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Abstract

Background: Spatial variation in the risk of many mosquito-borne pathogens is strongly influenced by the
distribution of communities of suitable vector mosquitoes. The spatial distributions of such communities have been
linked to the abiotic habitat requirements of each constituent mosquito species, but the biotic interactions between
mosquitoes and other species are less well understood. Determining which fauna restrict the presence and
abundance of key mosquito species in vector communities may identify species which could be employed as natural
biological control agents. Whilst biotic interactions have been studied in the laboratory, a lack of appropriate statistical
methods has prohibited the identification of key interactions which influence mosquito distributions in the field. Joint

distributions of species from empirical data.

species distribution models (JSDMs) have recently been developed to identify biotic interactions influencing the

Methods: We apply a JSDM to field data on the spatial distribution of mosquitoes in a UK wetland to identify both
abiotic factors and biotic interactions driving the composition of the community.

Results: As expected, mosquito larval distributions in this wetland habitat are strongly driven by environmental
covariates including water depth, temperature and oxidation-reduction potential. By factoring out these
environmental variables, we are able to identify species (ditch shrimp of the genus Palaemonetes and fish) as
predators which appear to restrict mosquito distributions.

Conclusions: JSDMs offer vector ecologists a way to identify potentially important biotic interactions influencing the
distributions of disease vectors from widely available field data. This information is crucial to understand the likely
effects of habitat management for vector control and to identify species with the potential for use in biological
control programmes. We provide an R package BayesComm to enable the wider application of these models.
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Background

The spatial distribution of mosquito-borne diseases
(MBDs) is dependent on the distribution of suitable
vector species [1]. Whilst transmission of some MBDs
is entirely dependent on single mosquito species, most
MBDs may be transmitted by multiple species [2]. The
involvement of multiple vector species with differing biol-
ogy can complicate vector control interventions. Under-
standing the ecology and mapping the spatial distribution
of these mosquito communities is therefore essential for
efficient control of globally important diseases such as
malaria [3, 4].
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For some zoonotic MBDs, transmission between syl-
vatic hosts and then to humans requires the presence of
multiple species. Such a transmision cycle is exemplified
by West Nile virus (WNV). WNYV is sustained in an avian
sylvatic cycle by ‘maintenance’ mosquito species which
must both be ornithophagic and competent for trans-
mission of the virus. Humans and other mammals are
‘dead-end’ hosts for WNV as they rarely develop a suf-
ficient level of viraemia to re-infect mosquitoes [5]. To
becoming infected by the virus humans must therefore
be bitten by a ‘bridge’ mosquito species which has previ-
ously fed on an infected bird and gone on to establish an
infection (and therefore must be ornithophagic, anthro-
pophagic and competent). The risk of human WNYV cases
is therefore restricted to areas where susceptible avian
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hosts, human populations, maintenance mosquito species
and bridge vectors coincide in both space and time.

Unsurprisingly, transmission of WNV in Europe
exhibits a patchy distribution which appears to be driven
principally by the distribution of its major vectors [6]. In
order to identify areas at risk from WNYV and similar dis-
eases, both now and in the future, it is therefore crucial to
understand what drives the assembly and distribution of
entire communities of vector mosquitoes.

Whilst adult female mosquitoes are responsible for
transmitting pathogens, the ecology of the relatively
immobile larval stages drives the distribution of the
species at all but the finest of spatial scales. Herein we refer
to the distributions of larval mosquitoes.

Drivers of community assembly

The majority of previous work on mosquito distributions
has focussed on environmental (abiotic) drivers for indi-
vidual mosquito species [7-9] and mosquito communities
[10-13]. Less attention has been paid to the impact of
between-species (biotic) interactions on vector distribu-
tions. There are a number of ways biotic interaction may
influence the distribution of mosquitoes; predation and
competition between species may restrict mosquito dis-
tributions, whilst apparent or indirect mutualisms may
enhance them [14]. Identifying biotic relationships that
affect the distributions of vector mosquitoes could be use-
ful for disease control, through habitat management to
promote species which control vector mosquitoes [4, 15].

