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Abstract The impact of self-attraction and loading (SAL) on Earth rotation has not been previously
considered except at annual timescales. We estimate Earth rotation excitations using models of
atmospheric, oceanic, and land hydrology surface mass variations and investigate the importance of
including SAL over monthly to interannual timescales. We assess SAL effects in comparison with simple
mass balance effects where net mass exchanged with the atmosphere and land is distributed uniformly
over the global ocean. For oceanic polar motion excitations, SAL impacts are important even though mass
balance impact is minor except at the annual period. This is true of global (atmosphere + land + ocean)
polar motion excitations as well, although the SAL impacts are smaller. When estimating length-of-day
excitations, mass balance effects have a dominant impact, particularly for oceanic excitation. Although SAL
can have a significant impact on estimated Earth rotation excitations, its consideration generally did not
improve comparisons with geodetic observations. This result may change in the future as surface mass
models and Earth rotation observations improve.

1. Introduction

The Earth’s hydrologic system is constantly redistributing and exchanging mass within and between its
components. These mass variations induce changes in the Earth’s rotation, as described by the Earth orien-
tation parameters of polar motion and length-of-day (LOD) [Barnes et al., 1983]. Models of the hydrologic
system components, i.e., atmosphere, oceans, and land hydrology, can be used to estimate the forced
rotational variations.

The interactions between the Earth’s hydrologic system components must be gravitationally consistent.
Nonuniform surface mass variations will induce changes in the gravity field and surface deformation [Farrell
and Clark, 1976; Blewitt and Clarke, 2003], sometimes called the self-attraction and loading (SAL) effect, which
will result in nonuniform changes to nonsteric sea surface height and associated ocean bottom pressure. The
SAL effects of the individual system components can be separately examined, as in Tamisiea et al. [2010] and
Vinogradova et al. [2010, 2011]. These SAL changes in ocean bottom pressure will naturally lead to changes
in Earth rotation. However, we know of only one study of low-degree gravity harmonics [Clarke et al., 2005]
that includes SAL effects and indicates that for annual periods the effects can be significant for the degree 2
harmonics that relate directly to Earth rotation.

The SAL formulation in these studies implicitly conserves mass of the individual components (and therefore
the total system) by exchanging net mass with the ocean component. However, it is important to note that
SAL effects are active even when there are no such net mass transfers; i.e., mass is merely redistributed within
each component. It is thus useful to split SAL contributions over the ocean into two components: (1) a net
mass balance component that is defined by distributing any net mass exchanged with the atmosphere and
land uniformly over the global ocean, which does not involve any modeling of SAL effects, and (2) the residual
spatially variable component, which captures the most relevant SAL physics. Most studies of oceanic Earth
rotation excitations ignore both (1) and (2) components [e.g., Ponte and Stammer, 1999; Nastula and Salstein,
1999; Johnson et al., 1999; Ponte and Stammer, 2000; Ponte et al., 2001; Chen et al., 2004, 2005; Yan et al., 2006].
Studies that also include excitations from land hydrology tend to account only for (1) [e.g., Chen, 2005; Dobslaw
et al., 2010; Yan and Chao, 2012].

Going beyond Earth rotation, properly considering SAL may also be important for estimating and interpreting
observations of any geodetic measurement affected by surface mass variations. Clarke et al. [2005] noted that
implementing SAL has a significant impact on geocenter estimates at annual periods and also affects higher
degree components of the gravity field. Tamisiea et al. [2010] estimated SAL impacts on sea level at annual
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periods and noted improved comparisons with tide gauge data. Vinogradova et al. [2010, 2011] considered
SAL effects on ocean bottom pressure at annual, subannual, and interannual time scales and showed that
including SAL generally improved comparisons with in situ bottom pressure recorders and Gravity Recovery
and Climate Experiment (GRACE) observations. Examples of other observing systems that will be affected by
SAL are satellite gravimeters, satellite laser ranging, in situ gravimeters, satellite altimeters, Global Navigation
Satellite Systems (GNSS), and Very Long Baseline Interferometry (VLBI).

