sheared fabrics, suggestive of a cohesive, clay-
rich hemipelagite. (d) Crudely bedded polymict, matrix-supported breccia of volcanic clasts embedded in a white to pale hemipelagite mud matrix (outlined in yellow), unconformably
overlying a monomict clast-supported lava breccia at a high angle, at the base of the SW side of the block. The right-hand plot shows schematic interpretations of the contrasting
hemipelagite-rich breccia at different exposures around the Wembley block. In Figures 4a and 4b, the hemipelagic mud appears to form a matrix to the primary lithology of the block
(although how and when this is acquired is open to interpretation—see text), but in Figure 4 d it forms a postemplacement talus derived from reworked material.

red lava fragments, and are subrounded in parts. We interpret the monomict breccias as dome-collapse
block-and-ash flow deposits, and the more mixed, rounded units, as reworking of the same material. The
common occurrence of reddened lavas suggests a subaerial origin.

Very dark lava clasts are exposed near the base of the ESE side of the Wembley block (Dive 1217). Based on
samples with a similar appearance from Deposit 3, we interpret these as blocks with ferromanganese sur-
face encrustation (Figures 4e and 6c¢). Such encrustation is likely to have formed after deposition, assuming
that the block surfaces were not previously exposed in a submarine environment. It is unclear why this
encrustation is restricted to a single part of the Wembley block, but the formation of ferromanganese crusts
can be strongly dependent on water depth and local biological activity [Hodkinson and Cronan, 1991].

The base of the Wembley block on its SW side (Dive H1308) also exposes volcanic breccias within a hemipe-
lagic mud matrix, but here they display crude, high-angle bedding, and unconformably overlie a monomict
volcanic breccia without any mud matrix (Figure 4d). We interpret the bedded mud-supported breccia as a
postemplacement talus of volcanic clasts mixed with continuously depositing hemipelagic sediment,
derived from periodic mass wasting of the steep slopes of the Wembley block. The monomict breccia is
thus the surface of the primary block. Higher up the SW side of the block, clast-supported volcanic breccias
dominate (Figure 6a). Overall, these are more angular than the breccias on the SE side. We interpret the
whole sequence as autoclastic and reworked lava breccias forming as talus around an active lava dome.
The greater prevalence of reworked breccias on the SE side of the block suggests a more marginal facies
than those on the SW, which is plausible given the 900 m dimensions of the block. The entire block is thus
a fragment of the subaerial volcano, transported intact to its present position.

3.2.1.2. Seafloor Interaction

Although the mud-supported breccias on the SW side of the block are clearly postemplacement talus
deposits, the mud-supported breccias on the SE side may be a syn-emplacement feature. Here the mud
matrix is present on subvertical and highly irregular, gullied slopes, sometimes showing a gradational
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Figure 5. A visual log, reconstructed from ROV imagery, of a transect up the exposed surface on the SE side of the Wembley block (map in
Figure 2). The surficial exposure may not be representative of internal stratigraphy of the block. A white cohesive material encases volcanic
clasts across much of the lower half of the Wembley block, and is interpreted as hemipelagic mud. This material is rare in the upper part of
the block. The uppermost part of the block exposes interbedded grey volcaniclastic sands and pale hemipelagic mud, very similar in
appearance to material sampled in the JR123 vibrocores from the surrounding seafloor [Trofimovs et al., 2008, 2010]. Pie charts indicate
the relative proportions of exposed surface area accounted for by different components. Modal and maximum lithic clast diameters, in
centimeters, are given in italics and bold, respectively (in several cases two modes are apparent).
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Figure 6. Images of the Wembley block lithologies (locations in Figures 2 and 5). (a) Monomict red and gray lava breccias and massive fresh angular lava blocks. (b) Massive single lava
block within side of Wembley block. (c) Massive matrix-supported breccia of volcanic clasts within a white to pale hemipelagite mud matrix. Dark coloration may be due to Fe-Mn
encrustation (arrows). In some cases (lower arrow), the color contrast suggests variable encrustation in a single clast. (d) Succession of two monomict lava breccias (black overlain by red)
in the upper part of the Wembley block, interpreted as block-and-ash flow deposits. (€) Andesite boulder with jig-saw fit fracture implying impact with nearby blocks during emplace-
ment of the Wembley block. (f) Hemipelagic mud bed exposed at the top of the Wembley block, overlying a recessive bed of volcaniclastic sand (Figure 8). Figures 6a-6¢ are from dive
H1308, and Figures 6d-6f from 1217.

contact with monomict, clast-supported volcanic breccias (Figure 4), and is prevalent below a sharp and
broadly horizontal boundary. The SE side of the block was the frontal section during block emplacement,
and seismic reflection data indicate that the emplacement of Deposit 2 involved substantial erosion of sea-
floor sediment [Watt et al., 2012a, 2012b]. Incorporation of mud into the brecciated surface of the block
may have occurred during this process, explaining the presence of this matrix in the lower and frontal part
of the block. This sediment injection is not necessarily deeply penetrating. We favor this interpretation over
alternative origins for the marine sediment matrix on the SE side of the Wembley block. Hemipelagic mud
characterizes marine sedimentation on the deep seafloor around Montserrat; if a marine matrix was a
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Figure 7. Images of carbonate samples (NA037-002 (975 m) and NA037-005 (942 m); Figure 1) from the Wembley block. (a) NA-37-005: a pelagic limestone comprising planktonic forami-
nifera (including Globorotalia), planktonic gastropods (heteropods and pteropods). Rounded patches of micrite with few bioclasts are likely burrow fills. Shallow-water benthic foraminif-
era are rare. (b) Hand specimen of NA037-002, a shallow-water limestone with rhodoliths of coralline algae and a variety of bioclasts. The same rock is shown in Figure 7¢c, where
rhodoliths have been extensively bored by a clionid sponge, and shallow-water bioclasts including foraminifera and bivalves are present, along with abundant peloids of probable micro-
bial origin, and in Figure 7d, where (top right) large benthic foraminifera (Amphistegina), (middle) coralline algae, (bottom middle) bivalve fragments (original aragonite replaced by cal-
cite spar), and (bottom left) partially dissolved peneroplid foraminifera all occur within a matrix of micrite and calcite spar. Some volcanic crystals and rock fragments are also present.

primary characteristic of the block (and if we assume the block originated on the submerged island flanks),
we would expect more evidence of shallow water carbonate rocks, and for the volcanic breccias to be more
extensively reworked. Rare white fragments are observed in the hemipelagic mud (Figure 5), up to 2 cm
across, but these may be deep water bivalves of the type observed (up to 0.5 cm across) on the south side
of Montserrat.

