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Abstract Following the disintegration of the Larsen B Ice Shelf, Antarctic Peninsula, in 2002, regular
surveillance of its ~20 tributary glaciers has revealed a response which is varied and complex in both
space and time. The major outlets have accelerated and thinned, smaller glaciers have shown little or no
change, and glaciers flowing into the remnant Scar Inlet Ice Shelf have responded with delay. In this study
we present the first areawide numerical analysis of glacier dynamics before and immediately after the
collapse of the ice shelf, combining new data sets and a state-of-the-art numerical ice flow model. We
simulate the loss of buttressing at the grounding line and find a good qualitative agreement between
modeled changes in glacier flow and observations. Through this study, we seek to improve confidence in
our numerical models and their ability to capture the complex mechanical coupling between floating ice
shelves and grounded ice.

1. Introduction

In February 2002, most of the Larsen B Ice Shelf (LBIS) on the North East coast of the Antarctic Peninsula broke
apart in less than a month. Despite the previous disintegration of smaller ice shelves around the Peninsula in
response to a changing climate [Rott et al., 1996; Scambos et al., 2000; Cook and Vaughan, 2010], the rate and
extent of the 2002 collapse was exceptional and the most dramatic observed so far. Good satellite coverage
before, during, and after the disintegration, complemented by ground-based measurements, made this one
of the best documented large-scale events in recent history of the cryosphere. Observations of surface veloc-
ities and elevation showed that glaciers previously feeding the ice shelf (Figure 1), accelerated and thinned
[Scambos et al., 2004; Rignot et al., 2004; Hulbe et al., 2008; Rott et al., 2011; Shuman et al., 2011], leading to an
overall mass loss of about 8 Gt a=' from 2001 to 2010 [Scambos et al., 2014] and an increased discharge of
grounded ice into the ocean, which is still ongoing today [Berthier et al., 2012; Wuite et al., 2015]. The accel-
eration, thinning, and associated grounding line retreat has been complex in behavior and highly variable
in time and space, with some tributaries reacting rapidly, others with delay, and some hardly at all [Scambos
etal., 2014; Wuite et al., 2015; Khazendar et al., 2015]. Figure 1 shows the change in ice front position from 1995
to 2009, as well as the simultaneous speedup and grounding line retreat of the tributary glaciers.

Prior to this event, the mechanical coupling between ice shelves and their tributaries was subject to debate
[Hindmarsh and Le Meur, 2001; Ritz et al., 2001; Vieli and Payne, 2005], and the impact of changes to ice shelf
thickness and extent on the upstream dynamics remained uncertain. The aftermath of the LBIS collapse unam-
biguously showed that the ice shelf acted as a natural barrier, providing buttressing (or back forces) that
reduced the seaward motion of the grounded ice. Once the ice shelf collapsed, the reduction in back forces
led to an acceleration of most tributary glaciers, a behavior that had previously been observed for tributary
glaciers of the Larsen A Ice Shelf [Rott et al., 2002]. The important role of ice shelves as stabilizing features has
since been confirmed on a wider scale, as comprehensive studies using satellite measurements have shown
enhanced coastal discharge in large regions of West Antarctica (in particular, the Amundsen Sea sector) and
around the Antarctic Peninsula, associated with a consistent and accelerating decrease in extent and thickness
of the ice shelves in those areas [Pritchard et al., 2012; Wouters et al., 2015].

During the period since the collapse of the LBIS, numerical ice flow models have become increasingly more
advanced in describing the observed dynamical changes of the Antarctic Ice Sheet, and their performance has
been evaluated in a series of benchmark tests [Pattyn et al., 2012, 2013]. In particular, key physical processes
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Figure 1. Overview of the study region, showing the Larsen B Embayment on the East Coast of the Antarctic Peninsula,
overlain on a subset of the LIMA mosaic for Antarctica. The white-to-red color scale specifies the difference in surface
speed between 2009 and 1995, obtained from satellite observations [Wuite et al., 2015]. Blue lines indicate the ice front
location for different times between 1995 and 2009; the thick black line delineates the 1995 grounding line location;
thin black lines outline the drainage basins for the different tributaries [Cook et al., 2014], and names of the most
prominent glaciers are listed.

that control the coupling between the ice shelves and the grounded ice sheet, and the ability of numerical
models to track the advance and retreat of the grounding line, have received special attention. However, pre-
vious modeling studies for the LBIS and wider Antarctic Peninsula did not incorporate these key processes, as
they were either flow line approaches, studies that did not include a migrating grounding line or neglected the
collapse of the ice shelves all together, or studies where the grounding line migration was directly prescribed
[Vieli et al., 2006, 2007; Barrand et al., 2013, 2006; Kulessa et al., 2014]. Results of these studies are expected to
be incomplete, in particular, for glaciers that were previously buttressed by an ice shelf or glaciers that are
flowing into ice shelves that are vulnerable to collapse.