In this work, we estimate Earth rotation excitations using models of atmospheric, oceanic, and hydrological
surface loads and investigate the importance of the SAL effect over monthly to interannual timescales. In the
context of previous papers on the subject, we assess SAL effects in comparison with a simplified mass balance
model using the simple uniform layer assumption described above. In section 2, we give a brief overview of the
SAL formulation and the Earth rotation excitation equations. Section 3 describes the geophysical fluid models
and the geodetic data used to compare with the models. Results are presented and discussed in sections 4
and 5. The goal of this paper is to show for which Earth rotation components and for which timescales SAL is
important and at what level, in relation to simple effects of net mass balance.

2. Theory
2.1. Self-Attraction and Loading
The SAL methodology is as described in Tamisiea et al. [2010], and we will only summarize the main points
here. Loading in regions with additional mass results in a locally depressed crust and uplift in the surrounding
regions. Mass changes from the loading have a corresponding gravity field change that produces a small grav-
itational force away from the local depression. There is also a direct gravitational attraction toward the local
mass anomaly. All these effects combine to produce an increased gravitational force toward mass anomalies
in the near field and a decreased force farther away. The resulting nonuniform sea surface height variations
are estimated by solving the sea level equation [Farrell and Clark, 1976] using an iterative pseudospectral
approach [Mitrovica and Peltier, 1991]. As in previous works [Rietbroek et al., 2011; Jensen et al., 2013], we
include the sea level changes due to rotational feedback of the SAL mass redistribution [Wu and Peltier,
1984; Milne and Mitrovica, 1998]. This formulation is valid for timescales longer than the Chandler wobble
(∼14 months) [Mitrovica et al., 2005]. At shorter periods, no equivalent formulation is available. The sensitivity
of our results to the exclusion of rotational feedback is discussed in section 4. The SAL adjustments to surface
mass anomalies are assumed to be static; i.e., they cause no dynamic variations in the ocean, which is plausi-
ble at monthly and longer timescales [Kuhlmann et al., 2011; Vinogradova et al., 2015]. The Earth deformation
is assumed to be elastic, which is reasonable for less than decadal timescales. For a given surface mass distri-
bution from atmospheric, oceanic, and/or hydrological models, this methodology can be used to estimate a
gravitationally self-consistent spatially variable sea level field, accounting along the way for conservation of
total mass in the system.

2.2. Earth Rotation Excitation
Earth rotation excitations are forced by surface mass distribution changes and motion changes (e.g., winds
and ocean currents). This study focuses on the mass excitations, which can be computed as follows
[Eubanks, 1993]:

𝜒1 = −1.098R4

C − A ∫ ∫ Δ𝜎(𝜙, 𝜆) sin𝜙 cos2 𝜙 cos 𝜆d𝜆d𝜙 (1)

𝜒2 = −1.098R4

C − A ∫ ∫ Δ𝜎(𝜙, 𝜆) sin𝜙 cos2 𝜙 sin 𝜆d𝜆d𝜙 (2)

𝜒3 = 0.753R4

Cm ∫ ∫ Δ𝜎(𝜙, 𝜆) cos3 𝜙d𝜆d𝜙 (3)

where 𝜒1 and 𝜒2 are the two components of polar motion excitation, 𝜒3 is the LOD excitation, 𝜙 and 𝜆 are
latitude and longitude, R is the Earth’s mean radius (6.371× 106m), A and C are the Earth’s principle moments
of inertia (C − A = 2.61 × 1035kg m2), Cm is the mantle’s principle moment of inertia (7.1236 × 1037kg m2),
Δ𝜎 is the time variable surface mass density (units of kg m−2). The effective excitation functions (𝜒{1,2,3}) are
dimensionless quantities.
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Figure 1. Variance of (a) SAL-induced surface mass load (sal), (b) sal minus its spatial mean (sal − mb), and
(c) dynamic ocean mass (o). Units are cm2 of equivalent water height. All data have been detrended.