Previous investigations of biotic interactions affecting
mosquitoes have mainly been restricted to laboratory
experiments [14, 16, 17]. Whilst laboratory studies allow
identification of biotic interactions which may be pos-
sible under certain environmental conditions, they can-
not tell us whether these interactions actually influence
the distributions of mosquito communities in the field.
Experimental manipulations of communities in the field
would provide a fairer test of the impact of specific biotic
interactions on the distribution of mosquito communi-
ties. Carrying out such experiments at an appropriate
spatial and temporal scale and with sufficient replicates
to draw generalisable conclusions would likely be costly,
extremely difficult to perform and labour intensive partic-
ularly, as here, when there are a large number of potential
interactions to test.

By contrast, observational data on species co-
occurrences are relatively easy to collect. Such data
can be interrogated for signs of biotic interactions
between species, manifested as correlations between
their distributions [18]. This approach is complicated
by the difficulty in distinguishing the effects of biotic
interactions from environmental factors. Positive (or neg-
ative) correlations between species’ distributions could
just as easily be explained by sharing (or not sharing)
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environmental habitat requirements as by the presence
of a biotic interaction. To infer biotic interactions from
such data, we therefore need appropriate methods to
discriminate between biotic and environmental drivers of
species distributions.

Joint species distribution models

Joint species distribution models (JSDMs) have recently
been proposed to quantify the effects of biotic interac-
tions on species distributions [19]. Of these, multivariate
binomial regression provides an appealing conceptual and
technical approach [20]. In such a model each species’
fundamental niche determined by abiotic factors is mod-
elled by independent binomial regressions and biotic
interactions between species are modelled as a sym-
metric matrix controlling correlation in the regression
errors between the distributions of different species [21].
Because the model accounts for co-occurrence in distribu-
tions which can be explained by each species’ fundamental
niche, the positive and negative correlation coefficients
are assumed to be representative of positive and nega-
tive biotic interactions between species. Parameter infer-
ence is carried out using a Markov-Chain Monte Carlo
(MCMC) sampler because of the relative complexity of the
statistical model.

Applying a multivariate binomial JSDM, we investi-
gate the abiotic environmental factors and inter-species
interactions influencing the spatial distribution of a com-
munity of potential vector mosquitoes in wetlands in the
Thames Estuary, UK. We identify predators of mosquito
larvae which appear to influence the distribution of the
mosquito vector species and could be managed for vec-
tor control. This approach could be applied to rapidly
identify candidate species for biological control of vec-
tor mosquitoes, whose potential impact could then be
assessed by experiments under controlled conditions. We
provide an open-source R package to enable vector and
community ecologists to apply JSDMs to observational
datasets of species distributions.

Methods

Larval habitat surveys

Mosquito larval dipping surveys were carried out at three
sites in the North Kent Marshes in south-east England;
one at Cliffe marshes (51° 28’ 58” N 0° 28’ 45” E) and two
at Elmley Marshes (Elmley A, 51° 22’ 17” N 0° 46’ 27" E
and Elmley B, 51° 22’ 29” N 0° 47’ 56” E, see Fig. 1). A set
of random geographic coordinates were generated within
each site, the nearest water body to each of these points
was marked as a dipping site and its location (accurate
to within 10cm) recorded using a differential GPS system
(Trimble 5800, Trimble Navigation Limited, Sunnyvale,
California, USA). A total of 167 dip sites were each vis-
ited six times (rounds, taking approximately five days per
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Fig. 1 Maps of the three larval survey plots. Filled circles are dip points where mosquitoes were found in at least one dipping round and empty
circles where they were not. Land (grazing marsh) is shown in light grey, inland waterbodies (from Ordnance Survey MasterMap) in dark grey and
sea in white. Axes are all-numeric Ordnance Survey National Grid references, giving distances in metres

round); in June, July and August of 2010 and 2011. As
few mosquitoes were collected in June of both years, these
data were excluded from the analysis. In each round, each
dip site was visited and a pair of dips was carried out using
a 1 litre dipper; one at the edge and one toward the cen-
tre of the water body. The contents of these two dips were
pooled for analysis. Mosquito larvae were identified mor-
phologically using taxonomic keys [2, 22, 23] and presence
or absence of each species at each dip recorded.