The work presented here is a first step toward a more comprehensive treatment of dynamical changes on
the Antarctic Peninsula in response to its retreating ice shelves. We use a state-of-the-art ice flow model and
assimilate a number of new observational data sets for the Larsen B area, with three main goals: (1) to address
the complicated spatial distribution of buttressing imposed by the ice shelf, (2) to understand the observed
complex response of its glaciers to the loss of buttressing, and (3) to test the ability of our model to reproduce
such complex behavior. To improve on existing flow line experiments [Vieli et al., 2006, 20071, we solve the
stress balance in two horizontal dimensions at a sufficiently high resolution (~500 m) for the entire Larsen
B Embayment, including all its tributary glaciers. We use an adjoint inversion method to obtain important
information about the englacial viscosity of the ice shelf before its collapse, and basal sliding properties of the
narrow valley glaciers, using detailed observations of surface velocity and ice thickness. Results for a series
of diagnostic perturbation experiments are presented, which simulate the disintegration of the ice shelf at
various stages in time. Loss of the ice shelf leads to a reduction in back pressure at the grounding line of
the main tributaries, and causes an immediate increase in their flow speed which extends more than 10 km
upstream. Other smaller tributaries show little or no change, whereas Scar Inlet speeds up twofold, in line
with observations.

2. Data Sets

This study was aided by the recent release of a detailed surface velocity map of the LBIS and all its tributary
glaciers for the period late 1995 to early 1996, i.e., more than 6 years prior to the collapse of the ice shelf [Wuite
et al., 2015]. The study reanalyzed ERS1-2 repeat-pass Synthetic Aperture Radar data using interferometric
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techniques to obtain a velocity map with complete coverage of the area at 50 m resolution. For the same time
period, we use radar altimeter data from the ERS-1 geodetic phase to obtain the surface elevation of the ice
shelf. The raw data were detided using the CATS model [Padman et al., 2002], and corrections for the geoid and
mean dynamic topography were applied. Results were cross-checked against data from the 1997 - 1998 British
Antarctic Survey airborne radio echo sounder survey [Holland et al., 2009], and a mean difference between
the data sets of —0.87 m with a spread of about 1 m was obtained. The ice shelf thickness was computed from
the surface elevation using a floatation criterion and a correction for the firn column air content obtained by
Holland et al. [2011].

The surface elevation of the grounded ice was taken from the Antarctic Peninsula digital elevation model
(API-DEM) by Cook et al. [2012], based on the ASTER GDEM. The latter is a mosaic of ASTER scenes with unspec-
ified acquisition dates between 2000 and 2009 and therefore possibly contaminated by a thinning signal that
has been observed for some glaciers after the collapse of the ice shelf in 2002 [Rignot et al., 2004; Rott et al.,
2011; Shuman et al., 2011; Berthier et al., 2012]. In order to correct this uncertainty and to obtain a surface
elevation that is closer to the (unobserved) precollapse values, we applied a correction to the API-DEM, requir-
ing the ice upstream of the 1995 grounding line to be at or below floatation. The grounding line position
was taken from the ERS InSAR analysis of Rack et al. [2000]. This correction raised the surface by up to 60 m
for Crane Glacier (the geographical location and names of all glaciers are listed Figure 1) and up to 80 m for
Hektoria-Green-Evans Glaciers over an area extending up to 5 km upstream of the grounding line. For Crane
Glacier, the value is in line with detailed observations of surface drawdown after 2002 [Scambos et al., 2011].

