nerc.ac.uk

Two-dimensional, regularised inversion of VLF data

Beamish, David. 1994 Two-dimensional, regularised inversion of VLF data. Journal of Applied Geophysics, 32 (4). 357-374. 10.1016/0926-9851(94)90034-5

Before downloading, please read NORA policies.
[img]
Preview
Text
NORA_JAG_2DVLF_1994_Beamish.pdf - Accepted Version

Download (2MB) | Preview

Abstract/Summary

Very low frequency electromagnetic (EM) methods using VLF transmitters have found many applications in subsurface geophysical investigations. Surface measurements involving both the vertical component of the magnetic field (VLF-EM or VLF-Z) and of the apparent resistivity (VLF-R) are increasingly common. Although extensive VLF data sets have been successfully used for mapping purposes, modelling and interpretation techniques which asess the third (i.e. depth) dimension appear limited. Given a profile of VLF-R measurements the main purpose of the present study is to demonstrate an automatic method for the construction of a resistivity cross-section. The technique used is one of a new generation of regularised inversion methods. These techniques attempt to overcome the problem of equivalence/non-uniqueness in EM sounding data by constructing the resistivity distribution with the minimum amount of structure that fits the data. VLF data represent a special case of plane-wave EM sounding in that they conform, in practice, to a single-frequency technique. This fact imposes a limitation in the amount of vertical resolution that we can expect using such data. In the case of two-dimensional modelling and inversion, resolution through the cross-section is a resultant attribute from both vertical and lateral resistivity gradients within the subsurface. In order to provide insight into the practical application of regularised inversion techniques to VLF data, both synthetic and field examples are considered. Both sets of examples are primarily concerned with VLF data applied to near-surface fault mapping where the main aim is to assess the location, dip and depth extent of conductive subsurface features.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1016/0926-9851(94)90034-5
Programmes: BGS Programmes > Other
NORA Subject Terms: Earth Sciences
Date made live: 10 Jun 2015 11:43 +0 (UTC)
URI: http://nora.nerc.ac.uk/id/eprint/510964

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...