Other ditch fauna were identified morphologically to
the most precise level possible in the field [24]. Water tem-
perature, salinity and oxidation-reduction potential were
recorded at each dip site and round using a digital probe
(YSI 556 MPS, Yellow Springs, Ohio, USA). Water depth
was recorded as the mean of the depth at the edge and
the centre of each dip site. High-resolution digital pho-
tographs (FinePix XP10, Fujifilm, Minato-ku, Japan) were
taken of vegetation at the edge and centre dip points
and the presence or absence of different vegetation types
at each dipsite was determined from these photographs
using field guides [25-27].

Environmental conditions

To identify potential abiotic environmental drivers of dis-
tributions and reduce the number of parameters in the
JSDM, a forward stepwise selection procedure was applied
separately for each faunal taxon to select a subset of abi-
otic environmental predictors for inclusion in the JSDM.
At each step of the procedure, probit regression models
were parameterized by maximum likelihood estimation.
Starting from a null model, abiotic environmental pre-
dictors were added to the model to select combinations
of predictors that minimised the model Akaike Informa-
tion Criterion (AIC) [28]. Terms for dipping rounds and
survey area (Elmley or Cliffe Marshes) were included in

all of these models to account for the repeated-measures
study design. These were modelled as fixed effects as
there were insufficient levels (four dipping rounds and
three survey areas) to estimate the variance of a ran-
dom effects term. The full set of environmental covariates
from which these subsets were selected consisted of four
physical measurements of the waterbody: depth, tem-
perature, oxidation-reduction potential and salinity; and
dummy variables indicating presence or absence of the
nine vegetation types.

The presence or absence of vegetation types acts as a
visible indicator of long-term environmental conditions
at dip sites. The plants also strongly influence the struc-
ture of the aquatic habitat, variously providing shade
or cover from predators. For these reasons we consider
vegetation to act as an abiotic environmental condi-
tion on mosquito larvae and other aquatic fauna, rather
than interacting with them in intimate pair-wise species
interactions.

Joint species distribution model

We use a Bayesian multivariate probit regression model
[29, 30] to explicitly model the fundamental niches of each
species as well as correlations between the distributions
of the different species. Our approach is similar to the
model of Ovaskainen et al. [20] but uses the probit func-
tion, rather than the logit function as a canonical link. As
a result of this modification, we are able to fit the model
using a highly efficient Gibbs sampler [31], which greatly
speeds up the model fitting process. Full details of the
model specification, implementation and choice of priors
are provided in Additional file 1. We provide software to
fit the model as a free, open-source package BayesComm
[32] for the statistical programming environment R. The
stable version of the package can be downloaded from
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the CRAN repositories, or the development version from
GitHub at https://github.com/goldingn/BayesComm.

Effect sizes

As well as identifying environmental conditions associ-
ated with the presence or absence of mosquitoes, we wish
to compare the strength of these effects in order to pick
out the environmental factors which have the most impact
on their distribution. Standardizing continuous variables
(so that they have a mean of 0 and a standard devia-
tion of 1) enables us to compare the impact of different
environmental factors on species distributions without
the confounding effects of different measurement scales.
The coefficient can therefore be interpreted as the effect
of a 1 standard deviation change in the covariate on the
distribution of each mosquito species. Since the discrete
variables (such as the presence or absence of a vegetation
type) are already on the same scale, these can be compared
directly as effect sizes. Unfortunately it is not possible to
directly compare the effect size of discrete variables with
continuous variables.

Comparing models

As in Ovaskainen et al. we fit four types of model: a
null model, a community-only model, an environment-
only model and a full model. All models were fitted with
intercept terms as well as the indicator variables used
in the stepwise selection procedure. In the environment-
only and full models, for each species the environmental
covariates selected by stepwise selection were included in
the design matrix. In the null and environment-only mod-
els, the correlation matrix was set as an identity matrix,
enforcing independence of the model errors between
species. In the community-only and full models, the inter-
species correlation matrix was also parameterised.

The null model assumes that each taxon occurs with
equal probability at each site (conditional on the dipping
round and survey area). Any deviation from this predic-
tion can therefore be interpreted as the spatial distribution
of the fauna within the study areas. We quantify these
distributions as the residual deviance of the null model.
By calculating the residual deviance of the other mod-
els and the proportion of the null deviance remaining,
we measure the proportion of each species’ distribution
explained by each model. It should be noted though that
since inter-species interactions and environmental covari-
ates are fitted in different ways within the model it is not
possible to evaluate the relative importance of the biotic
and abiotic factors in driving distributions.