3.2.1.3. Sample Descriptions

A single lava sample from the block (NA037-001; see supporting information) comprises fresh, dense por-
phyritic andesite with a phenocryst assemblage of plagioclase, orthopyroxene, and clinopyroxene. Horn-
blende is absent. This assemblage contrasts with the andesite mineralogy that has predominated on
Montserrat since ~110 ka (and that occurs in Deposit 1), but is similar to rocks erupted before 130 ka [Har-
ford et al., 2002; Zellmer et al., 2003].

Loose yellow clasts of highly indurated carbonate, up to 30 cm across, were observed on the block surface
near the top of the SW side of the block (Dive H1308; Figure 7). A sample of this material (NA037-002; see
supporting information) is a coralgal limestone consisting of a mixture of large (cm-sized) rhodoliths,
benthic foraminifera (notably Amphistegina and peneroplids), and other bioclasts (including gastropods,
bivalves, echinoids, and calcareous red algal fragments) within a matrix of micrite. Microbialite-micritic fila-
ments and peloids probably represent in situ bacterial precipitates. Some bioclasts have textures indicating
replacement of original aragonite by neomorphic calcite. The characteristics of this clast suggest formation
at shelfal depths, but the replacement of aragonite suggests diagenesis either in a meteoric environment or
in its current deep water setting (900 m). A second sample (NA037-005) is a weakly indurated micritic lime-
stone with planktonic foraminifera (Globorotalia, Orbulina), planktonic gastropods (including pteropods),
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Figure 8. Stratigraphic logs and new radiocarbon dates (Table 1) of core JR123-21 taken from the top of the Wembley block (Figure 2) compared with ROV imagery from the eastern
side of the Wembley block (Figure 5), an exposure through seafloor sediment to the east (Figure 11c), and stratigraphic logs of cores described in Trofimovs et al. [2013]. Site locations

shown in Figure 2.

minor fragments of shallow-water bioclasts (bivalves, foraminifera, echinoids), and silt-sized volcanic crystals
set in a micrite matrix with conspicuous (mm sized) burrow fills. The sample exterior has some tubeworm
clasts and small coral fragments. The mix of shallow and deep water fauna, with incorporation of minor vol-
canic fragments and aragonite replacement all suggest transport from a shallow to a deeper environment.
We infer that these clasts were transported from shallow water to their current position during emplace-
ment of the Wembley block. They may represent material from the submarine shelf that was eroded during
the passage of the volcanic debris avalanche, which fell onto the surface of the block before being trans-
ported to their present position.

3.2.2. Large Southern Block

A large block south of Deposit 1, mapped as a marginal block within Deposit 2 (Figure 1, Dive 1213) [Watt
et al., 2012b], comprises monomict lava breccias with dark coloration, interpreted as ferromanganese
encrustation. Gray volcaniclastic sand from the recent Soufriére Hills eruption obscures much of the block
surface. Our limited observations suggest that the block is lithologically similar to the Wembley block.

3.2.3. Wembley Block Sedimentary Drape

Approximately 3 m of marine sediment is exposed on top of the SE side of the Wembley block (Figure 5).
Prominent beds of white hemipelagic mud are interbedded with three thicker, recessive gray sandy units,
interpreted as turbidites, which are partly obscured by deposits of recent volcaniclastic sand (Figure 6f).
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In comparison with the stratigraphy of core JR123-21, collected on top of the Wembley block in 2005 [Trofi-
movs et al., 2008, 2010], the drape on the SE edge of the block contains thicker turbidites and thinner hemi-
pelagite intervals (Figure 8). Both sequences are very different in terms of both layer thickness and
characteristics from the stratigraphy recovered in over 20 vibracores from the surrounding seafloor (JR123)
[Trofimovs et al., 2008, 2010, 2013] (Figure 8).

The youngest turbidites in the correlated stratigraphy from the surrounding seafloor are much thicker
than those from JR123-21. This may be explained by the elevated position of the block, where clast
concentration in turbidity currents may have been lower (resulting in thinner deposits). However, the sandy
beds at the base of JR123-21 are notably thick. These lower units are almost purely volcaniclastic, and do
not correlate clearly with any turbidites in the local stratigraphy, which is well defined at ages <110 ka [Tro-
fimovs et al., 2013]. They may be the deposits of older turbidity currents generated during the emplacement
of Deposit 2.

The Wembley block is mapped as part of Deposit 2 [Watt et al., 2012a, 2012b; Crutchley et al., 2013], but its
location (Figure 1) suggests that it could be an outrunner block within Deposit 1. Seismic reflection profiles
and the regional turbidite record provide no evidence of major landslides in the period between Deposits 2
(~130 ka) and Deposit 1 (11.5-14 ka). New radiocarbon dates from JR123-21 (Figure 8 and Table 1) extend
beyond the limits of radiocarbon dating (43.5 ka), supporting interpretation of the Wembley block as part
of Deposit 2. However, the dates do not provide good constraints on turbidite ages or hemipelagic sedi-
mentation rates, because several ages cluster around 43 ka, and some are out of stratigraphic sequence
(Figure 8). This suggests extensive bioturbation or the possible reworking of material derived from bioclastic
turbidites with background hemipelagic sediment. The 1.2 m thickness of hemipelagic intervals in JR123-21
also supports a pre-Deposit 1 age for the Wembley block: post-Deposit 1 hemipelagic mud on the surround-
ing seafloor has a cumulative thickness of 70-80 cm; and hemipelagic sedimentation rates of 6.6 cm kyr ",
estimated from a 45 cm vibrocore (JC83-VC1) on top of the large southern block (Figure 1 and Table 1)
imply that the hemipelagite in JR123-21 represents >18 kyr. However, the sedimentary drape is surprisingly
thin if the emplacement age of the block is 130 ka. Thus, although the balance of observations suggests
that the Wembley block lies within Deposit 2, several aspects of the sedimentary drape remain puzzling.