3. Data
3.1. Surface Mass Models
Our analysis considers monthly time series for the 11 year period from 2003 to 2013, for which Gravity
Recovery and Climate Experiment (GRACE) data and the respective atmospheric and oceanic dealiasing
products (AOD1B) are available [Dobslaw et al., 2013; Flechtner et al., 2014]. We use Release-05 GRACE and
AOD1B data.

The atmospheric pressure in AOD1B is taken from the European Center for Medium-Range Weather Forecasts
(ECMWF) operational analyses (http://www.ecmwf.int/research/ifsdocs/index.html). At monthly periods the
ocean tends to respond as an inverted barometer to surface atmospheric pressure changes [e.g., Ponte, 1992];
therefore, for the purposes of surface loading the atmospheric pressure over the entire ocean is taken as a
uniform value equal to the mean pressure over the ocean.

The ocean mass variability in AOD1B is taken from the Ocean Model for Circulation and Tides (OMCT) [Thomas
et al., 2001]. The OMCT setup for GRACE is forced with wind stresses, 2 m temperatures, atmospheric freshwa-
ter fluxes, and surface pressure from the ECMWF operational analyses. For this setup, dynamic SAL feedbacks
are not incorporated. The model does not assimilate altimetry, which minimizes the chance that SAL effects
will be erroneously incorporated into the model. The ocean model uses a Boussinesq formulation, i.e., con-
serves volume rather than mass. To remove spurious mass changes, we subtract from the bottom pressure
fields a uniform equivalent water layer equal to the spatial mean bottom pressure [Greatbatch, 1994; Ponte,
1999]. We denote the resulting bottom pressure anomalies as the dynamic ocean mass variability, i.e., gener-
ated by ocean dynamics and not by mass transfer from the land or atmosphere. In order to describe the total
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Figure 2. Spectra of Earth rotation excitations: (a) 𝜒1, (b) 𝜒2, and (c) 𝜒3.  = atmosphere + dynamic ocean + land
hydrology forcing, o = dynamic ocean-only forcing, mb = uniform mass conservation forcing, sal = SAL forcing,
 ′

sal
= SAL minus uniform mass conservation. Units are dimensionless measures of angular momentum squared per

(cycle/yr). Spectra estimated using Welch’s method as implemented in the MATLAB function pwelch.

ocean variability, we will need to add either a spatially uniform mass that balances land and atmosphere mass
variability or add SAL variability as described in section 2.

The continental hydrology variability is derived from the GRACE Release-05 land mass grids [Landerer and
Swenson, 2012; Swenson and Wahr, 2006]. We use an equally weighted ensemble mean of the solutions pro-
duced by the three main processing centers of GFZ (GeoForschungsZentrum Potsdam), CSR (Center for Space
Research, University of Texas), and JPL (Jet Propulsion Laboratory). Using an ensemble mean solution tends
to reduce noise in the GRACE data [Sakumura et al., 2014]. These data include surface mass variations over
Greenland and Antarctica that are caused by changing ice masses.

3.2. Geodetic Observations
The observed daily polar motion and LOD excitations are from the International Earth Rotation and Reference
System (IERS) combined time series (C04) with tidal variations removed. The LOD excitation is directly pro-
portional to the observed LOD. The polar motion excitations are computed from observed pole coordinates
via the method described in Vicente and Wilson [2002] using a Chandler quality factor of 175 and period of
433 days. These daily observed Earth rotation excitations are averaged into monthly mean values.

To compare with the modeled excitations (estimated using equations (1)–(3) and the surface mass models),
we must remove the motion (winds and ocean currents) excitations from the observed geodetic excitations.
The winds and ocean currents are from the same models that were used to estimate the surface mass loads, i.e.,
ECMWF and OMCT. The motion excitations were generated at the German Research Centre for Geosciences
(https://www.gfz-potsdam.de/en/section/earthsystemmodelling/services/eam/). We note that a majority of
the variability in LOD is due to atmospheric winds.
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Figure 3. Ratios of power spectra of Earth rotation excitations: (a) 𝜒1, (b) 𝜒2, and (c) 𝜒3.  = atmosphere + dynamic
ocean + land hydrology forcing, o = dynamic ocean-only forcing, mb = mass conservation forcing, sal = SAL forcing.