The bedrock elevation downstream of the grounding line was derived from all available multibeam and sin-
gle beam bathymetric shiptrack data in the Larsen B Embayment, including a unique survey of the grounding
line zones of Crane and Jorum Glaciers stretching several kilometers inland of their 1995 grounding line
positions [Rebesco et al., 2014]. For areas upstream of the grounding line (and without shipborne cover), we
used the bedrock DEM derived by Huss and Farinotti [2014], which contains measurements from NASA’s Ice-
Bridge mission as well as ground-based measurements. The bathymetric and inland bedrock data sets were
joined by interpolation over a 4 km wide zone along the grounding line, except in areas where continuous
shiptrack data across the grounding line were available. The resulting bedrock data set has several bene-
fits compared to BEDMAP2 [Fretwell et al., 2013], such as a higher resolution, better data coverage, and an
improved representation of nunataks and rock outcrops.

3. Model Inversion

The breakup of the LBIS in February 2002 produced a stress perturbation which lead to profound dynamical
changes and an imbalance of the remainder of the ice shelf and the upstream grounded ice [Scambos et al.,
2004; Rott et al., 2011]. In order to simulate the abrupt change in forces and the repercussions on ice flow, the
distribution of balanced stresses prior to the collapse of the ice shelf needs to be known. We used the prec-
ollapse (1995) observations of surface velocity, surface elevation, and ice thickness, described in section 2, to
set up a state-of-the-art ice flow model, Ua, which has previously been used successfully to study ice shelf-ice
stream systems both in idealized setups [Gudmundsson et al., 2012; Pattyn et al., 2013; Gudmundsson, 2013] as
well as in realistic cases with a complicated geometry [Favier et al., 2014].

The numerical model, Ua, solves the ice dynamics equations in the shallow ice stream approximation
(SSTREAM or SSA) [see, e.g., Hutter, 1983; MacAyeal, 1989], using Glen'’s flow with flow exponent n = 3 and a
nonlinear Weertman-type sliding law with sliding exponent m = 3. The model employs finite element meth-
ods on an unstructured mesh with six-node elements and quadratic base functions. The maximum distance
between triangle vertices is 2 km over the ice shelf and less than 0.5 km in both the vicinity of the grounding
line and the deep glacier valleys. An estimate of model uncertainties related to mesh resolution are given in
the supporting information. All observational data sets were mapped onto the model grid using linear inter-
polation. As the region is topographically complex, rock outcrops were outlined using Landsat imagery, which
greatly improved the accuracy compared to outlines available from the SCAR Antarctic Digital Database 6.0
(www.add.scar.org). Outcrops and nunataks were treated as holes in the mesh, and no-normal flow conditions
for the ice were imposed along their boundaries. At the ice divide on the Bruce Plateau, obtained from Cook
et al. [2014], a zero velocity condition was imposed.

We employed the inversion capabilities of Ua to minimize the mismatch between modeled (u,,.4) and
observed (u,y,) surface velocities. Following techniques for adjoint optimization in glaciology first introduced
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by MacAyeal [1992, 1993] and now commonly used, the control parameters in the inversion are the basal
slipperiness C, and the rate factor A. Both parameters were updated consecutively with every increment in
C followed by an increment in A, for a total of 50 iterations, leading to a mean difference between modeled
and observed surface velocities of 26.4 m a~' with a spread of 42 m a~' (see Figure S1 in the supporting
information). For fast-flowing areas with u,,, > 100 m a~', the mean relative error between the model and
observations is 13.6%.

Adjoint methods have been used perviously to obtain information about the rheology of the LBIS before its
disintegration [Vieli et al., 2006; Khazendar et al., 2007; Borstad et al., 2012], but an inversion for both slipperi-
ness and rheology of the region, including the tributary glaciers, has not been attempted before. Our analysis
simulates the important flow features with high surface velocities in the valleys and close-to-stagnant ice on
the steep slopes and toward the Bruce Plateau. The model fails to resolve the sharp gradient in velocities along
the Seal Nunataks, as well as the narrow (~1 grid cell) shear margin of Crane Glacier (see Figure S1). Larger
than average errors in the surface velocities are also found close to the grounding line. The shear margins
along the Jason Peninsula in the south and along other valley side walls are well reproduced.

