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a b s t r a c t

The seasonal cycle of submesoscale flows in the upper ocean is investigated in an idealised model domain

analogous to mid-latitude open ocean regions. Submesoscale processes become much stronger as the reso-

lution is increased, though with limited evidence for convergence of the solutions. Frontogenetical processes

increase horizontal buoyancy gradients when the mixed layer is shallow in summer, while overturning in-

stabilities weaken the horizontal buoyancy gradients as the mixed layer deepens in winter. The horizontal

wavenumber spectral slopes of surface temperature and velocity are steep in summer and then shallow in

winter. This is consistent with stronger mixed layer instabilities developing as the mixed layer deepens and

energising the submesoscale. The degree of geostrophic balance falls as the resolution is made finer, with

evidence for stronger non-linear and high-frequency processes becoming more important as the mixed layer

deepens. Ekman buoyancy fluxes can be much stronger than surface cooling and are locally dominant in set-

ting the stratification and the potential vorticity at fronts, particularly in the early winter. Up to 30% of the

mixed layer volume in winter has negative potential vorticity and symmetric instability is predicted inside

mesoscale eddies as well as in the frontal regions outside of the vortices.

© 2015 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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. Introduction

The upper ocean stratification is an important control on the

ransfer of momentum and tracers between the atmosphere and

cean interior. The development of upper ocean stratification has his-

orically been viewed as a one-dimensional process driven by sur-

ace buoyancy and frictional fluxes, with allowance for shear-driven

ixing at the base of the mixed layer. These ideas are encapsulated

n a number of one-dimensional parameterisation schemes for the

urface boundary layer (e.g. Price et al., 1986; Large et al., 1994). At-

ention has since focused on the role a number of other processes

lay in setting upper ocean stratification such as geostrophic ad-

ustment (Dale et al., 2008; Tandon and Garrett, 1994), frontogene-

is (Gula et al., 2014; Hoskins and Bretherton, 1972; Lapeyre et al.,

006; Shakespeare and Taylor, 2013), surface waves and Langmuir

urbulence (Belcher et al., 2012; Grant and Belcher, 2009; Hamlington

t al., 2014; Haney et al., Subm. to JPO; McWilliams and Fox-Kemper,

013; Sutherland et al., 2014), Ekman buoyancy fluxes (hereafter EBF,

homas, 2005; Mahadevan, 2006; Thomas and Ferrari, 2008; Thomas

t al., 2013), symmetric and inertial instabilities (Bachman and Taylor,
∗ Corresponding author. Tel.: +44 1865 282429.

E-mail address: brannigan@atm.ox.ac.uk (L. Brannigan).
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014; D’Asaro et al., 2011; Haine and Marshall, 1998; Thomas and Tay-

or, 2010; Thomas et al., 2013; Thomsen et al., 2013), and mixed layer

aroclinic instabilities (Bachman and Fox-Kemper, 2013; Boccaletti

t al., 2007; Brüggemann and Eden, 2014; Mahadevan et al., 2010;

urser and Zhang, 2000; Samelson, 1993; Skyllingstad and Samelson,

012) amongst others. While there is evidence for each of these pro-

esses affecting upper ocean stratification, the interactions between

hem and their relative strength over the seasonal cycle remain major

utstanding questions (Belcher et al., 2012; Callies et al., 2015; Capet

t al., 2008a; Hamlington et al., 2014; Haney et al., 2012; Lévy et al.,

010; Mensa et al., 2013; Taylor and Ferrari, 2010).

An important point of reference for this work is an insight-

ul series of papers by Capet and co-authors (Capet et al., 2008a;

008b; 2008c), that examine the transition from mesoscale to sub-

esoscale dynamics in a model domain analogous to the Califor-

ia Current System. An advantage of this approach over a chan-

el model configuration is that the submesoscale processes occur

n the context of the strain induced by a larger scale eddy field.

his strain may be an important control on the growth rate of in-

tabilities (Bishop, 1993; McWilliams and Molemaker, 2011; Spall,

997; Thomas, 2012). A comparable experimental methodology is

mployed in this work whereby simulations are run over a resolution

ange from mesoscale-resolving to submesoscale-permitting. These

imulations depart from previous works in a number of ways. First, a
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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seasonally varying surface buoyancy forcing is employed and so the

mean mixed layer depth varies by an order of magnitude through

the year. Second, no temperature-restoring is used and so the model

stratification can diverge as the resolution becomes finer. Third, the

domain used here is analogous to an open ocean region rather than an

eastern boundary current region (Capet et al., 2008a; 2008b; 2008c)

or a western boundary current region (Gula et al., 2014; Mensa et al.,

2013).

This experiment is carried out in an idealised configuration in-

tended to be analogous to the OSMOSIS (Ocean Surface Mixing -

Ocean Submesoscale Interaction Study) observation site in the North

Atlantic. The observation site is the Porcupine Abyssal Plain lo-

cated near (16°W, 49°N) a region where mean flows are weak and

mesoscale eddies dominate the kinetic energy budget (Painter et al.,

2010). This numerical experiment complements a moored array of

instruments, seaglider deployments and two process cruises in the

project. Comparisons will be made to these observations as the re-

sults are presented, though we note the model has not been ‘tuned’

to replicate the observations.

This paper is structured as follows. The experimental set-up

is given in Section 2. The structure of the buoyancy and velocity

fields and the balance relationships that connect them are shown in

Section 4. The magnitude of the different submesoscale processes

across the seasonal cycle in Section 4. A summary and discussion

of the implications for efforts to observe and parameterise subme-

soscale flows follow in Section 5.

2. Experimental set-up

2.1. Model domain

The simulations are integrated using the MITgcm (Marshall et al.,

1997) in a hydrostatic configuration. The model set-up is analogous to

the OSMOSIS observation area at the Porcupine Abyssal Plain site. As

such, the configuration is that of an open ocean location in the mid-

latitudes where the kinetic energy budget is dominated by mesoscale

eddies. The domain is doubly-periodic with side-length of 256 km.

The bottom boundary is at 3700 m depth and the model domain

is spanned with 200 vertical levels. The vertical grid-spacing is re-

duced near the top and bottom boundaries to 3 m to better resolve

the boundary layer processes of interest and increases gradually to a

maximum of 32.5 m in the interior.

A series of simulations are carried out with uniform horizontal

grid resolutions of 4 km, 2 km, 1 km and 0.5 km. The 4 km run acts

as the control for our experiment, though comparisons are also made

with observations to ensure the model state is a reasonable represen-

tation of the real ocean. The simulations are run on the UK ARCHER

supercomputer, a Cray XC30 system. All of the runs are integrated for

at least five years with the fifth year used to perform the analysis.

2.2. Numerical configuration

A linear equation of state in temperature is employed with a ther-

mal expansion coefficient α = 2 × 10−4 K−1 and so b = gα(T − Tre f )

where b is buoyancy, g = 9.81 m s−2 is gravity, T is temperature and

Tref is a reference temperature. Simulations of geostrophic turbulence

generate a downscale cascade of enstrophy that must be dissipated to

prevent it accumulating at the grid-scale. Enstrophy is dissipated in

the momentum equation using adaptive viscous schemes first devel-

oped by Smagorinsky (1963), Leith (1996) and Fox-Kemper and Men-

emenlis (2013). Recent results show that adaptive viscous schemes

are necessary to allow submesoscale turbulence to develop (Graham

and Ringler, 2013; Ilicak et al., 2012; Ramachandran et al., 2013). Dif-

fusion is applied to horizontal gradients in temperature. For both hor-

izontal diffusion and viscosity, biharmonic operators are chosen over
aplacian operators so that explicit diffusion and viscosity are tar-

eted at the highest wavenumbers (e.g. Griffies and Hallberg, 2000;

raham and Ringler, 2013). At all resolutions the Smagorinsky coef-

cient is 3, while the Leith and modified Leith coefficients are 1. The

iharmonic temperature diffusion coefficient is 4 × 107 m4 s−1 at

km resolution and reduced by a factor of four for each doubling

n resolution. A partial-slip bottom boundary condition is imposed

ith a quadratic bottom drag (Arbic and Scott, 2008) using a non-

imensional quadratic drag coefficient of 3×10−3.

In addition, vertical mixing of both heat and momentum is carried

ut with a Laplacian operator with a constant diffusion coefficient of

× 10−5 m2 s−1. The mixed layer depth is defined throughout as

he first depth where the temperature difference from the surface is

reater than 0.1 ◦C.

The advection of temperature is carried out using the Prather

cheme (Prather, 1986). This is an upwind scheme that conserves

econd-order moments in sub-grid tracer distributions and so helps

o preserve the sharp frontal structures of interest. Hill et al. (2012)

how that the effective diffusivity of the Prather scheme is similar

o the level of diffusion estimated for the real ocean by tracer release

tudies. The model’s default second-order centered advection scheme

s employed for momentum.

The timestep is 400 s at 4 km resolution and is then reduced by

factor of two with each doubling in resolution. The model is inte-

rated on an f-plane with a Coriolis frequency f = 10−4 s−1. Note

hat no temperature relaxation conditions are employed and so the

odel solution can evolve freely.