3.3. Deposit 3

The surface of Deposit 3 (Dive H1310; Figure 1) is not well exposed, but occasional clusters of meter-scale
blocks, with features such as well-developed radial jointing (Figure 9a), protrude through younger sedimen-
tary cover. The blocks are dense porphyritic andesite lavas with a very dark surface coating, caused by thick
(up to 3 mm) manganese encrustations. Examination of two thin sections (NA037-037 and NA037-042; sup-
porting information) indicates a phenocryst assemblage of plagioclase, clinopyroxene, and orthopyroxene.
Orthopyroxene is less abundant than in the Wembley block sample (NA037-001). The assemblage is compa-
rable to that observed in the pre-130 ka andesites of Soufriere Hills and in some of South Soufriére Hills
rocks [Zellmer et al., 2003], although olivine is absent. An origin from South Soufriére Hills would be consist-
ent the previous correlation of Deposit 3 with a mafic volcaniclastic turbidite [Cassidy et al., 2014]. The prev-
alence of angular, fractured lava blocks suggests a subaerial source for the landslide; the absence of a
visible source scar and a lack hydrothermally altered material in the exposures suggests that this landslide
may have been relatively shallow-seated.

3.4. Deposit 5

Clusters of blocks in Deposit 5 are well exposed at depths of 750-830 m (Dive H1309; Figure 1). Blocks com-
prise massive carbonate fragments (Figure 9f) and well-bedded carbonate-cemented volcaniclastic con-
glomerates. The well-rounded conglomerates (Figure 9c) are comparable to beach cobbles and mature
fluvial deposits, and the carbonate fragments are similar to large slabs of hardground observed in separate
dives at depths of 100-200 m off the southern coast of Montserrat. A single large slab of reef rock has kars-
tic features (deeply incised channels) indicative of subaerial exposure, perhaps during a low stand in sea
level (Figures 9d and 9e).

One carbonate sample (NA037-026; Figure 10, supporting information) is a dense limestone of encrusted vol-
canic clasts and bioclasts, including benthic and planktonic foraminifera, calcareous red algae, mollusc fragments,
serpulids, sponge spicules, radiolaria, echinoid spines, and pteropods, cemented by micritic-microsparitic-sparry
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Figure 9. Images of block exposures in Deposits 3 and 5 (Figure 1; dives H1309 and H1310). (a) Radially fractured dense lava block with dark Fe-Mn encrustation. This is the dominant
lithology exposed at the surface of Deposit 3. (b) Polymict breccias of altered subangular and scoriaceous volcanic clasts, forming a possible surficial deposit overlying Deposit 3.

(c) Carbonate cemented conglomerate of rounded lava cobbles (beach type rock) in Deposit 5. (d) Karstic weathering in a reef block in Deposit 5. Field of view ~3 m. (e) An overhead
view of a weathered carbonate reef block in Deposit 5. (f) Slab-like carbonate blocks within Deposit 5. Similar lithologies were observed on the SW flank of Montserrat, encrusting the

submerged flank of the island.

calcite cement. The encrusted grains (comparable to oncoids or rhodoliths) probably formed by rolling in inter-
mittent currents in shallow to moderate water environments, consistent with the fossil assemblage. Encrusting
foraminifera on red algal crust occur with microbial filaments. Aragonitic gastropod and sponge fragments are
replaced by coarse calcite, consistent with diagenetic alteration following transport to a deep water environment.
Phosphate grains of probable microbial origin occur within cavities (sponge borings) in calcareous algae. A fur-
ther sample (NA037-025) is a well-sorted, porous cemented bioclastic grainstone (medium to coarse sand)
cemented by thin (20-50 um) isopachous bladed calcite. Grains include shallow-water foraminifera (penerolids),
calcareous algae (branched forms), green algae (Halimeda), minor bivalve fragments, and volcanic clasts. Areas of
peloidal sediment are likely to be the result of bacterial precipitation. Our observations support the previous
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Figure 10. Images of carbonate samples (NA037-025 (806 m) and NA037-026 (823 m); Figure 1) from Deposit 5. (a) NA037-026, a limestone comprising coated rounded and subangular
volcanic clasts in a carbonate matrix. In Figure 10b, the coating is shown to comprise a mixture of calcareous algae and other biota, whereas the surrounding matrix contains fine-
grained volcanic material, micrite, and calcite spar. A similar matrix and algal-coated grain is shown in Figure 10c, as well as shallow-water fossils (e.g., benthic foraminifera Amphistegina,
top left). The coating in sample NA037-026 is shown in more detail in Figure 10d, where an algae nodule is encrusted by foraminifera, serpulid and microbial filaments. Sponge spicules

occur in the surrounding matrix. (€) NA037-025, a well-sorted bioclastic grainstone, comprising bioclasts and minor volcanic grains cemented by an isopachous fibrous calcite fringe (f).
Bioclasts include peneroplid foraminifera, coralline algae, and bivalve fragments.

conclusion [Le Friant et al., 2004; Cassidy et al., 2013] that Deposit 5 originated as a shallow-seated collapse of the
coastal shelf.

3.5. Sharp-Faced Depressions in Young Sediment

Numerous sharp-faced depressions, up to a few meters deep, occur on the seafloor between hummocks in
Deposit 5 and to the east of Deposit 1 [cf. Watt et al., 2012b]. These structures are defined by arcuate scarps,
in some cases forming fully enclosed, round depressions, exposing near-vertical cliffs through the seafloor
sedimentary sequence (Figures 11b and 11c). The depressions are at least tens of meters across in the
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Figure 11. ROV images of circular erosional or collapse structures forming within young
seafloor sediment (locations in Figures 1 and 2). (a) Shallow dish-like pockmarks in Deposit
5, cutting a scarp in hemipelagic sediment all around the margin. (b) Overhead view of a
relatively deep (~5 m) pockmark in Deposit 5. A sharp, circular wall marks positive relief
beyond the margin of the structure, with a streaking, radiating pattern on the seafloor
outside the structure. The wall cuts steeply through seafloor strata of interbedded hemi-
pelagite and volcaniclastic sand. (c) Pockmark wall beyond the margin of Deposit 1, east
of the Wembley block, and overlying part of Deposit 2 (Figure 1). This seafloor stratigraphy
is exposed, showing four distinct hemipelagite layers, present throughout the region in
cores collected in JR123 [Trofimovs et al., 2008, 2010] (Figure 8). Exposure of these young
depositional layers suggests recent erosion.