The resulting basal slipperiness varies over several orders of magnitude with C € [107>, 1072] m a~! kPa~3,
with a generally increasing trend toward the grounding line and no significant variations at spatial scales
on the order of a few ice thicknesses. The rate factor, A, reveals regions of soft ice along the margins
(A ~ 2 x 1078 a~" kPa~3), which correspond to areas of increased shear (south of the Seal Nunataks) or with
a highly crevassed surface (around Cape Disappointment). Regions of stiffer ice (A ~ 2 x 107° a=! kPa=3) are
found in the interior of the ice shelf, in particular, downstream of the outflow regions of Crane, Leppard and
Flask Glaciers, which could be associated with the outflow of colder ice from those regions. Our simulations
produce a rheology pattern and values that are broadly similar to previously obtained results using different
data sets and methods [Khazendar et al., 2007]. More details are given in Figure S2.

4, Ice Shelf Buttressing

Recent studies have solved the stress balance of coupled ice stream-ice shelf systems in both horizontal
dimensions [Goldberg et al., 2009; Katz and Worster, 2010; Gudmundsson, 2013; Favier et al., 2014], showing a
complicated stress pattern for confined ice shelves. At the grounding line, the pattern provides a total resistive
force that affects the seaward motion of the grounded ice. This so-called ice shelf buttressing is a mecha-
nism that inherently operates in two horizontal dimensions and is the combined result of shear stresses at the
ice shelf margin, the basal resistance at local pinning points, and the bending stresses at the ice front. These
effects cannot be captured adequately by flow line models for complicated geometries like the LBIS, and the
use of a model that resolves both horizontal dimensions at sufficiently fine resolution is therefore essential.

A convenient measure for the local amount of buttressing at the grounding line, 6, is the difference between
the ocean pressure that would act normal to the grounding line in the absence of the ice shelf (denoted by
N,) and the actual normal pressure in the presence of the ice shelf (denoted by N) [Gudmundsson, 2013]

o, =Ny —N
m

1 N ~
Eogh - n; . (Rng|) ,

where h is the ice thickness, g the gravitational acceleration, and ¢ = p; ( - :—‘) with p; = 918 kg m~3 and
p = 1028 kg m~3 the ice and ocean densities, respectively. The vector fiy is the unit normal to the grounding

line, and
R= 21, + 1, Tyy @)
T, 27, + 7y

Xy
with 7; the components of the deviatoric stress tensor. Negative values for o, indicate areas where the ice
shelf pulls the ice outward and away from the grounding line, whereas positive values indicate a net resistive
force, which restricts the motion of grounded ice.

Model results for o, along the 1995 grounding line of the LBIS are plotted as a band parallel to the ground-
ing line in Figure 2a. Results are positive everywhere, except for a small region south of Evans Glacier, at the
grounding line of Pequod Glacier, and around Cape Disappointment. Values range from ¢, = —10 kPa to
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Figure 2. (a) Model results for the backstress o}, in 1995. The narrow
band plotted parallel to the grounding line shows values of o}, as
obtained from equation (1). Values on the ice shelf are defined in a
similar way, but with ﬁg| (unit normal to the grounding line) replaced
by &, (unit vector along the flow). Black lines on the ice shelf highlight
the o, = 80 kPa and ¢, = 100 kPa contours. Names of the outlet
glaciers are indicated by their acronym, as in Figure 1. The dashed
rectangle delineates the spatial extent of Figure 3. (b) Instantaneous
change in backstress compared to 1995 for the new ice front position
on 21 February 2000. (c) Same as in Figure 2b but for the ice front
position immediately after the collapse on 7 March 2002.

about 6, = 400 kPa, in agreement with
values found in the literature [Thomas and
McAyeal, 1982; Borstad et al., 2013] and
with the highest backstress obtained in
areas where the tributary glaciers flow
into the ice shelf.

In order to understand the propagation of
backstress through the ice shelf, it is con-
venient to replace ﬁg, in equation (1) by
&, a unit vector parallel to the local flow
direction. The resulting quantity can be
interpreted as the difference between the
buoyancy-driven along-flow stress, which
the ice shelf would experience if it was
unconfined and the net along-flow stress
[Thomas, 1973]. The results are plotted
on the same color scale in Figure 2a.
The backstress in the ice shelf generally
decreases from o, > 300 kPa in the out-
flow regions of the main tributary glaciers,
to o, < 100 kPa toward the ice front. Low
values are also found in areas of relatively
stagnant ice around the Seal Nunataks,
Foyn Point, and Cape Disappointment.
The smaller, slow-flowing glaciers that
feed these areas experience a reduced
backstress: Jorum (¢, < 250 kPa), Mapple
and Melville (s, < 300 kPa), and Pequod
and Starbuck Glaciers (6, < 150 kPa).