Adding additional parameters to any statistical model
inevitably increases its fit to the data, even if there is no
true underlying relationship. It is therefore advisable to
account for this potential for overfitting when compar-
ing models. A common approach is to use information
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criteria which penalize models according to the number
of parameters added. Our model includes latent variables
and some prior information and an error structure and
therefore the number of model parameters is not clearly
defined. The Deviance Information Criterion (DIC) has
been proposed as a natural approach to compare such
models [33]. We therefore calculate DIC and use this
to compare the likely predictive power of the different
models considered here. Lower DICs indicate better fit
with a difference greater than 5 indicating an appreciable
difference in explanatory power between models.

Spatial autocorrelation

We checked for a residual spatial autocorrelation struc-
ture in each species’ distribution. First we calculated raw
residuals using the mean probability of presence at each
site as predicted by the full model. We split the dataset
by dipping round and survey area, resulting in 8 sepa-
rate sets of residuals for each taxon (two sites, by two
months, by two years). We screened these residuals using
a Moran’s I test for spatial independence [34] and for
sets with a p-value lower than 0.05 on the I statistic we
visually inspected a correlogram for signs of a coherent
spatial autocorrelation structure. These univariate spline
correlograms were calculated over the full range of dis-
tances in each survey area (up to 1700m at Cliffe marshes)
with bootsrap resampling. Coherent spatial autocorrela-
tion was defined as the 95 % bootstrap confidence inter-
vals of these correlograms consistently excluding a zero
correlation. No such structure was detected in any of
the residuals. These analyses were performed using the R
packages spdep and ncf [35, 36].

All models were fitted using BayesComm version 0.4
and analysis performed in R version 2.14.2 [37]. The
dataset is available via figshare (http://dx.doi.org/10.6084/
m9.figshare.1420528) and a full R script to repeat our anal-
ysis and reproduce all of the figures in this manuscript is
provided in Additional file 2.

Results

The aquatic faunal community we studied contained 16
taxa, including larvae of four mosquito species - all poten-
tial vectors of human disease: Anopheles maculipennis s.l.
which include atroparvus van thiel, messae Falleroni and
daciae Linton, Nicolescu & Harbach in the UK [38], all
of which have been detected in the North Kent Marshes
[39] and some of which were former vectors of malaria
in Europe; Culex pipiens s.1. which include pipiens pipiens
Linnaeus and pipiens molestus Forskal, known mainte-
nance vectors of WNV in southern Europe [2]; Culiseta
annulata Schrank, a potential bridge vector of WNV
[40]; and Culex modestus Ficalbi, a highly efficient bridge
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vector of WNV [41-43] only recently found to be breed-
ing in significant numbers in the UK [44] (although a
handful of specimens had been reported from around
Portsmouth, southern England in the 1944-45 [45]). Cs.
annulata was only present at Elmley whereas the other
three species were present at both study sites. A total of
3,633 mosquito larvae were collected and identified: 1,942
Cx. pipiens s.1., 916 Cx. modestus, 524 Cs. annulata and
251 An. maculipennis s.1.

Figure 2 illustrates the observed pattern of co-
occurrence between the mosquito species and the other
recorded fauna. The mosquitoes An. maculipennis s.l. and
Cx. modestus were often found to co-occur, as were Cs.
annulata and Cx. pipiens s.l., though this pair were less
often found together. Ditch shrimp were less likely to co-
occur with any other species, and a cluster of species
including fish, amphipods, swimming beetles and saucer
bugs were commonly found together but were less com-
monly found with other species.

saucer bugs (/lyocoris)
swimming beetles (Haliplidae)
amphipods (Gammaridae)
fish (Pisces)
An. maculipennis s.l.
Cx. modestus
damselfly larvae (Zygoptera)
water boatmen (Corixidae)
mayfly larvae (Ephemeroptera)
diving beetles (Dysticidae)
newts (Pleurodelinae)
beetle larvae (Coleoptera)
Cs. annulata
Cx. pipiens s.l.
dragonfly larvae (Anisoptera)

ditch shrimp (Palaemonetes)