4.1.1. Subaerial Source Region

vicinity of Deposit 5, and up to
hundreds of meters across to the
east of Deposit 1. The stratigraphy
of scarps east of Deposit 1 (Figure
11c) comprises interbedded turbi-
dites and hemipelagic mud but is
difficult to correlate precisely with
the regional turbidite stratigraphy
(Figure 8). The good exposure of
the scarps suggests that they cut
through to the youngest Holo-
cene deposits and that they
therefore formed (or have been
actively eroded) very recently.

The spatial distribution of the
depressions and their fully
enclosed shapes suggests that
they are not simply scour struc-
tures, but have a genetic rela-
tionship with debris-avalanche
deposition. The depressions east
of Deposit 1 lie in a region
where failure of the preexisting
seafloor sediment occurred dur-
ing the Deposit 2 landslide [Watt
et al, 2012b; Crutchley et al.,
2013]. The structures may be
collapse pits in younger sedi-
ment produced by seafloor sub-
sidence or fluid venting driven
by compaction within the under-
lying landslide deposit.

4. Implications for
Landslide Processes

4.1. The Source and
Composition of Deposit 1

The rocks exposed in Deposit 1
include near-vent and subaerial
lithologies, consistent with Eng-
lish’s Crater being the major
source of material in the deposit.
This correlation places an age of
11.5-14 ka on the formation of
English’s Crater, which is signifi-
cantly older that the 6 ka mini-
mum age provided by dates of
infilling deposits [Smith et al.,
2007; Boudon et al., 2007].

English’s Crater and the Tar River Valley display two volcanic facies [Harford et al., 2002]: near-vertical walls
of massive lava crop out to the west (Chances Peak; age unknown) and south (Galways Mountain, 112 ka;
Perches Dome, 24 ka); and radiating fans of crudely bedded lava breccias (rock fall and block-and-ash flow
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deposits) crop out at the northern and lower margin of English’s Crater and along the Tar River Valley.
Block-and-ash flow deposits on the east coast, south of Spanish Point, have radiocarbon ages of 19.7 and
24.0 ka [Roobol and Smith, 1998] and can be traced toward English’s Crater. They may be associated with
Perches Dome, given their similar age. Similar lava breccias between Chances Peak and Galways Mountain,
as well as deposits dated at 16-19 ka on the west side of the island, in Fort Ghaut, suggest elevated levels
of extrusive volcanism on Montserrat between 16 and 24 ka. However, the remains of Perches dome are the
only exposed Soufriére Hills lavas from this time period. It is possible that a much more extensive lava-
dome complex of this age formed the source of the Deposit 1 landslide, also removing sections of massive
lava from older domes to form the near-vertical cliffs currently exposed around English’s Crater. A relatively
deep-seated collapse, centered on the vent region, is supported by the high proportion of hydrothermally
altered material in Deposit 1. At least three extensive fumarole and hot spring systems existed inside Eng-
lish’s Crater prior to 1995 (Lang’s, Cow Hill New, and Tar River), providing evidence of intense hydrothermal
activity in this area [Roobol and Smith, 1998].

4.1.2. Incorporation of Submarine Material

A single observation of a clast (Figure 2f) with contrasting surfaces of fresh andesite and weathered, tube-
worm encrusted andesite, provides the only direct evidence for the incorporation of submarine material
within Deposit 1. This conflicts with morphological observations: the maximum plausible subaerial failure
volume of ~1 km?, based on combining the Tar River Valley and English’s Crater depressions, with prefailure
elevations of >1100 m, is too small to account for the volume of Deposit 1 (1.7 km?>). The chute cut into
Montserrat's eastern flank also suggests that submerged material formed part of the landslide. Such mate-
rial would likely comprise carbonate and reworked, polymict volcanic clasts. The absence of these litholo-
gies suggests that the surface exposures of Deposit 1 may not be representative of the deposit as a whole.

The correlation of Deposit 1 with the large-volume 12-14 ka turbidite east of Montserrat [Trofimovs et al.,
2013] (see section 2.3.1) also implies a submarine component to the event. The turbidite comprises approxi-
mately equal proportions of volcaniclastic and bioclastic grains, in contrast to the entirely volcanic litholo-
gies exposed in Deposit 1. If the two events are related, then the bioclastic component of the turbidite
must derive from seafloor material disaggregated during landslide emplacement. The shelf chute aligned
with Deposit 1 provides supporting evidence of such a process. Given the absence of submarine lithologies
within surface exposures of the Deposit 1 hummocks, the submarine component of the landslide may be
concentrated disproportionately within the unexposed matrix facies between the debris-avalanche deposit
hummocks.

4.2. Emplacement Mechanisms and Comparison With Subaerial Debris-Avalanche Deposits

4.2.1. Deposit Morphologies

Deposit 1 is morphologically and texturally similar to many subaerial debris-avalanche deposits. The
rounded hummocks of the deposit, comprising heterogeneous mixtures of deformed and frequently altered
monomict domains, are typical of many subaerial examples [e.g., Glicken, 1996; Shea et al., 2008; Clavero
et al, 2002]. The fan-shaped morphology of Deposit 1 is comparable to freely spreading deposits such as
those at Galunggung and Mombacho volcanoes [Siebert, 1984; Shea et al., 2008], and indicative of granular
avalanche emplacement processes [cf. Paguican et al., 2014]. Landslide mobility indices [cf. Griswold and
Iverson, 2008; Iverson et al., 2015] for Deposit 1 are also within the range of typical values for subaerial vol-
canic debris avalanches (L/H = 7 and A/V’* = 36, based on parameters in Lebas et al. [2011]) [Legros, 2002;
Griswold and Iverson, 2008].