5. Response of Glaciers to Ice
Shelf Collapse

A reduction in buttressing over time
(do,/dt < 0) occurs when the ice shelf
thins and weakens through surface
or basal processes, or when its extent
decreases through calving or disintegra-
tion. In the case of the LBIS, the loss of
2289 km? of the ice shelf between Octo-
ber 1997 and February 2000 through a
series of calving events and the collapse
of 3292 km?, or a further 40% over the
course of a few weeks in February 2002,
led to a large perturbation in stresses at
the grounding line.

We study the instantaneous change in the
backstress imposed by the ice shelf and
the associated change in ice flow velocity,
as a response to an instantaneous retreat
of the ice front. The (time-independent)
diagnostic equations were solved for
the new ice front position, keeping all
other model parameters (including basal
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Figure 3. Absolute change in model velocities compared to 1995 for new ice front positions on (a) 21 February 2000
and (b) 7 March 2002. Red lines are the 10 m a~' and 100 m a~! change in velocity contours.

slipperiness, ice viscosity, ice thickness, and grounding line position) constant. We consider two new ice
front locations: (a) the location for 21 February 2000, 2 years before the breakup and (b) the location for 7
March 2002, just after the breakup. The instantaneous change in backstress compared to 1995 for each of the
new ice-front positions is shown in Figures 2b and 2c. Between 1995 and 2000, calving caused an average
change in backstress at the grounding line of < 6, 5090 = 051995 > = —5 kPa with a spread of 10 kPa, while
o, decreased uniformly across most of the ice shelf by a similar amount. The tributary glaciers experienced a
limited reduction in buttressing on the order of a few percent, with the largest change at the grounding line
of Crane Glacier (—10%).

The rapid disintegration of the central part of the ice shelf in 2002 caused a much larger and spatially more
complex perturbation in the backstress (Figure 2¢). At the grounding line of Crane Glacier, o, decreased by up
to 100 kPa or 30%. For Hectoria and Green Glaciers, the reduction was somewhat smaller (—60 kPa) but still
accounted for a loss of up to 20% of the original buttressing. The backstress across the remnant Scar Inlet gen-
erally decreased, in particular, along its southeastern margin, though ¢, at the grounding line remained largely
unaltered compared to 1995. Interestingly, and in contrast to other areas, the backstress for the small glaciers
south of Crane Glacier remained largely unchanged (Mapple and Pequod) or increased slightly (Melville,
+10 kPa or +5%).

The instantaneous change in buttressing directly affects the flow, as the ice readjusts to the new stress con-
ditions at its boundaries. In equation (1), the ice thickness h stays constant, and the change in backstress is
entirely due to changes in the deviatoric stresses. The latter are related to the velocities via a nonlinear flow
law, which leads to a nontrivial relationship between changes in 6, and changes in u,,,4. In Figure 3, we show
the difference between modeled surface velocities in (a) 2000 and 1995 and (b) 2002 and 1995, for an area
around the grounding line which includes all major tributary glaciers and a large part of Scar Inlet.

Forthe 2000 ice front, changes are small (+10%) and limited to the ice shelf. However, nonlocal effects can play
an important role in transmitting the perturbation in buttressing upstream of the grounding line. Figure 3b
shows that after the collapse of the ice shelf in 2002, instantaneous changes in surface velocity larger than
5% are found over the first 15 km upstream from the grounding line of Hektoria, Green, and Crane Glaciers. In
agreement with changes in the backstress, the response to the collapse of the ice shelf is regionally diverse,
with a widespread increase in speed for Hektoria, Green, Jorum, and Crane Glaciers, a smaller speedup of Scar
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Inlet but a limited response of its tributary glaciers (Flask and Leppard), and a little or no change in surface
speed for the narrow glaciers south of Crane Glacier (Pequod, Mapple, Melville).