.3. Boundary layer parameterisation

In the vertical, the model is run with the K-profile parameteri-

ation (KPP, Large et al., 1994) for the surface boundary layer. This

cheme is in practice a suite of parameterisations that aim to repre-

ent a number of mixed layer processes. The KPP scheme increases

he vertical viscous/diffusive coefficients (hereafter ‘diffusive coeffi-

ients’) based on the surface wind stress. It also increases the diffu-

ive coefficients if there is elevated shear at the base of the mixed

ayer based on a Richardson number criteria. In the event of destabil-

sing surface buoyancy forcing the KPP scheme introduces a vertical

on-local transport to capture the effect of vertical convective mixing

Marshall and Schott, 1999). The KPP scheme also applies higher dif-

usive coefficients in the event of negative stratification, even if this

s not associated with destabilising surface buoyancy forcing as can

ccur in the presence of down-front winds. In these cases of static

nstability the KPP scheme applies a high (5×10−3 m2 s−1) vertical

iffusion coefficient rather than instantaneously mixing buoyancy as

one by the default MITgcm convective adjustment scheme or the

rice et al. (1986) scheme.

.4. Initial and boundary conditions

The model is initialised at rest with a horizontally uniform tem-

erature profile. The initial vertical temperature profile (Fig. 1, left

anel) is derived from an Argo float near the Porcupine Abyssal Plain

bservation site. This profile was sampled on 23rd March 2012 and is

elected as a temperature profile with minimal signs of internal wave

eaving or instrument noise.

The model is forced at the surface by a heat flux and wind forcing.

he prescribed heat flux is uniform across the domain and averages

o zero over each 360-day year (Fig. 1, right panel) with values based

n the sum of the net shortwave, longwave, sensible and latent heat

uxes from the monthly climatology of Berry and Kent (2009) for the

orcupine Abyssal Plain observation region. These heat fluxes are ap-

lied to the uppermost model level. As such, heating fluxes result

n a more rapid restratification than in the real ocean where short-

ave radiative fluxes penetrate in an exponentially decaying manner
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Fig. 1. (Left panel) The initial temperature profile for all simulations. (Right panel) The

heat flux into the domain through the year. The model ‘summer’ is the first half of the

year and the model ‘winter’ is the second half.
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Fig. 2. A snapshot of the wind-forcing used in the model for one month, presented as

the curl of the streamfunction. Solid lines are positive contours and dotted lines are

negative contours with intervals of 10−7 m s−2.
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hrough the water column. The experiment aims to understand the

esponse of mixed layer dynamics to the seasonal cycle in buoyancy

orcing. Higher frequency variability, including diurnal effects, are not

ncluded in the main experiments described here.

References are made to ‘summer’ and ‘winter’ as shorthand for

he periods of heating and cooling respectively. The model integra-

ion begins with stratification derived from late March conditions –

s such the heating period is the first half of every model year and the

ooling period is the second half. To aid readability and comparisons

ith observations from the real ocean, the model outputs are equated

ith the month they correspond to from the buoyancy forcing.

While the surface heat flux creates an annual cycle in stratifi-

ation and mixed layer depth, the wind forcing produces a field of

eostrophic turbulence and an Ekman transport in the near-surface.

he forcing scheme used is based on that of Koszalka et al. (2009)

ith a streamfunction (ψ) to generate the wind stress that varies in

pace and time. The consequent curl of the wind stress causes isopy-

nals to tilt locally through Ekman pumping or suction. The velocity

eld undergoes Rossby adjustment to the tilt of the isopycnals and

he non-linear eddy interactions then induce a turbulent eddy field.

The streamfunction is constructed using zonal and meridional

ourier modes, an example of which can be seen in Fig. 2. Unlike

oszalka et al. (2009), where a random component to each stream-

unction is introduced in Fourier space, a random phase is added onto

ach streamfunction component-pair in order to randomise the spa-

ial structure of the forcing from month to month with

= ψ0

3∑
k,l=1

sin (kx + φ1(k, l)) sin (ly + φ2(k, l)), (2.1)

here ψ0 = 0.02 N m−1, x and y are the zonal and meridional co-

rdinates respectively, k and l are the zonal and meridional domain

avenumbers respectively, and φi is a random phase. A new stream-

unction is generated each month and the model linearly interpo-

ates between the successive streamfunctions to give a wind field that

aries smoothly in time. Inspection of the results show this gives rise

o a small amplitude monthly cycle that is not readily apparent in the

ey model outputs in the presence of the generally turbulent flow.

he streamfunction for wind forcing is produced for the 4 km run

nd then interpolated to the finer resolution grids.

In addition, a constant zonal wind of 0.05 N m−2 is added to en-

ure the mixed layer depth extends beyond the uppermost model

evel during periods of stabilising heat forcing such that the vector

ind stress τ = 0.05i + k × ∇ψ where i is the zonal unit vector and

is the vertical unit vector. The constant zonal wind is about five

imes larger than the root-mean-square magnitude of the spatially-
arying wind derived from the streamfunction in Eq. (2.1), and so it is

he main driver of the Ekman transport.

The wind forcing has length scales of 20–256 km and so is shorter

han the atmospheric length scales with the greatest energy in the

id-latitudes (Nastrom and Gage, 1985). However, the length scales

f the forcing are still comparable to the baroclinic deformation ra-

ius of approximately 40 km. A test experiment has been carried out

ith a wind streamfunction that was constant in time. Analysis of

his run after one year showed no imprint of the wind-forcing in the

odel output. This provides confidence that the non-linear dynam-

cs of the eddy field dominate the solution, rather than the detailed

tructure of the wind forcing. The wind forcing in this experiment is

ontinuous, but weak, with a magnitude about one-third of the root-

ean-square wind stress magnitude estimated from the ERA-interim

e-analysis for the region.

.5. Averaging operator

The averaging operator denoted by an overbar is a horizontal av-

rage over a model level

(x, t) = 1

A

∫
x

∫
y

gdxdy, (2.2)

here g is an arbitrary function, x is the position vector, t is time and

is the horizontal area.

. Results

The overall buoyancy and momentum fields are compared at dif-

erent resolutions in the spin-up phase and throughout the seasonal

ycle.

.1. Spin-up and inter-annual variability

At the outset of the runs, the solutions are similar across the range

f resolutions (Fig. 3, all panels). The solutions begin to diverge be-

ween resolutions after about 120 days both in terms of the standard

eviation of sea surface temperature (SST), the mean mixed layer

epth and the mean kinetic energy at the surface (Fig. 3, upper three
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Fig. 3. Model fields during spin-up. (Top row) Standard deviation of sea surface tem-

perature. (Second row) The mean mixed layer depth. (Third row) Mean kinetic energy

at the surface. (Bottom row) The mean input of kinetic energy by the wind stress τ
· u. The two coarser resolution simulations have been run for a further five years to

Year 10.
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panels). The mean energy input from the wind is similar at all reso-

lutions (Fig. 3, bottom panel). The wind energy input is similar across

resolutions despite the higher surface kinetic energy at finer resolu-

tion as the largest kinetic energy is found in the mesoscale vortices,

where the wind is aligned with the flow on one side of the vortex but

opposed to the flow on the other side, and so the energy input largely

cancels out. From the third year of the simulations the differences

between the years are in the range of year-to-year variability (Fig. 3,

upper three panels). Fields with greater inter-annual variability are

noted in the results below.

3.2. Vertical and horizontal buoyancy distributions

Level mean vertical temperature profiles (T ) at the end of the

heating and cooling period are shown in Fig. 4 below. These profiles

show that at finer resolution there is a cooler and deeper mixed layer

(Fig. 3, second row) and this is found in both summer and winter.

The dynamical causes of this will be explored further in a subsequent

manuscript. The difference in T between the runs falls to zero by

350 m depth. The range of mixed layer depths from approximately
0 m to 250 m in the model is similar to those estimated over the
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−25

−20

−15

−10

−5

0

Temperature (°C)

D
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Fig. 4. Mean temperature profiles. (Left panel) The temperature profile at the end of summe

the fifth model year. Note the different scales between the panels on both axes.
easonal cycle from seaglider observations at the Porcupine Abyssal

lain site (Damerell et al., in prep. for Geophys.Res.Lett.).

Qualitative differences in the horizontal distribution of buoyancy

re illustrated in the snapshots of the magnitude of buoyancy gradi-

nts at the sea surface in Fig. 5. These snapshots are from January of

he fifth year of the simulations, when the mean mixed layer depth

s approximately 90 m. Fig. 5 shows that fronts become stronger,

harper and more sinuous as the resolution is made finer. In contrast

o Capet et al. (2008a), filamentary submesoscale features are also

resent inside the large vortices, for example in the anti-cyclone at

50 km, 50 km) in the lower-right panel of Fig. 5. This filamentation

ccurs whenever the mixed layer is deeper than approximately 40 m

t the finest resolution.

Values of |∇hb|, the level-mean magnitude of the horizontal

uoyancy gradient, where ∇h is the horizontal gradient operator,

re shown in Fig. 6. The root-mean-square magnitude of these

radients is O(10−7 s−2), with the largest values an order of mag-

itude stronger, typical of those observed in the mid-latitude mixed

ayer (e.g. Hosegood et al., 2006). There is an increase in |∇hb| as the

esolution is made finer, as previously noted by Capet et al. (2008a).

t the start of the heating period – for example in May in Fig. 6 – the

ean gradients are low at all resolutions. As the heating period pro-

resses |∇hb| increases more quickly as the resolution is made finer,

or example in July in Fig. 6. It then decreases more rapidly at finer

esolution in the cooling period as the mixed layer begins to deepen.

e note that there is significant variation in the values of |∇hb| from

ear-to-year, though the annual cycle persists. The seasonal cycle in

orizontal buoyancy gradients found here agrees with glider obser-

ations from the Porcupine Abyssal Plain site. Alternative model forc-

ngs that include a diurnal cycle in heating and stronger wind forc-

ng have been carried out at 2 km resolution. The results of these

xperiments have a similar seasonal cycle of horizontal buoyancy

radients.