In contrast to Deposit 1, Deposit 2 forms a continuous elongate deposit, and its mobility is at the high end
of the range defined by subaerial volcanic debris avalanches (L/H = 16 and A/V* = 47, based on parameters
in Watt et al. [2012b]), which partly reflects the incorporation and secondary failure of large volumes of
seafloor-sediment within the deposit [cf. Watt et al., 2012a, 2012b]. Deposit 2 has a central thickness of over
100 m, and a surface marked by isolated blocks set within the more continuous landslide mass (as indicated
by seismic reflection profiles [Crutchley et al., 2013]). Although this mass may be disaggregated and mixed,
the blocks are competent, intact fragments of the initial volcanic failure region. They are hundreds of meters
across, and have subvertical sides that reach over 100 m in height. Observations of the Wembley block and
a large block to the south show that they comprise bedded sequences of volcaniclastic breccia, suggestive
of marginal and probably near-surface portions of a subaerial lava-dome complex. The blocks result in a
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Figure 12. A schematic cross section through the landslide deposits east of Soufriére Hills, Montserrat, summarizing the main observations made for Deposits 1 and 2 in this study. The
vertical section and scale are based on seismic profiles through the deposits [cf. Crutchley et al., 2013; Karstens et al., 2013].

prominent morphological front within the thick, central part of Deposit 2 [Watt et al, 2012b]; the well-
exposed southern blocks are closely aligned with the southern lateral margin of the deposit, and the
Wembley block lies near the northern margin (Figure 1). The deposit morphology is similar to the Icod
debris-avalanche deposit, north of Tenerife [Masson et al., 2002], which has several kilometer-scale blocks at
its lateral margins. Masson et al. [2002] conclude that the Icod deposit shape and block distribution is char-
acteristic of coarse-grained debris flow processes [cf. Major and Iverson, 1999], and suggest that this behav-
ior reflects the high proportion of pyroclastic material in the landslide. Our observations do not show
evidence that the Deposit 2 failure mass was significantly different to that of Deposit 1, or was rich in friable
pyroclastic material, but there is good evidence of extensive seafloor-sediment failure concomitant with the
volcanic landslide [cf. Watt et al., 2012a, 2012b]. This potentially produced a mixed landslide, with high pro-
portions of fine-grained, clay-rich material.

4.2.2. Large-Block Transport

Hummocks in subaerial debris-avalanche deposits are frequently cored by large, deformed blocks of the
failure mass [Crandell et al., 1984; Glicken, 1991; Paguican et al., 2014]. Partial disaggregation, extensional
faulting, and shearing of these blocks produces the broadly rounded hummock form. The large blocks of
Deposit 2 differ from these hummocks in that they have undergone no deformation beyond the initial frag-
mentation that produced them. The vertical sides, and angular, upright form of the Deposit 2 blocks, as well
as their relatively long transport distance, also contrasts with Toreva blocks, which occur in proximal regions
of some debris-avalanche deposits and are often rotated, with a morphology that reflects the extensional
failure planes of the fragmenting mass [Siebe et al., 1992; Wadge et al., 1995; Paguican et al., 2014].

The bedded breccias that characterize the Deposit 2 blocks might be expected to disaggregate relatively
readily in a debris avalanche. Their preservation as intact fragments of the failure mass may therefore be
evidence of an emplacement mechanism that limited block interaction and basal deformation (at least for
the small number of outsized blocks near the deposit margins), and may also reflect damping of block colli-
sion in the aqueous environment [cf. De Blasio, 2013]. Volcaniclastic breccias, as massive and bedded units,
also characterize the megablocks in landslide deposits north of Oahu, Hawaii [Yokose, 2002], although the
failure and transport mechanism is not necessarily similar to that of Deposit 2. Seismic reflection profiles
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show that the Deposit 2 blocks are rooted within a continuous landslide deposit (Figure 12), suggesting
that block emplacement is not explained by low-friction transport of individual fragments on a lubricated
basal surface of wet sediment [i.e., as characterizes isolated outrunner blocks in some submarine rock ava-
lanches, De Blasio et al., 2006; De Blasio, 2013]. Rather, the blocks appear to have been passively rafted
within the main landslide mass, without any clear evidence for rotation around a horizontal axis, and
pushed toward the margins during continued landslide movement [cf. Major and Iverson, 1999]. The lack of
subaerial volcanic-debris-avalanche analogues for outsized intact blocks such as those in Deposit 2 may
indicate that the development of debris-avalanche masses with sufficient proportions of fine-grained,
water-saturated sediment to maintain elevated pore fluid pressures may be more easily acquired in a sub-
marine environment, via mixing and entrainment of marine sediment.

5. Summary and Conclusions

This study presents results of the first detailed ROV investigations of multiple submerged landslide deposits
around an island-arc volcano. Coupled with other methods of investigation, such as coring, bathymetric
mapping, and geophysical data, the direct observations offered by ROVs significantly strengthen the inter-
pretation of the sources of material and the processes operating during the emplacement of large land-
slides around volcanic islands.

Our observations indicate that Deposit 1 (1.7 km®) is similar to many subaerial volcanic debris-avalanche
deposits, and is dominated by hydrothermally altered material likely to have originated from a collapse of
the near-vent region of the Soufriére Hills volcano. This is surprising, given the large proportion of bioclastic
material in a turbidite that correlates stratigraphically with Deposit 1, and a submerged eroded chute asso-
ciated with the event. However, we infer that the bioclastic component within the turbidite is predomi-
nantly derived from preexisting seafloor sediment disrupted by the emplacement of Deposit 1 and eroded
by associated turbidity currents. Our observations suggest that Deposit 1 occurred at 11.5-14 ka through
the collapse of altered lava domes erupted at 16-24 ka, the relics of which form Perches Dome.

A much larger (10 km®) landslide occurred at ~130 ka, forming Deposit 2. Although this deposit was mostly
inaccessible to ROV observation, we were able to study a large block of volcaniclastic breccias that repre-
sents a single intact fragment of the subaerial volcano. Its petrology is consistent with pre-130 ka Montser-
rat lavas. The lower part of the block exposes breccia set within a hemipelagic mud matrix, which was most
likely acquired through vigorous erosion of preexisting seafloor sediment during block transport. The intact,
outsized blocks within Deposit 2 were rafted within a relatively mobile debris-avalanche mass, and are best
exposed near the margins of this elongate deposit.