6. Discussion

Despite signs of mechanical weakening of the ice shelf prior to its collapse [Rack et al., 2000], the dominant
loss of buttressing for the tributary glaciers was near-instantaneous, as the main part of the ice shelf broke
away over the course of a few weeks in February 2002. This justifies the application of an instantaneous ice
front perturbation in the model. The earliest observations of glacier velocities after the collapse date from
December 2003, i.e., less than 2 years after the event [Wuite et al., 2015]. During this period, Hektoria and
Green Glaciers increased their center line speed from about 365 m a~! at the 1995 grounding line to more
than 2000 m a~' (or a sixfold increase) in 2003, while the grounding line retreated by several kilometers. These
observations show that the response to the perturbation was immediate and large in amplitude.

When Figure 3b is compared to Figure 1 (note the difference in color scale), obvious similarities are appar-
ent between the modeled velocity changes and observations. The three main outlets (Hektoria-Green, Jorum,
and Crane Glaciers) show the largest speedup in both cases. However, despite a clear speedup of Evans
Glacier in the long-term observational record, no such response is evident from the instantaneous change in
modeled velocities.

A smaller increase in surface velocities is modeled for Scar Inlet, and little change is seen for its tributary
glaciers (Starbuck, Leppard, and Flask). This corresponds well to observations of an immediate impact on the
stress field through rift formation and acceleration of Scar Inlet, and a smaller and delayed signal in observed
surface velocities for its tributary glaciers [Wuite et al., 2015]. The work of Khazendar et al. [2015] has shown
that the limited response of Leppard and Flask Glaciers is likely related to a reduction in buttressing by the
Scar Inlet. Finally, the modeled velocities for the narrow glaciers south of Crane Glacier (Mapple, Melville, and
Pequod) remain unchanged, which is also reflected in the observational record. No statistically significant
change in velocities or frontal position has been observed to date for Mapple and Pequod, whereas Melville
has only shown a local twofold speedup near its ice front between 1995 and 2007, which is likely related to a
further retreat of its frontal position by about 2 km since 2002 [Wuite et al., 2015].

The net result of the ice shelf collapse is an instantaneous increase of modeled mass flux across the grounding
line by 1.17 Gt a~': from a total flux of 11.50 Gt a=! in 1995, to a net flux of 12.67 Gt a~' immediately after
the collapse. This modeled increase is almost an order of magnitude smaller than the estimated mass loss
of 8 Gt a™' from observations between 2001 and 2008 by Scambos et al. [2014] and comparable results by
Wuite et al. [2015]. As our model experiment is intended to simulate instantaneous changes, and numbers
reported by Scambos et al. [2014] and Wuite et al. [2015] refer to different dates and a longer time frame, a
match between our results and these observations cannot be expected. Likely explanations for the difference
are (a) a further reduction in backstress as the ice front continued to retreat rapidly within the months and
years after the collapse [Rack and Rott, 2004], as can be seen from the ice front position in 2009 in Figure 1
and (b) the importance of transient effects, i.e., the evolution of ice thickness and velocity over time, as well as
feedback mechanisms related to grounding line movement and possible changes to basal slipperiness and
ice viscosity.

Such variations have been discarded in this study, and future transient model experiments are required to
obtain a match with long-term observations from Scambos et al. [2014] and Wuite et al. [2015]. As a first approx-
imation, a diagnostic perturbation experiment can be performed in which the ice front is moved to a more
recent location, keeping the ice thickness and other model parameters equal to their pre-ice-shelf collapse
values. Similar to experiments presented in section 5, the instantaneous change in backstress and velocities
for the individual catchments can be monitored and compared to precollapse values. An example of such an
experiment for the ice front location on 20 February 2009 is discussed in the supporting information.

7. Conclusions

Modeling the regionally diverse response of glaciers following the collapse of the Larsen B Ice Shelf is chal-
lenging and has not been attempted before. In this study, a state-of-the-art ice shelf-ice sheet model was
used to invert for the precollapse englacial and basal properties of the area, using a recently obtained and
complete data set of surface velocities and ice thickness. The model performs well in replicating the ice flow
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conditions prior to the collapse of the ice shelf and provides new insights into the spatial distribution of back-
forces imposed by the ice shelf. Results from a number of perturbation experiments were presented which
demonstrate the complex behavior of backstresses and surface velocities immediately after the collapse of
the ice shelf. A reduction in back pressure up to 30% was shown for the main tributary glaciers. The diagnostic
model experiments could accurately reproduce the spatial variability of the response, though transient effects
were found to be essential to reproduce the quantitative changes that have been observed since the collapse.
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