While |∇hb| captures variability at the grid scale, the horizontal

istribution of buoyancy over the whole surface level can be consid-

red using the power spectral density (PSD) of SST. The spectra are

alculated in horizontal wavenumber shells after the application of a

D Hanning window. As for Capet et al. (2008c) the spectra are mul-

iplied by four to recover the variance from before the windowing

peration. Fig. 7 shows the spectra averaged over April–September

left panel) and October–March (right panel). There is an increase

n variability at shorter wavelengths as the resolution is made finer,

reviously found by Capet et al. (2008a). A comparison of the upper
10.8 11 11.2 11.4
−250

−200

−150

−100

−50

0

Temperature (°C)

Mean temperature − end of winter

4 km
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r in the fifth model year. (Right panel) The temperature profile at the end of winter in
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Fig. 5. A snapshot of the magnitude of the sea surface buoyancy gradient at the indicated grid resolutions. The snapshots are derived from the model state in late January (year

4.83) when the mean mixed layer is approximately 90 m deep. The surface relative vorticity at this time point is shown in Fig. 10.

Fig. 6. The mean horizontal buoyancy gradient |∇hb| over the fifth year of the simulations at 2-day intervals. (Upper panel) The mean horizontal buoyancy gradient in the mixed

layer. (Lower panels) The vertical profile of |∇hb|. The black line in the lower panels shows the mean mixed layer depth at that time.
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anels in Fig. 7 shows that there is a shallowing of the spectral slope

rom summer to winter.

.3. Velocity field

The root-mean-square velocities are about 15 cm s−1 at fine reso-

ution, that is about 30% less than those observed at the observation
ite (Painter et al., 2010). The mean flow in the model is an Ekman

piral driven by the zonal mean wind stress (not shown).

The slopes of the power spectral density of surface velocity are

imilar to those for SST anomalies with the slope shallowing from

ear −3 in summer (Fig. 8, upper-left panel) to approximately −2 as

he winter progresses (Fig. 8, upper-right panel). The slope is evalu-

ted quantitatively by performing a linear regression on the power

pectral density in log–log space at each resolution over the annual
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Fig. 8. The power spectral density for surface velocity. (Upper-left panel) The power spectral density averaged over the heating period (April–September). (Upper-right panel) The

power spectral density averaged over the cooling period (October–March). The dotted lines show reference slopes m in log–log space. (Lower panel) Time series of the regressed

spectral slopes. The reference horizontal lines in the lower panel are at 2 and −3. The upper-limit on the y-axis is a slope of 5/3.
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cycle. To reduce domain-scale and grid-scale effects, this regression

is carried out over the range of wavelengths from four times the grid

spacing for each simulation to 100 km. The regressed slope remains

merely an estimate of the change in the spectral slope due to in-

creasing curvature in the slope in winter. The time series of regressed

slopes in Fig. 8 (lower panel) shows that the slope quickly steepens

to values between −4 and −3 in the restratification period (April–

May). The slope remains relatively steep until the cooling begins in

September, at which point the slope starts shallowing until reaching

a value between −5/3 and −2 in December when the mixed layer has

reached approximately 40 m depth. The slope then stops shallow-

ing even as the mixed layer continues to deepen to 150 m in March.

These seasonal variations in slopes are consistent with observations

of the North Atlantic (Callies et al., 2015) and numerical simulations
f the North Atlantic that resolve basin-scale features (Lévy et al.,

010; Mensa et al., 2013). We note that the steeper slopes in summer

ould also be due to the mixed layer deformation radius with shallow

ixed layers being less than the model grid resolution. The seasonal

ycle in the slope shown in Fig. 8 (lower panel) occurs consistently

rom year-to-year in the three finer resolution cases. The coarsest res-

lution case is more variable, but the same overall cycle emerges if a

ulti-year average of the cycle is taken.

Fig. 9 (left panel) shows the vertical profile of the power spectral

ensity of the horizontal velocity in January at the finest resolution.

he plot is a colour equivalent of the spectra in Fig. 8 (upper panels).

hallower spectral slopes are found where the light colours extend

o shorter wavelengths. Fig. 9 (right panel) shows the same regres-

ion slopes as Fig. 8 (lower panel), but applied in the vertical. The
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Fig. 9. The vertical structure of the power spectral density of velocity in early January during the cooling phase. (Left panel) A colour plot of the PSD at fine resolution. (Right panel)

The spectral slope for all resolutions as estimated from a linear regression in log–log space. The coloured horizontal lines show the mean mixed layer depth at the corresponding

resolution.
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egime of shallow spectral slopes is confined to the mixed layer at

ll resolutions, the mean depth of which is marked by a horizontal

ine of the same colour. We note that the transition from shallow to

teep slopes happens near the mean mixed layer depth of 60 m in

ig. 9, and so is not related to the increase in vertical grid spacing

hat begins from 90 m depth at all resolutions. These vertical profiles

f spectral slopes are consistent with the mixed layer being better

pproximated by quasi-geostrophic dynamics with a vertical scale of

he mixed layer depth rather than surface quasi-geostrophy (sQG), as

n the latter case shallower spectral slopes are also expected below

he mixed layer (Callies and Ferrari, 2013).

The implications of the seasonal cycle in the power spectral den-

ity of surface velocity at the different resolutions is apparent in

elative vorticity at the surface through the year. The animation

rovided as a supplementary material shows that the steep spectral

lopes in summer correspond to the vertical component of relative

orticity dominated by the largest mesoscale vortices. As the cooling

egins from September, more submesoscale features in relative vor-

icity emerge in frontal regions and inside the anti-cyclonic eddies.

s the winter progresses these come to occupy the entire domain, as

hown in Fig. 10.

.4. Momentum balance

The various balances of momentum give an understanding of how

he dynamics differ across resolutions and through the seasonal cycle.

ollowing Capet et al. (2008b), a metric for geostrophic balance is

geo(x, t) = 1 −
| fζz − 1

ρ ∇2
h

p|
f |ζz| + | 1

ρ ∇2
h

p| + μgeo

, (3.1)

here ζz = vx − uy is the vertical component of relative vorticity, p

s pressure and μgeo = fζz,RMS + ρ−1∇2
h

pRMS is a small constant in-

luded to avoid spurious large values in areas of weak force balance.

ote that the scale has been reversed from Capet et al. (2008b) such

hat εgeo = 1 means full geostrophic balance.

Capet et al. (2008b) also investigate a generalised cyclostrophic

r gradient-wind balance that includes the full non-linear advective
erms

adv(x, t) = 1 −
| fζz + ∇h · (u∇uh) − 1

ρ ∇2
h

p|
f |ζz| + |∇h · (u∇uh)| + | 1

ρ ∇2 p| + μadv
, (3.2)

here u = (u, v, w) is the velocity vector and μadv is adapted from

geo to include the contribution of the advective terms. A similar no-

ation is adopted for this term in the balances below. The advection

erms include the centripetal acceleration and so this non-linear bal-

nce may better describe the force balance in vortices and at curved

ronts.

The model solution also supports internal waves that lead to more

apid accelerations than those associated with the geostrophic flow.

lthough the inclusion of the time derivative means the momentum

s no longer ‘balanced’, the inclusion of the time derivative provides

seful insight, as discussed below. This ‘balance’ is called a ‘time-

dvection’ balance by including the divergence of the time derivative

f the horizontal velocities

εtime−adv(x, t)

= 1 −
| fζz + ∇h · uh,t + ∇h · (u∇uh) − 1

ρ ∇2
h

p|
f |ζz| + |∇h · uh,t | + |∇h · (u∇uh)| + | 1

ρ ∇2
h

p| + μtime−adv
,

(3.3)

here the subscript t denotes differentiation in time.

In a simulation of filamentogenesis in the Gulf Stream Gula et al.

2014) find that the vertical viscous fluxes are of the same order as the

ertical shear and horizontal buoyancy gradient in thermal wind bal-

nce. They term this ‘turbulent thermal wind balance’. This is quan-

ified here as a ‘turbulent geostrophic balance’ by modifying (3.1) as

tg(x, t) = 1 −
| fζz + ∇h · (τz) + ∇ · ((Kuz)z) − 1

ρ ∇2
h

p|
f |ζz| + |∇h · (τz)| + |∇h · ((Kuz)z)| + | 1

ρ ∇2
h

p| + μtg

, (3.4)

here K is the vertical viscous coefficient that is set by the KPP scheme

n the mixing layer but is a constant below and τ z is the wind stress

ivergence that accelerates the flow in the uppermost level. This is

hus also a generalised version of the ‘turbulent Ekman balance’ of

aylor and Ferrari (2010).

Finally, to ascertain whether a full description of balance is being

pproached we can combine all of the terms from the turbulent and
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Fig. 10. A snapshot of the vertical component of relative vorticity at the surface. The panels are at the indicated grid resolutions, though the labels are somewhat obscured in the

lower panels. As for Fig. 5, the snapshots are derived from the model state in late January (year 4.83) when the mean mixed layer is approximately 90 m deep.