Much of the trends in Earth rotation are assumed to be due to postglacial rebound; therefore, we detrend
all our modeled surface mass fields and derived excitations as well as the observed excitations. The data are
detrended by a joint least squares estimation of trend, annual, and semiannual variability. Also, the observed
LOD has a prominent 6 year cycle and decadal variations that are due to core-mantle interactions [Holme and

Table 1. Subannual (Period < 12 Months) and Interannual (Detrended, Period > 18 Months; 18 Months < Period < 5 Years
for LOD) Excitations: Comparisons of Oceanic and Total Excitations With and Without SAL or Uniform Mass Balancea

𝜒1 𝜒2 𝜒3

%change Correlations %change Correlations %change Correlations

Subannual

o + sal versus o 67 (47) 0.99 (1.00) 70 (50) 0.99 (1.00) 132 0.67

o + mb versus o 3 1.00 −1 1.00 93 0.58

 + sal versus  37 (20) 1.00 28 (14) 1.00 −10 0.92

 + mb versus  1 1.00 1 1.00 −26 0.92

Interannual

o + sal versus o 63 0.97 48 0.99 290 0.19

o + mb versus o −7 0.98 −11 0.99 282 −0.09

 + sal versus  41 1.00 25 1.00 −38 0.76

 + mb versus  0 1.00 −7 1.00 −48 0.77
aValues in brackets are for SAL with no rotational feedback, shown only where differences occur. %change is percent

change in variance.
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Figure 4. Earth rotation excitations for interannual periods (detrended, more than 18 months): (a) 𝜒1, (b) 𝜒2, and (c) 𝜒3.
 = atmosphere + dynamic ocean + land hydrology forcing, o = dynamic ocean-only forcing, mb = mass conservation
forcing, sal = SAL forcing,  ′

sal
= SAL minus uniform mass conservation. Units are dimensionless angular momentum.

de Viron, 2013]. We high-pass filter all our modeled and observed LOD excitation time series with a cutoff
period of 5 years using a Butterworth filter, so as to only investigate excitations due to surface mass variability.
In the following sections the observed geodetic excitations are denoted as and respective mass components
as mass.

Table 2. Annual Excitations: Modeled Excitations With and Without SAL or Uniform Mass Balance and Comparisons to
Geodetic Excitations

𝜒1 𝜒2 𝜒3

Aa(×10−8) 𝜙b(∘) A (×10−8) 𝜙 (∘) A (×10−10) 𝜙 (∘)

o 2.3 ± 0.6 70 ± 14 1.4 ± 0.7 33 ± 27 2.0 ± 0.3 254 ± 7

o + mb 2.3 ± 0.6 95 ± 14 0.9 ± 0.7 87 ± 43 8.5 ± 0.4 189 ± 3

o + sal 3.1 ± 0.7 82 ± 14 1.0 ± 0.9 6 ± 52 8.9 ± 0.4 192 ± 3

 4.5 ± 1.0 345 ± 13 16 ± 2 298 ± 6 7.1 ± 0.7 304 ± 6

 + mb 3.5 ± 1.0 342 ± 16 15 ± 2 295 ± 6 6.6 ± 0.6 234 ± 6

 + sal 4.0 ± 1.2 356 ± 17 16 ± 2 297 ± 6 7.2 ± 0.7 235 ± 15

mass 4.7 ± 1.3 312 ± 15 15 ± 2 312 ± 7 3.4 ± 1.0 241 ± 15

mass −  2.6 ± 1.0 241 ± 21 3.8 ± 1.1 51 ± 16 6.4 ± 0.8 155 ± 7

mass − ( + mb) 2.4 ± 0.9 264 ± 23 4.6 ± 1.1 39 ± 14 3.0 ± 0.7 46 ± 14

mass − ( + sal) 3.3 ± 1.0 255 ± 17 4.5 ± 1.1 55 ± 14 3.6 ± 0.7 48 ± 12
aAmplitude, units are dimensionless angular momentum.
bPhase, referenced to 1 January 2005.
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Figure 5. Earth rotation excitations for annual period: (a) 𝜒1, (b) 𝜒2, and (c) 𝜒3.  = atmosphere + dynamic ocean + land
hydrology forcing, o = dynamic ocean-only forcing, mb = mass conservation forcing, sal = SAL forcing,  ′

sal
= SAL

minus uniform mass conservation. Units are dimensionless angular momentum.