—

0.1

Fig. 2 Cluster dendrogram illustrating patterns of co-occurrence
between faunal taxa. Taxa closer together in the tree (a short distance
from the nodes to their splitting point) were found together more
often. The dendrogram was created using hierarchical clustering of
the raw distribution data. Mosquito species are in boldface and the
scale bar gives the dissimilarity along the edges of the dendrogram.
Dissimilarity between two species was calculated as one minus the
empirical Pearson correlation coefficient with 0 representing perfect
positive correlation, 1 no correlation and 2 perfect negative correlation

Page 5 0f 10

Environmental drivers

The relative importance of each of the selected environ-
mental covariates for individual mosquito distributions
are displayed in Fig. 3. The main abiotic environmen-
tal drivers of the mosquito community distribution were
water depth and surface vegetation cover. All species
showed a preference for shallow water, with this covari-
ate having the strongest effect on the distribution of
Cs. annulata. The distributions of Cx. pipiens s.l., Cx.
modestus and An. maculipennis s.l. were all positively
associated with the presence of surface vegetation (fila-
mentous algae, water crowfoot, and duckweed). The dis-
tribution of Cs. annulata appeared to be unaffected by
the presence or absence of any vegetation type, though
it was far more likely to be found in cooler water. Salin-
ity had a slight impact on the distributions of two of the
mosquito species, with Cx. modestus more likely to occur
in more saline water and An. maculipennis s.l. in less saline
water. Lower oxidation-reduction potential was favoured
by Cx. pipiens s.]. and Cs. annulata and higher oxidation-
reduction potential by An. maculipennis s.1. Estimates of
the environmental regression coefficients for all fauna are
given in Additional file 1.

Environmental covariates explained 20 % of spatial vari-
ation in the distribution of the entire mosquito commu-
nity (Fig. 4). At the species level, explained variation was
12% for Cx. modestus and An. maculipennis s.l., 22 %
for Cx. pipiens s.l. and 67 % for Cs. annulata. Including
inter-species correlations in the model accounted for an
additional 5% of spatial variation across the whole com-
munity, with an increase of 3 % for Cx. pipiens s.l., 4% for
An. maculipennis s.l., 5% for Cx. modestus and 9 % for Cs.
annulata.

Biotic interactions
Estimated inter-species correlation coefficients before and
after accounting for environmental covariates are illus-
trated in Fig. 5. The majority of correlations in the full
model were positive (67.5 % from community-only model
and 59 % for full model). Correlation coefficients between
mosquito species were strongly positive, ranging from
0.28 to 0.49. There were a number of positive correlations
between mosquito species and other faunal taxa, includ-
ing beetle larvae (0.23 to 0.3) and damselfly larvae (0.12 to
0.27). After accounting for each species’ abiotic niche, the
distributions of both ditch shrimp (Palaemonetes) and fish
were negatively correlated with those of the four mosquito
species (Fig 5). Correlation coefficients ranged from -0.16
to -0.27 for ditch shrimp and from -0.22 to -0.27 for fish,
though the uncertainty around these estimates was larger
for Cx. pipiens s.l. and Cs. annulata than for the other two
species (see Additional file 1 for all correlation estimates).
The full model, which contained both environmen-
tal covariates and residual inter-species correlations, had
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greater overall explanatory power (after accounting for
model complexity) than any of the other models, with a
DIC of 3056 (versus 3648, 3550 and 3150 for the null,
community-only and environment-only models).

Discussion

Abiotic environmental predictors

The habitat preferences shown by the mosquito species
were consistent with existing knowledge of their ecology.
All species were more likely to occur in shallower water,
with Cx. pipiens s.l., Cx. modestus and An. maculipen-
nis s.l. more likely to occur where floating vegetation
was present. Such habitats are likely to afford greater
protection from predators [2].

The positive association between An. maculipennis s.l.
and filamentous algae identified in this study is in accor-
dance with previous studies at Elmley marshes [46] which
found the species group was associated with small pools
above thick filamentous algae of the genus Enteromorpha
which were 4 °C warmer, less saline and contained fewer
predators than sites without algae. Environmental condi-
tions in this microhabitat appear to be advantageous for
mosquito larvae, which are highly susceptible to predation
and rely on warm temperatures for their development.
Unlike the other members of the mosquito community
at these sites, which are Culicine, the morphology of
Anopheles mosquitoes allows them make use of micro-
habitats such as these which have limited space at the
water-surface interface [2].