Two landslide deposits to the south of Montserrat have very different source lithologies. Deposit 3 is mor-
phologically similar to Deposit 1, but comprises fresher, denser lavas. We infer that it results from a shal-
lower seated collapse, rather than a landslide that cut deeply into a hydrothermally altered edifice. This is
consistent with the absence of a prominent source scar for the deposit. Deposit 5 is dominated by blocks of
reef rock, and demonstrates that large landslides on the flanks of volcanic islands may occur without
involvement of the active volcanic edifice, but can arise from instabilities on the carbonate-dominated
shelves that may form around these islands.

References

Belousov, A, B. Voight, and M. Belousova (2007), Directed blasts and blast-generated pyroclastic density currents: A comparison of the
Bezymianny 1956, Mount St Helens 1980, and Soufriére Hills, Montserrat, 1997 eruptions and deposits, Bull. Volcanol., 69, 701-740.

Bogoyavlenskaya, G. E., O. A. Braitseva, I. V. Melekestsev, V. Y. Kiriyanov, and C. D. Miller (1985), Catastrophic eruptions of the directed-blast
type at Mount St. Helens, Bezymianny and Shiveluch volcanoes, J. Geodyn., 3, 189-218.

Boudon, G,, A. Le Friant, J. C. Komorowski, C. Deplus, and M. P. Semet (2007), Volcano flank instability in the Lesser Antilles Arc: Diversity of
scale, processes, and temporal recurrence, J. Geophys. Res., 112, B08205, doi:10.1029/2006JB004674.

Bronk Ramsey, C. (2009), Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337-360.

Carey, S, et al. (2014), Impact of volcanic eruptions on the seafloor around Montserrat, West Indies, Oceanography, 27, 36-37.

Cassidy, M., J. Trofimovs, M. R. Palmer, P. J. Talling, S. F. L. Watt, S. G. Moreton, and R. N. Taylor (2013), Timing and emplacement dynamics
of newly recognised mass flow deposits at ~8-12 ka offshore Soufriere Hills volcano, Montserrat: How submarine stratigraphy can com-
plement subaerial eruption histories, J. Volcanol. Geotherm. Res., 253, 1-14.

Cassidy, M., J. Trofimovs, S. F. L. Watt, M. R. Palmer, R. N. Taylor, T. M. Gernon, P. J. Talling, and A. Le Friant (2014), Multi-stage collapse
events in the South Soufriere Hills recorded in marine sediment cores, in The Eruption of Soufriére Hills Volcano, Montserrat From 2000 to
2010, Mem. Geol. Soc. London 39, edited by G. Wadge, R. E. A. Robertson, and B. Voight, pp. 383-397, Geol. Soc. of London, London, U. K.

WATT ET AL.

MONTSERRAT LANDSLIDE ROV 2259


http://dx.doi.org/10.1029/2006JB004674

@AG U Geochemistry, Geophysics, Geosystems 10.1002/2015GC005781

Cassidy, M., et al. (2015), Rapid onset of mafic magmatism facilitated by volcanic edifice collapse, Geophys. Res. Lett., doi:10.1002/
2015GL064519, in press.

Clavero, J., R. S. J. Sparks, H. E. Huppert, and W. B. Dade (2002), Geological constraints on the emplacement mechanism of the Parinacota
debris avalanche, northern Chile, Bull. Volcanol., 64, 3-20.

Clavero, J., R. S. J. Sparks, M. S. Pringle, E. Polanco, and M. C. Gardeweg (2004), Evolution and volcanic hazards of Taapaca Volcanic Com-
plex, Central Andes of Northern Chile, J. Geol. Soc., 161, 1-17.

Coombs, M. L., D. A. Clague, G. F. Moore, and B. L. Cousens (2004), Growth and collapse of Waianae Volcano, Hawaii, as revealed by explora-
tion of its submarine flanks, Geochem. Geophys. Geosyst., 5, Q08006, doi:10.1029/2004GC000717.

Coombs, M. L., S. M. White, and D. W. Scholl (2007), Massive edifice failure at Aleutian arc volcanoes, Earth Planet. Sci. Lett., 256, 403-418.

Crandell, D. R., C. D. Miller, H. X. Glicken, R. L. Christiansen, and C. G. Newhall (1984), Catastrophic debris avalanche from ancestral Mount
Shasta volcano, California, Geology, 12, 143-146.

Croff Bell, K., S. N. Carey, P. Nomikou, H. Sigurdsson, and D. Sakellariou (2013), Submarine evidence of a debris-avalanche deposit on the
eastern slope of Santorini volcano, Greece, Tectonophysics, 597-598, 147-160.

Crutchley, G. J, et al. (2013), Insights into the emplacement dynamics of volcanic debris avalanches from high resolution 3D seismic data
offshore Montserrat, Lesser Antilles, Mar. Geol., 335, 1-15.

Day, S., P. Llanes, E. Silver, G. Hoffmann, S. Ward, and N. Driscoll (2015), Submarine landslide deposits of the historical lateral collapse of Rit-
ter Island, Papua New Guinea, Mar. Pet. Geol., 67, 419-438, doi:10.1016/j.marpetgeo.2015.05.017.

De Blasio, F. V. (2013), Dynamics, velocity and run-out of subaqueous rock avalanches, Landslide Sci. Pract., 5, 57-63.

De Blasio, F. V., L. E. Engvik, and A. Elverhgi (2006), Sliding of outrunner blocks from submarine landslides, Geophys. Res. Lett., 33,L06614,
doi:10.1029/2005GL025165.

Deplus, C., A. Le Friant, G. Boudon, J. C. Komorowski, B. Villemant, C. Harford, J. Ségoufin, and J. L. Cheminée (2001), Submarine evidence
for large-scale debris avalanches in the Lesser Antilles Arc, Earth Planet. Sci. Lett., 192, 145-157.

Dufresne, A., and T. R. Davies (2009), Longitudinal ridges in mass movement deposits, Geomorphology, 105, 171-181.

Glicken, H. (1991), Sedimentary architecture of large volcanic-debris avalanches, in Sedimentation in Volcanic Settings, SEPM Spec. Pub. 45,
edited by R. V. Fisher and G. A. Smith, SEPM (Society for Sedimentary Geology), pp. 99-106.

Glicken, H. (1996), Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, U.S. Geol. Surv. Open File Rep., 96-677, 90 pp.

Griswold, J. P, and R. M. Iverson (2008), Mobility statistics and automated hazard mapping for debris flows and rock avalanches (ver. 1.1,
April 2014), U.S. Geol. Surv. Sci. Invest. Rep., 2007-5276, 59 pp.