3.3. Surface Mass Combinations and Notations
In the subsequent sections of this paper, we combine the surface mass models in various ways to assess the
impact of SAL on the estimation of the Earth rotation excitation series in (1)–(3). Here we provide notations to
define these combinations. Mass variations resulting from ocean dynamics only, i.e., the output from OMCT
with the Greatbatch correction (as described above), will be denoted as o. To o, we add mass variations
from the atmosphere and land hydrology to describe the total surface mass forcing before the inclusion of any
implicit mass transfers to the ocean and SAL effects, which will be denoted as  . Separate consideration of
overall mass balance using a uniform distribution over the oceans will be denoted bymb. A main comparison
will be with sal, which includes both mass variations due to SAL effects and to net mass exchanges with
the ocean. Therefore, with mass balanced and conserved for the Earth system of ocean + atmosphere + land
hydrology, mass variations over the ocean without SAL effects are o +mb and with SAL effects are o +sal.
Surface mass variations over the whole Earth without SAL effects are+mb and with SAL effects are+sal.
Deviations of sal from mb, i.e., sal − mb, are denoted as  ′

sal.

4. Results

The variance of detrended SAL-induced ocean mass changes (sal) is shown in Figure 1a. Values range from a
high of 2 cm2 in the Bay of Bengal to a low of 0.2 cm2 at high northern latitudes and coastal regions around
South America. Figure 1b shows the detrended SAL variance with a spatial mean removed at each time step
(i.e.,  ′

sal). Values range from close to zero in midlatitudes up to 0.8 cm2 near the coasts, particularly at high
latitudes. The spatially uniform net mass balance component of detrended SAL (i.e., mb) has a variance of
approximately 0.4 cm2. The reduced variance between Figures 1a and 1b indicates that net mass balance is a
large component of sal. The spatial pattern of mb is simply the ocean portion of the land/ocean mask.

For comparison tosal andmb, Figure 1c shows the variance of the dynamic ocean mass variations,o, which
does not include any net mass change effects. The values are highest (>20 cm2) for shallow continental shelf
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Figure 6. Earth rotation excitations for annual period: (a) 𝜒1, (b) 𝜒2, and (c) 𝜒3. mass = geodetic observations,
 = atmosphere + dynamic ocean + land hydrology forcing, mb = mass conservation forcing, sal = SAL forcing.
Units are dimensionless angular momentum.

regions, and there is also high variability in the Southern Ocean (10–20 cm2) and a small region of the North
Pacific (10 cm2). In general, the variance in o is much higher than that in sal or mb, except for areas of weak
oceanic variability such as the low and middle latitudes. Treatment of SAL effects thus seems important for
accurate representation of bottom pressure variability at low latitudes. For example, a study by Piecuch [2013]
in the tropical Pacific noted discrepancies between GRACE bottom pressure observations (which implicitly
include SAL) and estimates from a simple ocean model. Some of the mismatch may be due to neglecting SAL
physics in the model. The relative importance of SAL at low latitudes has also been used to demonstrate the
ability of equatorial bottom pressure recorders to recover the annual ocean mass change [Hughes et al., 2012;
Williams et al., 2014].

Using the surface mass variations shown in Figure 1 as well as the atmospheric and hydrological models
described in section 3, we estimated the forced Earth rotation excitations. We show the spectra for the sep-
arate components in Figure 2. For polar motion and LOD, the relative power of the excitations are similar
except at the annual period; therefore, we will discuss nonannual and annual periods separately. As stated in
section 3, the annual cycle is determined with a joint least squares estimation of the trend, annual, and semi-
annual variations. For subannual variability we use a 12 month high-pass Butterworth filter applied to data
with the trend and annual cycle removed. Interannual variability is determined using a 18 month low-pass
Butterworth filter applied to detrended data.