Fig. 11. The degree of geostrophic balance εgeo calculated from snapshots of model output at 2-day intervals through the seasonal cycle. Darker colours indicate a departure from

geostrophic balance. The black line is the mean mixed layer depth.
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time-advection balances as

εtta(x, t)

= 1 −
| fζz + ∇h · (τz) + ∇h · ((Kuz)z) + ∇h · ut + ∇h · (u∇hu) − 1

ρ ∇2
h

p|
f |ζz| + |∇h · ut | + |∇h · ((Kuz)z)| + |∇h · (u∇hu)| + | 1

ρ ∇2
h

p| + μtta

.

(3.5)

The annual cycle in εgeo is shown in Fig. 11. This shows that the de-

gree of geostrophic balance falls as the resolution is made finer, both

in the mixed layer and in the interior. Vertically, the degree of bal-

ance is lower in the mixed layer than in the interior, though minima

are often found at the base of the deepening mixed layer.
While geostrophic balance is the primary balance, there is a

hange in the residual mean balance across this range of res-

lutions. Fig. 12 shows the vertical profiles of the horizontal

ean of the various balances in late January, when the mean

ixed layer depth is approximately 90 m. This is during the

ime interval when εgeo is relatively low in the thermocline of

he finest resolution case (Fig. 11, bottom-right panel). Com-

aring firstly the geostrophic balance, Fig. 12 (top-left panel)

hows again that the magnitude of εgeo falls as the resolu-

ion is made finer. Moving to the turbulent geostrophic balance

Fig. 12, top-right panel) improves the degree of balance over geostro-

hy alone. However, this improvement in balance is only in the mixed
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Fig. 12. Vertical profiles of the balance parameters (x-axis in all panels) in late January (year 4.83) during the period of mixed layer deepening. The mean mixed layer is approx-

imately 90 m at all resolutions. The calculation is based on a snapshot of model output. (Top left) Geostrophic balance as measured by εgeo. (Top centre) Turbulent geostrophic

balance as measured by εtg. (Bottom left) Advective balance as measured by εadv . (Bottom centre) Time-advective balance as measured by εtime−adv . (Bottom right) Turbulent-linear-

cyclostrophic balance as measured by εtta .
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ayer, as the vertical diffusion of momentum in the interior is much

eaker. Now comparing geostrophy and the advective balance εadv,

ig. 12 (left-hand panels) shows that incorporating advective terms

mproves the degree of balance by a small amount at coarser resolu-

ion. However, for the two finer resolutions the advective balance is

ctually slightly less than the geostrophic balance near the base of the

ean mixed layer at 90 m and the degree of balance does not materi-

lly improve with the advective balance in the thermocline. In order

o better describe the momentum ‘balance’ at the finest resolution,

he time derivative terms must be included (centre panel, bottom

ow). In the coarser resolution runs, the addition of the time deriva-

ive term makes little difference and εadv ≈ εtime−adv. Therefore, the

ime derivative terms become an important part of the residual mo-

entum balance in late winter at finer resolution in the mixed layer

nd thermocline. The combined balance terms in εtta are shown in

ig. 12 (right panel, bottom row), with the residual accounted for by

he horizontal diffusion of momentum in the mixed layer and a small

actor due to the time-stepping scheme.

A physical sense for the change in the residual balance across res-

lutions can be gained by considering the geostrophic balance εgeo at

he base of the mixed layer in Fig. 13. This is taken from the same

ime as the sea surface buoyancy gradients plot in Fig. 5 and the

ean balances in Fig. 12. The advective and time derivative terms ac-

ount for the departure from balance near (60 km, 60 km) in Fig. 13

bottom-right panel) and are thus associated with the long filamen-

ary streaks that are wrapped into the large anti-cyclone there and

isible as buoyancy gradients in Fig. 5. As such the filaments are in-

icative of an unbalanced process that is developing rapidly in time.

he dynamical process that generates these filaments is considered

n more detail in a forthcoming paper (Brannigan, in prep.). Such fil-

mentation and the accompanying departure from geostrophic bal-

nce becomes weaker as the resolution becomes coarser (Fig. 13).

ower values of εgeo are increasingly found in the large vortices at all

esolutions as the resolution is made finer. It is here that the degree

f balance is most improved by moving to advective balance εgeo that

ncludes the centripetal acceleration and so the mixed layer portion

f the mesoscale vortices becomes more non-linear as the resolution

s made finer. The improvement in balance in the mixed layer by the
se of turbulent geostrophic balance, measured by εtg, is relatively

niform through the domain (not shown).

. Frontal processes

The results in Section 3 show that there are distinct differ-

nces across the resolutions in terms of the buoyancy, velocity and

alances and growing seasonal differences between the runs. These

ifferences are due to submesoscale processes, that are diagnosed in-

ividually here.

.1. Frontogenesis

Although frontogenesis is formally defined to be the development

f a discontinuity in buoyancy at a front, it is taken here to mean the

ction by the flow field to increase or decrease the variance of hori-

ontal buoyancy gradients. The impact of frontogenesis on horizontal

radients is diagnosed using the frontogenesis function (Hoskins and

retherton, 1972) modified to include the vertical advective transport

s = Qs · ∇hb, (4.1)

here:

s = −(uxbx + vxby + wxbz, uybx + vyby + wybz). (4.2)

n agreement with Capet et al. (2008b), the mean magnitude of fron-

ogenesis generally grows as the resolution becomes finer with level-

ean values increasing by approximately a factor of two for each

oubling in resolution (Fig. 14, all panels). Of more novelty is the

easonal cycle in the magnitude of frontogenesis as the mixed layer

epth varies by an order of magnitude from summer to winter. Fig. 14

hows that Fs is low in the initial period of mixed layer restratifica-

ion (April–June, all panels). It then grows in magnitude through the

emainder of the summer and into autumn and early winter (August–

ecember) before weakening in the late winter when the mixed layer

eepens from 80 m to 150 m. The weakening of Fs in winter (all

anels) could reflect the ability of mixed layer instabilities to over-

urn strong buoyancy gradients when the mixed layer is of sufficient
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Fig. 13. Plan views of the geostrophic balance parameter εgeo near the base of the mean mixed layer at 74 m depth in late January (at year 4.83). Darker colours show departures

from geostrophic balance. This is taken from the same time as the plot of sea surface buoyancy gradients in Fig. 5 and the surface relative vorticity in Fig. 10.

Fig. 14. The level-mean value of the frontogenesis function, defined in Eq. (4.1), by model level over the fifth year of the simulations. The calculation is based on snapshots of model

output at 2-day intervals. The black line shows the mean mixed layer depth at that time.

f

m

D

T

fl

E

depth. The period in the annual cycle when Qs begins to weaken coin-

cides with the interval when the slope of the surface velocity spectra

reaches its shallower values in Fig. 8 (bottom panel).

4.2. Ekman buoyancy fluxes

The creation or destruction of potential vorticity, taken to be

the Ertel potential vorticity q = ( f + ∇ × u) · ∇b, due to frictional
orcing at the boundary has been established observationally and nu-

erically as an important process at ocean fronts (Capet et al., 2008b;

’Asaro et al., 2011; Mahadevan et al., 2010; Taylor and Ferrari, 2010;

homas, 2005). This process is referred to as the Ekman buoyancy

ux (EBF) and can be diagnosed as

BF =
(

τ

ρo f
× k

)
· ∇hb, (4.3)
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Fig. 15. The root-mean-square magnitude of the Ekman buoyancy flux, defined in Eq. 4.3, over the fifth year of the simulations.
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here τ is the wind stress, ρo is a reference density and k is the unit

ertical vector. The term ∇hb is formally the mean buoyancy gradi-

nt over the Ekman layer, though we take it to be the surface buoy-

ncy gradient. While the mean value of the EBF is notionally zero

hen averaged over a periodic domain, there is still a net effect on

tratification as the down-front winds induce a vertical diffusive mix-

ng through the whole mixed layer, while the up-front winds induce

n advective restratification in the Ekman layer (Thomas and Ferrari,

008). In locations of up-front winds, the Ekman layer is generally

hallower than 30 m.

Fig. 15 shows that the root-mean-square Ekman buoyancy flux has

similar annual cycle to Fs in that its peak values occur in summer

onditions when |∇hb| is largest and it is stronger at finer resolution.

he magnitude of the buoyancy fluxes is of order 10−6 m2 s−3 at fine

esolution. This is some 20 times larger than the buoyancy flux due

o the peak surface heating/cooling and emphasises the local impor-

ance of the EBF in setting stratification (Thomas and Ferrari, 2008;

homas et al., 2013) even in these simulations where the mean wind

tress is moderate compared to values achieved in the open ocean.

lthough the winds are relatively weak here, the magnitude of the

orizontal buoyancy gradients that arise are much stronger. The oscil-

ations in the EBF in Fig. 15 are the main consequence of the monthly

ycle in the wind-forcing noted in Section 2. The effect of the EBF is

nvestigated further in Section 4.3.