The preference of Cs. annulata for cooler water and no
obvious response to surface vegetation accords with the
species’ habitat generalism and common use of shaded
water bodies [2]. The strong negative effect of oxidation-
reduction potential on the distribution of Cs. annulata
and Cux. pipiens s.. may reflect their apparent preference
for nitrogen rich water [47], though direct interpretation
of oxidation-reduction potential alone is difficult.

The negative effects of the presence of emergent grass
(indicative of shallow, temporary flooding of normally
terrestrial habitat) and deep water (indicative of perma-
nent, open water) on the distribution of Cx. modestus
may signify a preference for water bodies which are
both shallow and relatively permanent. This is supported
by the higher probability of presence of Cx. modestus
in sites with more permanent surface vegetation (water
crowfoot, algae and ivy-leafed duckweed). The species
was also positively associated with bulrushes, which are
known to provide a habitat in which adults of the species
hibernate [48, 49].

Biotic interactions

Most of the non-mosquito fauna we recorded in the com-
munity (mayfly larvae being the exception) have been
incriminated as potential predators of mosquito larvae in
the UK [17]. Wild caught diving beetles, swimming bee-
tles, newts, damselfly larvae and dragonfly larvae have
been shown to have consumed larvae [50] and amphipods,
ditch shrimp, fish, water boatmen and beetle larvae were
shown to feed on live larvae in laboratory experiments
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[17, 51, 52]. Of these predators, our model provides evi-
dence only for ditch shrimp and fish being negatively
correlated with larvae of An. maculipennis s.1. and Cx.
modestus after accounting for environmental covariates.
Both ditch shrimp and fish have been found to be partic-
ularly voracious predators of mosquito larvae under labo-
ratory conditions, with reports of individuals consuming
in the region of 30 larvae (of Aedes detritus) per hour,
and with ditch shrimp reportedly killing more larvae than
they could eat [51]. By comparison, a similar study showed
amphipods consumed 1-2 larvae An. claviger larvae per
hour, and backswimmer (Notonecta glauca) nymphs only
one larva in 12 hours [52]. The higher predation rate
of ditch shrimp and fish in laboratory experiments may
explain why they, unlike other predators, have an appre-
ciable impact on the local larval abundance - and therefore
the probability of presence of mosquito larvae in seasonal
samples in our study system. The identification of fish as
effective predators of mosquito larvae is in accordance
with findings in other parts of the world, where the intro-
duction of exotic fish or the application of native fish has
been successfully used to control mosquito numbers [2].

Whilst the cause of the negative correlation between
ditch shrimp and fish and studied mosquito species
appears consistent with published literature, it is not
immediately clear why this relationship was only apparent
for An. maculipennis s.l. and Cx. modestus in our sys-
tem and not for Cx. pipiens s.l. and Cs. annulata. Whilst
it is possible that these results are due to intraspecific
differences in larval behaviour, the difficulty of replicat-
ing natural environments in laboratory predation exper-
iments, and of observing larval behaviour in the wild,
means that there is little empirical evidence from which
to infer the nature of these interactions for individual
mosquito species. It should be noted that the mean cor-
relation coefficients between these two predators and all
four mosquito species were negative. However for An.
maculipennis s.1. and Cx. modestus the absolute values of
the mean coefficients were smaller than for the other two
species and the variance of these estimates was greater
(all coefficients given in Additional file 1: Figure 3.2),
resulting in a larger Bayesian p-value. The lack of an
apparent interaction may therefore simply be a result of
insufficient statistical power, rather than a true biologi-
cal phenomenon. This seems particularly likely to be the
case for Cs. annulata which was comparatively rare, being
present in only 2 % of dip sites (compared with 11-16 % for
the other mosquito species).