For polar motion at nonannual frequencies, the variance of excitations due tomb is much lower than that due
to sal or  ′

sal, which is lower than either o or  (Figures 2a and 2b). This indicates that mb should have less
impact on polar motion excitation than sal; therefore, mb will not be a good approximation for sal when
estimating polar motion. This can be seen more clearly in Figures 3a and 3b, which have the variance ratios of
the total global excitations with SAL or uniform mass balance (+sal or+mb) to and the variance ratios
of the total ocean excitations with SAL or uniform mass balance (o + sal or o + mb) to o. The excitation
variance ratios withmb (Figures 3a and 3b, blue lines) are∼1 at nonannual periods whereas the ratios withsal
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Figure 7. Amplitude of coherence of modeled Earth rotation excitations with geodetic observations: (a) 𝜒1, (b) 𝜒2, and
(c) 𝜒3. mass = geodetic observations,  = atmosphere + dynamic ocean + land hydrology forcing, mb = uniform mass
conservation forcing, sal = SAL forcing. Coherence estimated using Welch’s method as implemented in the MATLAB
function mscohere.

(Figures 3a and 3b, red lines) are considerably higher. These percent variance changes averaged for subannual
(less than 12 months) and interannual (detrended, more than 18 months) periods are listed in Table 1. For SAL
impacts with respect to o, the excitation variance changes range from 48% to 70%, and with respect to 
the excitation variance changes range from 25% to 41%. Figure 4 shows the time series of excitations filtered
to show only interannual periods. As already stated, for polar motion the variability forced by mb is relatively
small but that forced by sal is larger, particularly for 𝜒1 (see also the percent changes in variance in Table 1).
However, as in Table 1, note that the impact of SAL is smaller for global than for ocean polar motion excitation
estimates for nonannual periods because  is significantly larger than o.

For LOD excitations at nonannual periods, the excitation variances forced by mb and sal are very similar and
 ′

sal is comparatively very small (Figure 2c), indicating that the net mass balance component dominates the
total SAL effect for these estimates. When estimating the total ocean excitation (o+sal oro+mb), including
at least the net mass balance effects is very important. As seen in Table 1, the LOD excitation variance due to
o +sal or o +mb is approximately 2 (3) times higher for subannual (interannual) periods than that due to
o alone. However, since o effects on LOD excitation are small compared to  (Figure 2c), the impact of mb

or sal on the total global excitation is much smaller (∼30–50% variance change for mb or ∼10–40% for sal,
Table 1). This is illustrated at interannual periods in Figure 4c. We note that the patterns for LOD excitations are
also quite different, leading to the lower correlations seen in Table 1, whereas for polar motion the patterns
are similar and correlations close to one. In Figure 4c, LOD excitations forced by andmb (orsal) are actually
anticorrelated and tend to cancel each other out, as can be seen in the negative changes in variance in Table 1.
This relationship is largely due to land hydrology exchanges with the ocean having impacts of opposite sign
in LOD, noted previously in Chen [2005].
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Figure 8. Earth rotation excitations for interannual periods (detrended, more than 18 months): (a) 𝜒1, (b) 𝜒2, and (c) 𝜒3.
mass = geodetic observations,  = atmosphere + dynamic ocean + land hydrology forcing, mb = mass conservation
forcing, sal = SAL forcing. Units are dimensionless angular momentum.

Behavior at annual periods is distinct from other periods for both polar motion and LOD excitations. For
oceanic polar motion excitations (forced by o, o + sal, or o + mb) the amplitudes and phases are all
quite different (Table 2; Figures 5a and 5b). For global polar motion excitations,  is much larger than sal or
mb (Figures 5a and 5b); therefore, adding these effects will not significantly change the estimates (Figures 6a
and 6b).

For annual LOD excitations,o forcing is small compared to the other terms; therefore, includingsal ormb in
the forcing makes a big difference and essentially dominates the total oceanic excitation estimate (Figure 3c
and Table 2). Similar to subannual and interannual periods, the variability in net mass transfers captured in
mb contributes strongly to that in sal. Global LOD excitations forced by  and sal (or mb) have similar
amplitudes but different phases (Figure 5c); therefore, including sal or mb will have a significant impact on
the phase (Table 2 and Figure 6c).