.3. Instabilities of negative potential vorticity

The ocean is subject to a range of instabilities when fq < 0, which

n these simulations is equivalent to negative potential vorticity.

here negative potential vorticity occurs, the dominant expected re-

ponse to perturbations can be inferred from the balanced Richard-

on number Rib (defined in Eq. (4.4)). The infinite range of possible

ib can be contracted to an angle φ following the approach of Thomas

t al. (2013) where a schematic can be found

Rib
= tan−1(−Ri

−1
b ) = tan−1 −|∇hb|2

f 2N2
, (4.4)

nd

Rib
< φc = tan−1(−ζg/ f ), (4.5)

here ζg = f + ∇ × ug and ug is the geostrophic velocity. When

80◦ < φRib
< −135◦, the potential vorticity is negative due to unsta-

le stratification and convective instability is expected to dominate.
hen −135◦ < φRib
< −90◦, the potential vorticity is negative due to

oth unstable stratification and horizontal buoyancy gradients and so

hybrid convective/symmetric mode is predicted. For stable stratifi-

ation and cyclonic vorticity −90◦ < φRib
< φc, with φc < −45◦ im-

lies that a symmetric instability should arise. For anti-cyclonic vor-

icity a symmetric mode is expected to dominate where 90◦ < φRib
<

45◦ and a hybrid symmetric-centrifugal instability is anticipated

here −45◦ < φRib
< φc.

It is cautioned that this analysis does not take into account the

ertical velocity shear that arises due to surface waves. Haney et al.

Subm. to JPO) show that wind and waves in the same direction leads

o an increase in Rib. The balanced Richardson number here also as-

umes that there is no curvature to the flow.

Fig. 16 (upper panel) shows that up to 30% of the mixed layer vol-

me is unstable to pure or hybrid symmetric instabilities in winter.

he proportion of the mixed layer volume where such a condition

olds grows somewhat as the resolution is made finer, though the

alues are comparable across all resolutions. In the shallow mixed

ayers early in the restratification period (April–August in Fig. 16, up-

er panel) very little negative potential vorticity is found at any reso-

ution due to the stratifying effect of the surface heating. The propor-

ion of the domain where negative potential vorticity is found then

rows in late summer (September–October in Fig. 16, upper panel).

t reaches its peak value quite early in the winter by November at

ll resolutions before gradually decreasing in late winter despite the

ontinual cooling.

The vertical distribution of negative potential vorticity is shown

n Fig. 16 (lower panels) and is similar at all resolutions. The

ower panels shows that the occurrence of negative potential vor-

icity is essentially limited to the mean mixed layer. The distri-

ution of negative potential vorticity is not concentrated in the

kman layer reflecting the tendency for down-front winds to in-

uce vertical mixing and so extract potential vorticity through-

ut the mixed layer (Thomas and Ferrari, 2008) when using KPP,

hough simulations with resolved boundary layer turbulence show

hat the extraction of potential vorticity may be concentrated in

shallower layer (Hamlington et al., 2014; Taylor and Ferrari,

010). The peak proportion of the mixed layer volume that is most

nstable to centrifugal instability grows from 1% of the mixed

ayer volume at the coarsest resolution to 4% at the finest res-

lution (not shown). In addition, the upper 10 m of the model

omain develops a slight negative stratification in the cooling
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Fig. 16. The proportion of the domain with negative potential vorticity where a pure or hybrid symmetric mode is predicted. (Top panel) The mean proportion of the mixed layer

volume where symmetric instability is predicted. (Lower panels) The proportion of the levels where symmetric instability is predicted. Calculated based on snapshot model outputs

taken at 2-day intervals during the fifth year of the simulation. The black line in the lower panels is the mean mixed layer depth.

Fig. 17. The mean potential vorticity for a given horizontal buoyancy gradient at 9 m depth at in late December. (Top row) The mean potential vorticity for a given zonal buoyancy

gradient. (Bottom row) The mean potential vorticity for a given meridional buoyancy gradient. These results are consistent with Fig. 11 of Capet et al. (2008b).
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period at all resolutions. This negative stratification in the upper

levels is a typical feature of numerical simulations.

As for Capet et al. (2008b), regions of negative potential vorticity

are produced by the down-front wind mechanism driven by the zonal

wind stress. Fig. 17 shows the mean potential vorticity for a given

zonal or meridional buoyancy gradient based on a snapshot of model

output at the end of December in year 5 at 9 m depth. The top row

in Fig. 17 shows no systematic relationship between the zonal buoy-

ancy gradient and potential vorticity. However, the bottom row shows

that there is a near-linear relationship between the meridional buoy-

ancy gradient and potential vorticity at all resolutions. When by < 0,

colder water lies to the north of warmer water. Given the mean zonal

wind, by < 0 corresponds to a down-front wind (Thomas, 2005) and

mean potential vorticity is indeed negative in this case. On the other
and, where by > 0 the wind is up-front and mean potential vorticity

s positive in this case. This effect becomes stronger as the resolu-

ion is made finer (Fig. 17, lower panels). The seasonal cycle in the

roportion of the mixed layer unstable to symmetric instability (Fig.

6, upper panel) partly reflects the seasonal cycle in horizontal buoy-

ncy gradients. When horizontal buoyancy gradients are stronger in

he late summer and autumn (Fig. 6) the conditions for symmetric in-

tability are most commonly found. As the horizontal buoyancy gra-

ients weaken in late winter, less symmetric instability is expected.

A similar analysis can be carried out as in Fig. 17 where the po-

ential vorticity is compared to the Okubo–Weiss parameter S2 − ζ 2
z ,

here S2 = (vx + uy)2 + (ux − vy)2 is the strain. No systematic rela-

ionship between the Okubo–Weiss parameter and potential vortic-

ty is found (not shown). This can be understood by considering the



L. Brannigan et al. / Ocean Modelling 92 (2015) 69–84 81

Fig. 18. Plan-view plots of negative potential vorticity at 9 m depth in late December at the indicated resolution. The colorscale saturates at q = 0 so regions of positive potential

vorticity are shown in white.
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orizontal distribution of negative potential vorticity at the end of

ecember in Fig. 18. This figure illustrates that negative values of po-

ential vorticity are found both inside as well as outside the vortices,

or example at (100 km, 80 km) at 4 km resolution in the upper-left

anel or at (110 km, 160 km) in the lower-right panel. Negative poten-

ial vorticity in the large vortices correspond to regions of negative

eridional buoyancy gradients within the vortices. A forthcoming

aper (Brannigan, in prep.) shows that the negative potential vor-

icity within the vortices leads to strong symmetric instabilities

here.

.4. Vertical advective fluxes

The magnitude of the vertical buoyancy fluxes is w′b′, where w is

he vertical velocity, b is the buoyancy and primes indicate a depar-

ure from the level mean. The second panel in Fig. 19 shows that ver-

ical buoyancy fluxes averaged over the mixed layer become stronger

s the resolution becomes finer and has its peak in December and

anuary. As such the seasonal cycle in vertical advective fluxes dif-

ers from the diagnosed seasonal cycle in frontogenesis and Ekman

uoyancy fluxes. The lower panels in Fig. 19 show the vertical pro-

les of w′b′ and show that the most intense vertical fluxes occur in

ecember, when the mean mixed layer is just 55 m deep. This is the

ame time period that the slope of the surface velocity power spec-

ral density arrives at its winter value close to −2 (Fig. 8). There are

egative vertical buoyancy fluxes below the mean mixed layer

hroughout the year. An initial hypothesis is that the negative ver-

ical buoyancy fluxes arise due to the spatial structure of the wind

orcing employed. However, the negative vertical buoyancy fluxes are

resent if the model is forced only with the uniform zonal wind after

t has been spun up and so the spatial structure of the wind forcing

an be ruled out as the cause of the negative buoyancy fluxes. These
egative buoyancy fluxes appear to be associated with regions of neg-

tive potential vorticity and are investigated further in a forthcoming

aper.

The analysis in Section 4.3 shows that up to 30% of the mixed

ayer experiences negative potential vorticity during the winter. Thus

he majority of the mixed layer has positive potential vorticity and

o mixed layer baroclinic instabilities are expected to be the domi-

ant component of the vertical advective fluxes (Bachman and Fox-

emper, 2013; Boccaletti et al., 2007; Brüggemann and Eden, 2014;

ox-Kemper et al., 2008; Molemaker et al., 2005; Skyllingstad and

amelson, 2012; Stone, 1966). The importance of these instabilities

an be estimated through the seasonal cycle by scaling the potential

nergy available for release. We employ the central concept of the

ox-Kemper et al. (2008) parameterisation by estimating the magni-

ude of the available potential energy

PE = H2|∇hb|, (4.6)

here H is the mixed layer depth. This is shown in Fig. 19 (top panel)

here the seasonal cycle in APE is somewhat different than that of

he vertical buoyancy fluxes, as the vertical buoyancy fluxes peak

arlier in winter than the APE. The peak in vertical buoyancy fluxes

efore the peak in APE could reflect other factors such as the ef-

ect of strain on the growth of baroclinic instability (Bishop, 1993;

cWilliams and Molemaker, 2011; Spall, 1997), as some of the high-

st APE is found in the confluence region between mesoscale eddies

here the fronts do not have meanders indicative of baroclinic waves.

n example of this is the straight front that runs along y = 75 km

n the lower-left panel of Fig. 5. Flow curvature could also affect the

rowth of baroclinic eddies, as the APE metric is high in and around

yclonic eddies, where again there is limited evidence that baroclinic

nstability occurring, for example around the cyclonic eddy centred

t (250 km, 40 km) in the lower-right panel of Fig. 5.
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Fig. 19. The available potential energy and the mean vertical advective buoyancy flux w′b′ over the fifth year of the simulations. (Upper panel) The mean available potential energy

in the mixed layer APE = H2|∇hb| at 12 h intervals, where H is the mixed layer depth. (Second panel) The flux integrated over the mean mixed layer with a colour scheme as for

Fig. 4. (Lower panels) The vertical profile of the mean vertical advective fluxes at the resolution indicated. The vertical flux is averaged by model level and in six-hour intervals

online. The black line in the lower panels shows the mean mixed layer depth at that time.
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5. Discussion

The results of a series of multi-year simulations in a domain

analogous to the mid-latitude open ocean show a significant sea-

sonal cycle in submesoscale flows and this seasonal cycle becomes

more pronounced as the resolution is made finer. The slopes of

horizontal spectra of SST and surface velocity are steep in sum-

mer when the mixed layer is less than 20 m deep and then

rapidly become shallower as the mixed layer deepens. The shal-

lowing of the velocity spectra stops when the mixed layer is

just 40 m deep, suggesting that the dynamical regime reflected

by this shallower slope does not require particularly deep mixed

layers.