Of the 11 correlation coefficients between mosquito
larvae and other fauna which had good evidentiary sup-
port (those in Fig. 5b), 7 were positive and 4 negative.
It seems unlikely that such a high proportion of these
interactions could represent mutualistic interactions, par-
ticularly given the probable predatory nature of the other
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fauna. A possible explanation is that these positive corre-
lations indicate low-level predation, with the other fauna
being attracted to mosquito prey, but not consuming
enough to impact on their distribution - at least measured
as presence or absence in seasonal snapshot larval sam-
pling where the number individuals sampled is relatively
small. A more plausible explanation is that these simply
represent shared responses to unmeasured environmen-
tal variables which have not been completely explained
by the model. This would also explain the strong posi-
tive correlations between mosquito species, which might
more realistically be expected to compete for resources
[16]. Disentangling these competing explanations could
be made easier by analysing more temporally-resolved
datasets and extending JSDMs to model correlations and
lags in the presence and abundance of different species
throughout the course of a breeding season, or over sev-
eral years [19].

Explanatory power
We considered the distribution of mosquito larvae at
a very fine spatial resolution, sampled in brief seasonal
snapshots. The presence of mosquito larvae at this scale
is likely to be influenced by a number of processes other
than those considered here, including: the distribution of
blood-meal hosts, local population dynamics and disper-
sal behaviour of larvae and adults. Despite this, we were
able to explain 25 % of the distribution of the mosquito
community (and 76 % of the distribution of Cs. annulata).
Of the overall variance in spatial variation of the whole
community explained by the model, 80 % was due to the
effects of environmental drivers and the remaining 20 %
to inter-species correlations. Whilst this indicates a much
stronger role of abiotic than biotic drivers of mosquito
species distributions, it is important to note that these
results are scale-dependent - in a smaller study area with
lower diversity of larval habitats the relative importance of
biotic interactions will be higher, and vice-versa in larger,
more habitat-diverse regions. The role of biotic interac-
tions may also be better revealed by sampling regimes
that are more intensive both spatially and seasonally. For
the individual mosquito species, these relative propor-
tions ranged from 71 % vs. 21 % for Cx. modestus to 88 %
vs. 12% for Cs. annulata. These results provide informa-
tion which may be useful for guiding targeted control of
mosquitoes. Identifying and promoting species that act as
natural biological control agents may be more likely to be
effective against mosquito species such as Cx. modestus
whose distributions appear to be driven to a larger extent
by biotic interactions. Conversely, for mosquito species
such as Cs. annulata which have distributions dominated
by availability of particular larval habitat types, targetted
removal or treatment of these larval habitats might be
more effective.
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Whilst the distribution of Cs. annulata was very well
explained in our models (largely by evironmental covari-
ates), the large parameter estimate for the study area
dummy variable in both the environment-only and full
models (Fig. 3) indicates that the species’ absence at Cliffe
marshes was not explained either by measured environ-
mental covariates or biotic interactions. Why this rela-
tively common species was absent on all visits to this site
is as yet unclear.

Advantages and limitations of joint species distribution
models

JSDMs present a promising new method of under-
standing how interactions within ecological communities
can influence species distributions. As with any obser-
vational approach to understanding complex systems,
JSDMs cannot provide concrete answers to ecological
questions. Experimental manipulation of field popula-
tions remains the gold-standard for establishing which
factors drive species’ and communities’ distributions and
for understanding the impacts of habitat modification.
However, JSDMs allow the wealth of available obser-
vational data on species co-occurrences to be used to
refine hypotheses about the drivers of species’ distri-
butions [18].

By combining predictive modelling of the abiotic drivers
of individual species’ distributions with a rigorous prob-
abilistic model of species co-occurrence, JSDMs offer
significant advances over the classical ordination-type
approaches to multivariate analysis of ecological com-
munities [53]. As well as enabling ecologists to begin to
disentangle biotic and abiotic effects, JSDMs can more
readily be combined with other extensions to linear mod-
els, including spatial and temporal correlation and a con-
sideration of phylogenetic structure [54].

Conclusions

JSDMs are likely to be particularly successful at iden-
tifying biotic interactions where abiotic drivers of
species’ distributions can be well parameterised and
where additional sources of information (such as time
series data, commonly available in vector surveys) are
available [19].

The relative complexity of JSDMs and large number of
model parameters makes fitting such models computa-
tionally demanding. As a result, development of JSDMs
has only recently become feasible for analysing real eco-
logical datasets. By implementing a computationally effi-
cient sampler for multivariate binomial regression and
disseminating it as an R package, we hope to contribute
to making these approaches available for routine use by
vector ecologists.
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