Harford, C. L., M. S. Pringle, R. S. J. Sparks, and S. R. Young (2002), The volcanic evolution of Montserrat using “OAr/>°Ar geochronology, in
The Eruption of Soufriére Hills Volcano, Montserrat, From 1995 to 1999, Mem. Geol. Soc. London 21, edited by T. H. Druitt and B. P. Kokelaar,
pp. 93-113, Geol. Soc. of London, London, U. K.

Herd, R. A, M. Edmonds, and V. Bass (2005), Catastrophic lava dome failure at Soufriere Hills Volcano, Montserrat 12-13 July 2003, J. Volca-
nol. Geotherm. Res., 148, 234-252.

Hoblitt, R., D. Miller, and J. Vallance (1981), Origin and stratigraphy of the deposit produced by the May 18 directed blast, in The 1980 Erup-
tions of Mount St. Helens, Washington, U.S. Geol. Surv. Prof. Pap. 1250, edited by P. Lipman and D. Mulineaux, pp. 401-419, U.S. Govern.
Print. Off., Washington, D. C.

Hodkinson, R. A., and D. S. Cronan (1991), Regional and depth variability in the composition of cobalt-rich ferromanganese crusts from the
SOPAC area and adjacent parts of the central equatorial Pacific, Mar. Geol., 98, 437-447.

Hunt, J. E,, R. B. Wynn, D. G. Masson, P. J. Talling, and D. A. H. Teagle (2011), Sedimentological and geochemical evidence for multistage fail-
ure of volcanic island landslides: A case study from Icod landslide on north Tenerife, Canary Islands, Geochem. Geophys. Geosyst., 12,
Q12007, doi:10.1029/2011GC003740.

Iverson, R. M,, et al. (2015), Landslide mobility and hazards: Implications of the 2014 Oso disaster, Earth Planet. Sci. Lett., 412, 197-208.

John, D. A, T. W. Sisson, G. N. Breit, R. O. Rye, and J. W. Vallance (2008), Characteristics, extent and origin of hydrothermal alteration at
Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits, J. Volcanol. Geotherm. Res., 175,
289-314.

Karstens, J., G. J. Crutchley, C. Berndt, P. J. Talling, S. F. L. Watt, J. Trofimovs, V. Hiihnerbach, A. Le Friant, and E. Lebas (2013), Insights into pyro-
clastic flow emplacement from high-resolution 3D seismic data offshore Montserrat, Lesser Antilles, J. Volcanol. Geotherm. Res., 257, 1-11.

Lebas, E., A. Le Friant, G. Boudon, S. F. L. Watt, P. J. Talling, N. Feuillet, C. Deplus, C. Berndt, and M. Vardy (2011), Multiple widespread land-
slides during the long-term evolution of a volcanic island: Insights from high-resolution seismic data, Montserrat, Lesser Antilles, Geo-
chem. Geophys. Geosyst., 12, Q05006, doi:10.1029/2010GC003451.

Le Friant, A,, C. Harford, C. Deplus, G. Boudon, R. S. J. Sparks, R. Herd, and J.-C. Komorowski (2004), Geomorphological evolution of Montser-
rat (West Indies): Importance of flank collapse and erosional processes, J. Geol. Soc. London, 161, 147-160.

Le Friant, A,, C. Deplus, G. Boudon, J.-C. Komorowski, J. Trofimovs, R. S. J. Sparks, and P. J. Talling (2009), Submarine deposition of volcani-
clastic material from the 1995-2005 eruptions of the Soufriere Hills volcano, Montserrat, J. Geol. Soc. London, 166, 171-182.

Le Friant, A, et al. (2015), Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: First scientific drilling of
submarine volcanic island landslides by IODP Expedition 340, Geochem. Geophys. Geosyst., 16, 420442, doi:10.1002/2014GC005652.

Legros, F. (2002), The mobility of long-runout landslides, Eng. Geol., 63, 301-331.

Major, J. J,, and R. M. Iverson (1999), Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins, Geol.
Soc. Am. Bull., 111, 1424-1434.

Masson, D. G, A. B. Watts, M. J. R. Gee, R. Urgeles, N. C. Mitchell, T. P. Le Bas, and M. Canals (2002), Slope failures on the flanks of the west-
ern Canary Islands, Earth Sci. Rev., 57, 1-35.

Masson, D. G., C. B. Harbitz, R. B. Wynn, G. Pedersen, and F. Lovholt (2006), Submarine landslides: Processes, triggers and hazard prediction,
Philos. Trans. R. Soc. A, 364, 2009-2039.

Moore, J. G, D. A. Clague, R. T. Holcomb, P. W. Lipman, W. R. Normark, and M. E. Torresan (1989), Prodigious submarine landslides on the
Hawaiian ridge, J. Geophys. Res., 94, 17,465-17,484.

Morgan, J. K, D. A. Clague, D. C. Borchers, A. S. Davis, and K. L. Milliken (2007), Mauna Loa’s submarine western flank: Landsliding, deep vol-
canic spreading, and hydrothermal alteration, Geochem. Geophys. Geosyst., 8, Q05002, doi:10.1029/2006GC001420.

Naranjo, J. A, and P. Francis (1987), High velocity debris avalanche at Lastarria volcano in the north Chilean Andes, Bull. Volcanol., 49, 509-
514.

Paguican, E. M. R, B. van Wyk de Vries, and A. Lagmay (2014), Hummocks: How they form and how they evolve in rockslide-debris ava-
lanches, Landslides, 11, 67-80.

Reimer, P. J,, et al. (2013), IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP, Radiocarbon, 55, 1869-1887.

WATT ET AL.

MONTSERRAT LANDSLIDE ROV 2260


http://dx.doi.org/10.1002/2015GL064519, in press
http://dx.doi.org/10.1002/2015GL064519, in press
http://dx.doi.org/10.1029/2004GC000717
http://dx.doi.org/10.1016/j.marpetgeo.2015.05.017
http://dx.doi.org/10.1029/2005GL025165
http://dx.doi.org/10.1029/2011GC003740
http://dx.doi.org/10.1029/2010GC003451
http://dx.doi.org/10.1002/2014GC005652
http://dx.doi.org/10.1029/2006GC001420

@AG U Geochemistry, Geophysics, Geosystems 10.1002/2015GC005781

Roobol M. J,, and A. L. Smith (1998), Pyroclastic stratigraphy of the Soufriere Hills volcano, Montserrat; implications for the present eruption,
Geophys. Res. Lett., 25, 3393-3396.