The simulations also vary across the range of resolutions. As the

resolution is increased, sharper fronts emerge and the residual mo-

mentum balance of the flow includes a larger contribution from ad-

vective and rapidly-developing motions. Processes at ocean fronts

including frontogenesis and Ekman buoyancy fluxes are found to

strengthen as the resolution is made finer. The prevalence of negative

potential vorticity does not increase monotonically with resolution,

but instead depends on the flow configuration at a given time. The

stronger frontogenetical processes lead to more available potential

energy as the resolution is made finer and stronger advective vertical

buoyancy fluxes in winter.

Both available potential energy and vertical buoyancy fluxes in the

mixed layer are stronger in winter and so we conclude that overturn-

ing instabilities such as baroclinic instability or symmetric instability

are the primary driver of these vertical buoyancy fluxes, rather than

the fluxes associated with frontogenesis or Ekman pumping. Mixed

layer vertical buoyancy fluxes peak in mid-winter, while the avail-

able potential energy peaks in late winter. This may reflect other fac-

tors such as strain, vorticity or curvature (Bishop, 1993; McWilliams

and Molemaker, 2011; Spall, 1997; Thomas, 2012) that affect stability

in addition to horizontal buoyancy gradients. The different seasonal

cycles between the vertical buoyancy fluxes and frontogenesis sug-

gests that the balance between frontogenesis and mixed layer baro-

clinic instabilities (e.g. McWilliams and Molemaker, 2011) may be

quite sensitive to the vertical scale height with frontogenesis stronger

when the mixed layer is shallow and baroclinic instabilities stronger

as the mixed layer deepens for a given horizontal buoyancy gradient

and strain.
Recent numerical and observational studies also find that the

pectral slope of velocity in the mixed layer shallows in winter

Callies et al., 2015; Mensa et al., 2013; Sasaki et al., 2014). These

tudies interpret this result as the consequence of frontogenesis and

ixed layer baroclinic instabilities considered by Boccaletti et al.

2007). However, the results in Section 4.3 show that 30% of the

ixed layer volume has negative potential vorticity and is therefore

ost unstable to symmetric instability. As such, it is possible that

he submesoscale length range is energised by symmetric instabil-

ty in addition to baroclinic instability and frontogenesis. Extensive

ymmetric instability could have implications for describing mixed

ayer flows in terms of quasi-geostrophic or surface quasi-geostrophic

odels, as the flow associated with symmetric instability is unbal-

nced (Stone, 1966) and so cannot be captured by theories based on

alanced dynamics in their standard forms.

The question of convergence of the simulations over this range

f resolutions remains open. The similar seasonal cycle in spectral

lopes in the three finer resolution cases can be used to argue for

onvergence, as per Capet et al. (2008a). However, the diagnosed sub-

esoscale processes continue to become stronger as the resolution is

ade finer and the mean stratification profile varies throughout the

ange of resolutions employed in Fig. 4. Furthermore, Bachman and

aylor (2014) show that the degree to which symmetric instability is

esolved changes markedly over this range of resolutions and so this

lso affects the subsequent development of stratification as the res-

lution is refined. The inclusion of surface waves and Langmuir tur-

ulence also significantly affects the vertical fluxes and stratification

Hamlington et al., 2014; Haney et al., Subm. to JPO).

The results show that some departures from geostrophic balance

re found in the domain. In particular, there is a departure from

eostrophy in the mixed layer of the large vortices where non-linear

ffects due to the centripetal acceleration should also be taken into

ccount, in agreement with the results of Douglass and Richman

2015). The model solutions also show that the momentum balance

n the mixed layer includes a component due to the vertical diffu-

ion of momentum, though a more accurate description requires tak-

ng into account the physics of the unresolved processes (Hamlington

t al., 2014; McWilliams and Fox-Kemper, 2013; Taylor and Ferrari,

010).

There are of course a number of limitations to this study in ad-

ition to those discussed above such as the artificial structure of the
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ind forcing. The grid resolutions employed require the use of a ver-

ical mixed layer parameterisation and so important effects like the

onvective layer depth (Taylor and Ferrari, 2010; Thomas et al., 2013),

nteraction with small-scale turbulence (Skyllingstad and Samelson,

012), or surface wave effects (Hamlington et al., 2014; Haney et al.,

ubm. to JPO; McWilliams and Fox-Kemper, 2013) could not be ex-

lored. The surface boundary conditions are imposed and so do not

llow SST anomalies to generate differential air-sea fluxes. In addi-

ion, it is often the case that the the internal wave field in such model

tudies is less energetic than in the real ocean (Shcherbina et al.,

013), due to the wind forcing being sub-inertial and the lack of tides

nd topography (Callies and Ferrari, 2013). The contribution of the

ime derivative terms to the residual balance shows, however, that in-

ernal waves are generated due to unbalanced motions (Shakespeare

nd Taylor, 2013).

To follow on from this work, the presence of submesoscale fil-

ments inside mesoscale vortices will be examined in more detail

Brannigan, in prep.). The development of stratification in the model

s the resolution varies will also be investigated to illustrate why a

eeper mixed layer develops at finer resolution. These predictions

ill also be tested with the OSMOSIS mooring array from the North

tlantic.

cknowledgements

This work forms part of the OSMOSIS project funded by the

atural Environment Research Council (grant no. NE/I019921/1). We

hank David Munday for assistance with running the experiment.

he responses of Baylor Fox-Kemper and two anonymous reviewers

ave greatly improved the manuscript along with helpful comments

rom Andy Thompson, Ayah Lazar, Andy Hogg, Joern Callies and our

olleagues in the OSMOSIS consortium. This work used the ARCHER

K National Supercomputing Service.

upplementary material

Supplementary material associated with this article can be found,

n the online version, at 10.1016/j.ocemod.2015.05.002

eferences

rbic, B.K., Scott, R.B., 2008. On quadratic bottom drag, geostrophic turbulence, and
oceanic mesoscale eddies. J. Phys. Oceanogr. 38 (1), 84–103.

achman, S., Fox-Kemper, B., 2013. Eddy parameterization challenge suite I:
eady spindown. Ocean Modell. 64, 12–28. doi:10.1016/j.ocemod.2012.12.003.

http://linkinghub.elsevier.com/retrieve/pii/S1463500312001801

achman, S., Taylor, J., 2014. Modelling of partially-resolved oceanic symmet-
ric instability. Ocean Modell. 82, 15–27. doi:10.1016/j.ocemod.2014.07.006.

http://linkinghub.elsevier.com/retrieve/pii/S1463500314000961
elcher, S.E., Grant, A.L., Hanley, K.E., Fox-Kemper, B., Van Roekel, L., Sullivan, P.P.,

Large, W.G., Brown, A., Hines, A., Calvert, D., 2012. A global perspective on lang-
muir turbulence in the ocean surface boundary layer. Geophys. Res. Lett. 39 (18).

erry, D.I., Kent, E.C., 2009. A new air-sea interaction gridded dataset from icoads with

uncertainty estimates. Bull. Am. Meteorol. Soc. 90 (5), 645–656.
ishop, C.H., 1993. On the behaviour of baroclinic waves undergoing horizontal defor-

mation. II: error [U+2010] blind amplification and Rossy wave diagnostics. Q.J.R.
Meteorol. Soc. 119 (510), 241–267.

occaletti, G., Ferrari, R., Fox-Kemper, B., 2007. Mixed layer instabilities and
restratification. J. Phys. Oceanogr. 37 (9), 2228–2250. doi:10.1175/JPO3101.1.

http://journals.ametsoc.org/doi/abs/10.1175/JPO3101.1

rannigan, L., Intense upwelling in mesoscale eddies. in prep.
rüggemann, N., Eden, C., 2014. Evaluating different parameterizations for mixed layer

eddy fluxes induced by baroclinic instability. J. Phys. Oceanogr. 44 (9), 2524–2546.
allies, J., Ferrari, R., 2013. Interpreting energy and tracer spectra of upper-ocean turbu-

lence in the submesoscale range (1200 km). J. Phys. Oceanogr. 43 (11), 2456–2474.
allies, J., Ferrari, R., Klymak, J.M., Mol, 2015. Seasonality in submesoscale turbulence.