We have seen that sal can have a significant impact on the oceanic and total Earth rotation excitations,
depending on the timescale and rotation component. We now consider whether sal can improve modeled
estimates of excitations compared to the mass component of observed geodetic excitations (mass). We cal-
culated the coherence between global polar motion excitations with and without SAL and observed mass
excitations (Figure 7). For 𝜒1 there is significant coherence (at the 95% confidence level) between modeled
and observed excitations (Figure 7a) only for annual and biennial periods. For𝜒2 there is significant coherence
at subannual, annual, and longer periods (see also Figures 6b and 8b). At interannual periods, 𝜒2 excitations
forced by  +sal have slightly higher coherence than those forced by  +mb or  alone. Annual 𝜒1 and 𝜒2

excitations forced by  +sal do not have statistically significant differences to those forced by  +mb or 
alone (Table 2).

For LOD, the coherence between the modeled mass excitations and the observed mass excitations is improved
across all time scales by adding sal (or mb) to  (see also Figures 6c and 8c). Whereas LOD excitations due to
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 +sal (or  +mb) are coherent for all time scales,  yields significant coherence only for annual and some
subannual time scales. However, excitations due to  and mass are significantly out of phase at the annual
period (Figure 6c and Table 2).

As mentioned in section 2.1, given that the use of rotational feedback in SAL estimates at periods less than
14 months remains an open issue, we recalculated all our results without including rotational feedback in
SAL in order to assess its impact. In this case, the general result is a reduction in SAL impact for polar motion
only: the percent variance changes are somewhat reduced at subannual timescales (see Table 1). There are,
however, no significant changes in the annual excitation results discussed in Table 2 and Figures 5 and 6.

5. Discussion and Summary

When modeling total surface mass variations for the Earth system, it is important to be gravitationally consis-
tent and include the SAL effects. We have used models of surface mass variations for the land hydrology, the
atmosphere, and the oceans and the induced SAL effects to estimate their impact on Earth rotation excita-
tions. The formulation of SAL effects implicitly accounts for net mass transfers to the ocean. For comparison,
we have also considered the relative importance of accounting for net mass exchanges with the ocean by
assuming a simple uniform distribution over the global ocean.

For estimating LOD excitations, our results show that one does not gain significantly more information
by considering SAL effects in addition to accounting for net mass transfers using a simple uniform layer
approximation. Mass balance considerations are, nevertheless, very important, especially when estimat-
ing ocean-only LOD excitations at all frequencies and also when estimating global LOD excitations at
annual frequencies.

For estimating polar motion excitations, mass balance effects are minor except for annual periods, where
they become important but not dominant. For estimating ocean-only polar motion excitation, including SAL
effects is very important at all frequencies. For estimating global polar motion excitations, including SAL is
moderately important at nonannual periods (changes excitation variance by ∼30–40%, Table 1) but plays a
relatively minor role at the annual period.

The general rule of thumb is that only net mass balance effects are important for LOD excitation, whereas
SAL effects are important for polar motion excitations. Of course, this depends on the frequencies of interest
and the level of error one is willing to tolerate in the excitation estimates. Our conclusions are for the most
part qualitative since the details of the variances and ratios are dependent on the Earth system models used.
However, our main conclusions should be immune to model details. This is corroborated by results we
obtained using older data from Tamisiea et al. [2010], where we reached the same general conclusions on
the impact of SAL. Our results provide important guidelines for assessing modeling errors for Earth rotation
excitations when SAL impacts are disregarded.

This paper focused on the impact of SAL on LOD and polar motion. We have shown that the impacts on esti-
mated excitations, particularly for polar motion, can be quite significant. However, consideration of SAL effects
did not generally translate into improved comparisons with geodetic observations of Earth rotation. Noise
levels in all the time series can be a problem. As surface mass models and Earth rotation observations improve
in the future, incorporation of SAL effects will become more important.
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