Satake, K. (2007), Volcanic origin of the 1741 Oshima-Oshima tsunami in the Japan Sea, Earth Planets Space, 59, 381-390.

Shea, T., B. van Wyk de Vries, and M. Pilato (2008), Emplacement mechanisms of contrasting debris avalanches at Volcan Mombacho
(Nicaragua), provided by structural and facies analysis, Bull. Volcanol., 70, 899-921.

Siebe, C., J. C. Komorowski, and M. F. Sheridan (1992), Morphology and emplacement of an unusual debris-avalanche deposit at Jocotitlan
volcano, Central Mexico, Bull. Volcanol., 54, 573-589.

Siebert, L. (1984), Large volcanic debris avalanches: Characteristics of source areas, deposits, and associated eruptions, J. Volcanol. Geo-
therm. Res., 22, 163-197.

Silver, E., S. Day, S. Ward, G. Hoffmann, P. Llanes, N. Driscoll, B. Appelgate, and S. Saunders (2009), Volcano collapse and tsunami generation
in the Bismarck Volcanic Arc, Papua New Guinea, J. Volcanol. Geotherm. Res., 186, 210-222.

Smith, A. L., M. J. Roobol, J. H. Schellekens, and G. S. Mattioli (2007), Prehistoric stratigraphy of the Soufriére Hills-South Soufriére Hills vol-
canic complex, Montserrat, West Indies, J. Geol., 115, 115-127.

Stinton, A. J., P. D. Cole, H. M. Odbert, T. Christopher, G. Avard, and M. Bernstein (2014), Dome growth and valley fill during Phase 5 (8 Octo-
ber 2009-11 February 2010) at the Soufriere Hills Volcano, Montserrat, in The Eruption of Soufriére Hills Volcano, Montserrat, From 2000
to 2010, Mem. Geol. Soc. London 39, edited by G. Wadge, R. E. A. Robertson, and B. Voight, Geol. Soc. of London, London, U. K.

Talling, P. J., D. G. Masson, E. J. Sumner, and G. Malgesini (2012), Subaqueous sediment density flows: Depositional processes and deposit
types, Sedimentology, 59, 1939-2003.

Trofimovs, J,, R. S. J. Sparks, and P. J. Talling (2008), Anatomy of a submarine pyroclastic flow and associated turbidity current: July 2003
dome collapse event, Soufriére Hills volcano, Montserrat, West Indies, Sedimentology, 55, 617-634.

Trofimovs, J., et al. (2010), Evidence for carbonate platform failure during rapid sea-level rise; ca 14000 year old bioclastic flow deposits in
the Lesser Antilles, Sedimentology, 57, 735-759.

Trofimovs, J., et al. (2013), Timing, origin, and emplacement dynamics of mass flows offshore SE Montserrat in the last 110 ka: Implications
for landslide and tsunami hazards, eruption history, and volcanic island evolution, Geochem. Geophys. Geosyst., 14, 385-406, doi:
10.1002/ggge.20052.

Wadge, G., P. W. Francis, and C. F. Ramirez (1995), The Socompa collapse and avalanche event, J. Volcanol. Geotherm. Res., 66, 309-336.

Wadge, G,, B. Voight, R. S. J. Sparks, P. Cole, and S. C. Loughlin (2014), An overview of the eruption of Soufriere Hills volcano from 2000-
2010, in The Eruption of the Soufriére Hills Volcano, Montserrat from 2000-2010, Mem. Geol. Soc. London 3, edited by G. Wadge, R. A. E.
Robertson, and B. Voight, pp. 1-40, Geol. Soc. of London, London, U. K.

Wall-Palmer, D, et al. (2014), Late Pleistocene stratigraphy of IODP Site U1396 and compiled chronology offshore of south and south west
Montserrat, Lesser Antilles, Geochem. Geophys. Geosyst., 15, 3000-3020, doi:10.1002/2014GC005402.

Ward, S. N., and S. Day (2003), Ritter Island Volcano—Lateral collapse and the tsunami of 1888, Geophys. J. Int., 154, 891-902.

Watt, S. F. L, et al. (2012a), Combinations of volcanic-flank and seafloor-sediment failure offshore Montserrat, and their implications for tsu-
nami generation, Earth Planet. Sci. Lett., 319, 228-240.

Watt, S. F. L., et al. (2012b), Widespread and progressive seafloor-sediment failure following volcanic debris-avalanche emplacement: Land-
slide dynamics and timing offshore Montserrat, Lesser Antilles, Mar. Geol., 323-325, 69-94.

Watt, S. F. L., P. J. Talling, and J. E. Hunt (2014), New insights into the emplacement dynamics of volcanic-island landslides, Oceanography,
27,46-57.

Yokose, H. (2002), Landslides on the Windward Flanks of Oahu and Molokai, Hawaii: SHINKAI 6500 Submersible Investigations, in Hawaiian
Volcanoes: Deep Underwater Perspectives, vol. 128, edited E. Takahashi et al., AGU, pp. 245-261, Washington, D. C., doi:10.1029/
GM128p0245.

Yokose, H., and P. W. Lipman (2004), Emplacement mechanisms of the South Kona slide complex, Hawaii Island: Sampling and observa-
tions by remotely operated vehicle Kaiko, Bull. Volcanol., 66, 569-584.

Zellmer, G. F., C. J. Hawkesworth, R. S. J. Sparks, L. E. Thomas, C. L. Harford, T. S. Brewer, and S. C. Loughlin (2003), Geochemical evolution of
the Soufriére Hills Volcano, Montserrat, Lesser Antilles volcanic arc, J. Petrol., 44, 1349-1374.

WATT ET AL.

MONTSERRAT LANDSLIDE ROV 2261


http://dx.doi.org/10.1002/ggge.20052
http://dx.doi.org/10.1002/2014GC005402
http://dx.doi.org/10.1029/GM128p0245
http://dx.doi.org/10.1029/GM128p0245