Nat. Commun. In press.

apet, X., McWilliams, J., Molemaker, M., Shchepetkin, A., 2008a. Mesoscale to subme-
soscale transition in the California current system. Part I: flow structure, eddy flux,

and observational tests. J. Phys. Oceanogr. 38 (1), 29–43.
apet, X., McWilliams, J., Molemaker, M., Shchepetkin, A., 2008b. Mesoscale to subme-

soscale transition in the California current system. Part II: frontal processes. J. Phys.
Oceanogr. 38 (1), 44–64.
apet, X., McWilliams, J., Molemaker, M., Shchepetkin, A., 2008c. Mesoscale to subme-
soscale transition in the California current system. Part III: energy balance and flux.

J. Phys. Oceanogr. 38 (10), 2256–2269.
ale, A.C., Barth, J.A., Levine, M.D., Austin, J.A., 2008. Observations of mixed layer re-

stratification by onshore surface transport following wind reversal in a coastal
upwelling region. J. Geophys. Res. 113 (C1), C01010. doi:10.1029/2007JC004128.

http://doi.wiley.com/10.1029/2007JC004128
amerell, G.M., Heywood, K.J., Binetti, U., Kaiser, J., Thompson, A.F., in prep. for Geo-

phys.Res.Lett.Upper ocean variability at the Porcupine Abyssal Plain time series

site during 2012–2013.
’Asaro, E., Lee, C., Rainville, L., Harcourt, R., Thomas, L., 2011. Enhanced turbulence and

energy dissipation at ocean fronts. Science 332 (6027), 318–322.
ouglass, E.M., Richman, J.G., 2015. Analysis of ageostrophy in strong surface

eddies in the atlantic ocean. J. Geophys. Res. Oceans 120 (3), 1490–1507.
http://dx.doi.org/10.1002/2014JC010350

ox-Kemper, B., Ferrari, R., Hallberg, R., 2008. Parameterization of mixed layer

Eddies. Part I: theory and diagnosis. J. Phys. Oceanogr. 38 (6), 1145–1165.
doi:10.1175/2007JPO3792.1. http://journals.ametsoc.org/doi/abs/10.1175/

2007JPO3792.1
ox-Kemper, B., Menemenlis, D., 2013. Can large eddy simulation techniques improve

mesoscale rich ocean models? In: Ocean Modeling in an Eddying Regime. Ameri-
can Geophysical Union, pp. 319–337. http://dx.doi.org/10.1029/177GM19.

raham, J.P., Ringler, T., 2013. A framework for the evaluation of turbulence closures

used in mesoscale ocean large-eddy simulations. Ocean Modell 65, 25–39.
rant, A.L.M., Belcher, S.E., 2009. Characteristics of Langmuir turbulence in the ocean

mixed layer. J. Phys. Oceanogr. 39 (8), 1871–1887. doi:10.1175/2009JPO4119.1.
http://journals.ametsoc.org/doi/abs/10.1175/2009JPO4119.1

riffies, S.M., Hallberg, R.W., 2000. Biharmonic friction with a Smagorinsky-like vis-
cosity for use in large-scale eddy-permitting ocean models. Mon. Weather Rev. 128

(8), 2935–2946.

ula, J., Molemaker, M.J., McWilliams, J.C., 2014. Submesoscale cold filaments in the
gulf stream. J. Phys. Oceanogr. 44 (10), 2617–2643. doi:10.1175/JPO-D-14-0029.1.

http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-14-0029.1
aine, T.W.N., Marshall, J., 1998. Gravitational, symmetric, and baroclinic instability of

the ocean mixed layer. J. Phys. Oceanogr. 28 (4), 634–658.
amlington, P.E., Van Roekel, L.P., Fox-Kemper, B., Julien, K., Chini, G.P., 2014. Langmuir-

submesoscale interactions: descriptive analysis of multiscale frontal spindown

simulations. J. Phys. Oceanogr. 44 (9), 2249–2272. doi:10.1175/JPO-D-13-0139.1.
http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-13-0139.1

aney, S., Bachman, S., Cooper, B., Kupper, S., McCaffrey, K., Van Roekel, L., Stevenson, S.,
Fox-Kemper, B., Ferrari, R., 2012. Hurricane wake restratification rates of one-, two-

and three-dimensional processes. J. Mar. Res. 70 (6), 824–850.
aney, S., Fox-Kemper, B., Julien, K., Webb, A., Subm. to JPO. Symmetric and

Geostrophic Instabilities in the Wave-Forced Ocean Mixed Layer.

ill, C., Ferreira, D., Campin, J.-M., Marshall, J., Abernathey, R., Barrier, N., 2012. Control-
ling spurious diapycnal mixing in eddy-resolving height-coordinate ocean models

- Insights from virtual deliberate tracer release experiments. Ocean Modell. 45-46,
14–26.

osegood, P., Gregg, M.C., Alford, M.H., 2006. Sub-mesoscale lateral density struc-
ture in the oceanic surface mixed layer. Geophys. Res. Lett. 33 (22), L22604.

doi:10.1029/2006GL026797. http://doi.wiley.com/10.1029/2006GL026797
oskins, B.J., Bretherton, 1972. Atmospheric frontogenesis models - Mathematical for-

mulation and solution. J. Atmos. Sci. 29 (1), 11–37.

licak, M., Adcroft, A.J., Griffies, S.M., Hallberg, R.W., 2012. Spurious dianeutral mixing
and the role of momentum closure. Ocean Modell. 45-46, 37–58.

oszalka, I., Bracco, A., McWilliams, J.C., Provenzale, A., 2009. Dynamics of wind-
forced coherent anticyclones in the open ocean. J. Geophys. Res. 114 (C8), C08011.

doi:10.1029/2009JC005388. http://doi.wiley.com/10.1029/2009JC005388
apeyre, G., Klein, P., Hua, B.L., 2006. Oceanic restratification forced by surface fronto-

genesis. J. Phys. Oceanogr. 36 (8), 1577–1590.

arge, W.G., McWilliams, J.C., Doney, S.C., 1994. Oceanic vertical mixing - a review and
a model with a nonlocal boundary-layer parameterization. Rev. Geophys. 32 (4),

363–403.
eith, C.E., 1996. Stochastic models of chaotic systems. Physica D 98 (2-4), 481–491.

évy, M., Klein, P., Tréguier, a.-M., Iovino, D., Madec, G., Masson, S., Takahashi, K.,
2010. Modifications of gyre circulation by sub-mesoscale physics. Ocean Modell.

34 (1-2), 1–15. doi:10.1016/j.ocemod.2010.04.001. http://linkinghub.elsevier.com/

retrieve/pii/S1463500310000582
ahadevan, A., 2006. Modeling vertical motion at ocean fronts: are nonhydrostatic

effects relevant at submesoscales? Ocean Modell. 14 (3-4), 222–240.
ahadevan, A., Tandon, A., Ferrari, R., 2010. Rapid changes in mixed layer stratifica-

tion driven by submesoscale instabilities and winds. J. Geophys. Res. Oceans 115,
C03017.

arshall, J., Adcroft, A., Hill, C., Perelman, L., Heisey, C., 1997. A finite-volume, incom-

pressible Navier stokes model for studies of the ocean on parallel computers. J.
Geophys. Res. Oceans 102 (C3), 5753–5766.

arshall, J., Schott, F., 1999. Open ocean convection: observations, theory, and models.
Rev. Geophys. 37 (1), 1–64.

cWilliams, J.C., Fox-Kemper, B., 2013. Oceanic wave-balanced surface fronts and fila-
ments. J. Fluid Mech. 730, 464–490.

cWilliams, J.C., Molemaker, M.J., 2011. Baroclinic frontal arrest: a sequel to unsta-

ble frontogenesis. J. Phys. Oceanogr. 41 (3), 601–619. doi:10.1175/2010JPO4493.1.
http://journals.ametsoc.org/doi/abs/10.1175/2010JPO4493.1

ensa, J.A., Garraffo, Z., Griffa, A., Özgökmen, T.M., Haza, A., Veneziani, M.,
2013. Seasonality of the submesoscale dynamics in the Gulf stream region.

Ocean Dyn. 63 (8), 923–941. doi:10.1007/s10236-013-0633-1. http://link.springer.
com/10.1007/s10236-013-0633-1

http://dx.doi.org/10.13039/501100000270
http://dx.doi.org/10.1016/j.ocemod.2015.05.002
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0001
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0001
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0001
http://dx.doi.org/10.1016/j.ocemod.2012.12.003
http://linkinghub.elsevier.com/retrieve/pii/S1463500312001801
http://dx.doi.org/10.1016/j.ocemod.2014.07.006
http://linkinghub.elsevier.com/retrieve/pii/S1463500314000961
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0004
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0004
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0004
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0004
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0004
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0004
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0004
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0004
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0004
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0004
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0004
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0005
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0005
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0005
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0006
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0006
http://dx.doi.org/10.1175/JPO3101.1
http://journals.ametsoc.org/doi/abs/10.1175/JPO3101.1
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0008
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0008
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0008
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0009
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0009
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0009
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0010
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0010
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0010
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0010
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0010
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0011
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0011
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0011
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0011
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0011
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0012
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0012
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0012
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0012
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0012
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0013
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0013
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0013
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0013
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0013
http://dx.doi.org/10.1029/2007JC004128
http://doi.wiley.com/10.1029/2007JC004128
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0015
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0015
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0015
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0015
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0015
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0015
http://dx.doi.org/10.1002/2014JC010350
http://dx.doi.org/10.1175/2007JPO3792.1
http://journals.ametsoc.org/doi/abs/10.1175/2007JPO3792.1
http://dx.doi.org/10.1029/177GM19
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0019
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0019
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0019
http://dx.doi.org/10.1175/2009JPO4119.1
http://journals.ametsoc.org/doi/abs/10.1175/2009JPO4119.1
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0021
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0021
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0021
http://dx.doi.org/10.1175/JPO-D-14-0029.1
http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-14-0029.1
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0023
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0023
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0023
http://dx.doi.org/10.1175/JPO-D-13-0139.1
http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-13-0139.1
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0025
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0025
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0025
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0025
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0025
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0025
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0025
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0025
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0025
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0025
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0026
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0026
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0026
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0026
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0026
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0026
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0026
http://dx.doi.org/10.1029/2006GL026797
http://doi.wiley.com/10.1029/2006GL026797
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0028
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0028
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0028
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0029
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0029
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0029
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0029
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0029
http://dx.doi.org/10.1029/2009JC005388
http://doi.wiley.com/10.1029/2009JC005388
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0031
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0031
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0031
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0031
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0032
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0032
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0032
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0032
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0033
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0033
http://dx.doi.org/10.1016/j.ocemod.2010.04.001
http://linkinghub.elsevier.com/retrieve/pii/S1463500310000582
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0035
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0035
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0036
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0036
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0036
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0036
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0037
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0037
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0037
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0037
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0037
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0037
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0038
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0038
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0038
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0039
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0039
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0039
http://dx.doi.org/10.1175/2010JPO4493.1
http://journals.ametsoc.org/doi/abs/10.1175/2010JPO4493.1
http://dx.doi.org/10.1007/s10236-013-0633-1
http://link.springer.com/10.1007/s10236-013-0633-1


84 L. Brannigan et al. / Ocean Modelling 92 (2015) 69–84

S

S

S

S

T

T

T

T

T

T

T

T

Molemaker, M.J., McWilliams, J.C., Yavneh, I., 2005. Baroclinic instability and loss of
balance. J. Phys. Oceanogr. 35 (9), 1505–1517.

Nastrom, G., Gage, K.S., 1985. A climatology of atmospheric wavenumber spectra of
wind and temperature observed by commercial aircraft. J. Atmos. Sci. 42 (9), 950–

960.
Nurser, A.J.G., Zhang, J.W., 2000. Eddy-induced mixed layer shallowing and

mixed layer/thermocline exchange. J. Geophys. Res. 105 (C9), 21851–21868.
http://dx.doi.org/10.1029/2000JC900018

Painter, S.C., Pidcock, R.E., Allen, J.T., 2010. A mesoscale eddy driving spatial and tempo-

ral heterogeneity in the productivity of the euphotic zone of the northeast Atlantic.
Deep Sea Res. Part II: Top. Stud. Oceanogr. 57 (15), 1281–1292.

Prather, M.J., 1986. Numerical advection by conservation of second order moments. J.
Geophys. Res.: Atmos. (1984–2012) 91 (D6), 6671–6681.

Price, J.F., Weller, R.A., Pinkel, R., 1986. Diurnal cycling - observations and models of the
upper ocean response to Diurnal heating, cooling, and wind mixing. J. Geophys.

Res. Oceans 91 (C7), 8411–8427.

Ramachandran, S., Tandon, A., Mahadevan, A., 2013. Effect of subgrid-scale mixing on
the evolution of forced submesoscale instabilities. Ocean Modell. 66, 45–63.

Samelson, R.M., 1993. Linear instability of a mixed-layer front. J. Geophys. Res. 98 (C6),
10195–10204. http://dx.doi.org/10.1029/93JC00457

Sasaki, H., Klein, P., Qiu, B., Sasai, Y., 2014. Impact of oceanic-scale interactions on
the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun. 5.

http://dx.doi.org/10.1038/ncomms6636

Shakespeare, C.J., Taylor, J.R., 2013. A generalised mathematical model of geostrophic
adjustment and frontogenesis: uniform potential vorticity. J. Fluid Mech. 736, 366–

413.
Shcherbina, A.Y., D’Asaro, E.A., Lee, C.M., Klymak, J.M., Molemaker, M.J.,

McWilliams, J.C., 2013. Statistics of vertical vorticity, divergence, and strain in a
developed submesoscale turbulence field. Geophys. Res. Lett. 40 (17), 4706–4711.

Skyllingstad, E.D., Samelson, R., 2012. Baroclinic frontal instabilities and turbulent mix-

ing in the surface boundary layer. Part I: unforced simulations. J. Phys. Oceanogr.
42 (10), 1701–1716.
magorinsky, J., 1963. General circulation experiments with the primitive equations: I.
The basic experiment. Mon.Weather Rev. 91 (3), 99–164.

pall, M.A., 1997. Baroclinic jets in confluent flow. J. Phys. Oceanogr. 27 (6), 1054–
1071.

tone, P.H., 1966. On non-geostrophic baroclinic stability. J. Atmos. Sci. 23 (4), 390–
400.

utherland, G., Christensen, K.H., Ward, B., 2014. Evaluating Langmuir turbulence pa-
rameterizations in the ocean surface boundary layer. J. Geophys. Res. Oceans 119

(3), 1899–1910.

andon, A., Garrett, C., 1994. Mixed-layer restratification due to a horizontal density
gradient. J. Phys. Oceanogr. 24 (6), 1419–1424.

aylor, J.R., Ferrari, R., 2010. Buoyancy and wind-driven convection at mixed layer
density fronts. J. Phys. Oceanogr. 40 (6), 1222–1242. doi:10.1175/2010JPO4365.1.

http://journals.ametsoc.org/doi/abs/10.1175/2010JPO4365.1
homas, L., Ferrari, R., 2008. Friction, frontogenesis, and the stratification of the sur-

face mixed layer. J. Phys. Oceanogr. 38 (11), 2501–2518. doi:10.1175/2008JPO3797.1.

http://journals.ametsoc.org/doi/abs/10.1175/2008JPO3797.1
homas, L.N., 2005. Destruction of potential vorticity by winds. J. Phys. Oceanogr. 35

(12), 2457–2466.
homas, L.N., 2012. On the effects of frontogenetic strain on symmetric instability

and inertia–gravity waves. J. Fluid Mech. 711, 620–640. doi:10.1017/jfm.2012.416.
http://www.journals.cambridge.org/abstract_S0022112012004168

homas, L.N., Taylor, J.R., 2010. Reduction of the usable wind-work on the gen-

eral circulation by forced symmetric instability. Geophys. Res. Lett. 37 (18).
doi:10.1029/2010GL044680. http://doi.wiley.com/10.1029/2010GL044680

homas, L.N., Taylor, J.R., Ferrari, R., Joyce, T.M., 2013. Symmetric instabil-
ity in the gulf stream. Deep Sea Res. Part II: Top. Stud. Oceanogr. 91,

96–110. doi:10.1016/j.dsr2.2013.02.025. http://linkinghub.elsevier.com/retrieve/
pii/S0967064513000829

homsen, S., Eden, C., Czeschel, L., 2013. Stability analysis of the labrador current. J.

Phys. Oceanogr. 44 (2), 445–463. doi:10.1175/JPO-D-13-0121.1.

http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0042
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0042
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0042
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0042
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0043
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0043
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0043
http://dx.doi.org/10.1029/2000JC900018
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0045
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0045
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0045
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0045
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0046
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0046
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0047
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0047
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0047
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0047
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0048
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0048
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0048
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0048
http://dx.doi.org/10.1029/93JC00457
http://dx.doi.org/10.1038/ncomms6636
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0051
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0051
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0051
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0052
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0052
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0052
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0052
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0052
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0052
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0052
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0053
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0053
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0053
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0054
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0054
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0055
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0055
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0056
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0056
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0057
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0057
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0057
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0057
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0058
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0058
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0058
http://dx.doi.org/10.1175/2010JPO4365.1
http://journals.ametsoc.org/doi/abs/10.1175/2010JPO4365.1
http://dx.doi.org/10.1175/2008JPO3797.1
http://journals.ametsoc.org/doi/abs/10.1175/2008JPO3797.1
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0061
http://refhub.elsevier.com/S1463-5003(15)00080-3/sbref0061
http://dx.doi.org/10.1017/jfm.2012.416
http://www.journals.cambridge.org/abstract_S0022112012004168
http://dx.doi.org/10.1029/2010GL044680
http://doi.wiley.com/10.1029/2010GL044680
http://dx.doi.org/10.1016/j.dsr2.2013.02.025
http://linkinghub.elsevier.com/retrieve/pii/S0967064513000829
http://dx.doi.org/10.1175/JPO-D-13-0121.1

	The seasonal cycle of submesoscale flows
	1 Introduction
	2 Experimental set-up
	2.1 Model domain
	2.2 Numerical configuration
	2.3 Boundary layer parameterisation
	2.4 Initial and boundary conditions
	2.5 Averaging operator

	3 Results
	3.1 Spin-up and inter-annual variability
	3.2 Vertical and horizontal buoyancy distributions
	3.3 Velocity field
	3.4 Momentum balance

	4 Frontal processes
	4.1 Frontogenesis
	4.2 Ekman buoyancy fluxes
	4.3 Instabilities of negative potential vorticity
	4.4 Vertical advective fluxes

	5 Discussion
	 Acknowledgements
	 Supplementary material
	 References


