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Abstract

In situ reflectance measurements and Landsat satellite imagery were com-

bined to develop an optical classification scheme for alkaline-saline lakes

in the Eastern Rift Valley. The classification allows the ecological state

and consequent value, in this case to Lesser Flamingos, to be determined

using Landsat satellite imagery. Lesser Flamingos depend on a network

of 15 alkaline-saline lakes in East African Rift Valley, where they feed by

filtering cyanobacteria and benthic diatoms from the lakes’ waters. The

classification developed here was based on a decision tree which used the re-

flectance in Landsat ETM+ bands 2–4 to assign one of six classes: low phy-

toplankton biomass; suspended sediment-dominated; microphytobenthos;

high cyanobacterial biomass; cyanobacterial scum and bleached cyanobac-

terial scum. The classification accuracy was 77% when verified against in
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situ measurements. Classified imagery and timeseries were produced for se-

lected lakes, which show the different ecological behaviours of these complex

systems. The results have highlighted the importance to flamingos of the

food resources offered by the extremely remote Lake Logipi. This study has

demonstrated the potential of high spatial resolution, low spectral resolution

sensors for providing ecologically valuable information at a regional scale,

for alkaline-saline lakes and similar hypereutrophic inland waters.

Keywords: Landsat, classification, alkaline-saline lakes, Lesser Flamingos,

cyanobacteria, benthic diatoms

1. Introduction

High spatial resolution satellite sensors, such as Landsat, can be used

for quantitative monitoring of water quality parameters in small inland wa-

ters (Brezonik et al., 2005; Vincent et al., 2004). Due to the broad spectral

bands of these sensors, the algorithms employed are typically empirical and

require tuning for each water body. This study explored an alternative ap-

proach which used the shape of the water-leaving reflectance to classify the

ecological states of lakes at a regional scale. This approach was applied

to alkaline-saline (soda) lakes in the East African Rift Valley. These lakes

support dense blooms of cyanobacteria and extensive areas of microphy-

tobenthos which are important food sources for Lesser Flamingos (Tuite,

2000). In East Africa, the flamingos’ survival depends on the food availabil-

ity throughout a network of 15 alkaline-saline lakes within the Eastern Rift

(Childress et al., 2008). Limited in situ data are available for these lakes due

to their remoteness; hence, remote sensing has potential as an alternative

method for monitoring.
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Alkaline-saline lakes undergo large fluctuations in water levels that im-

pact strongly on primary producers (Smol and Stoermer, 2010) and the

capacity of these lakes to support Lesser Flamingos. At high levels, the

shallower lakes can be relatively fresh and support single celled cyanobacte-

rial phytoplankton, which are too small to be filtered by flamingos (Vareschi,

1978), while at intermediate levels they support dense blooms of filamen-

tous cyanobacteria (primarily Arthrospia fusiformis; several hundred µg l−1;

Oduor and Schagerl, 2007b) which provide a rich supply of food for the

flamingos (Vareschi, 1978). Finally, when shallow, the lakes support mi-

crophytobenthos, providing a secondary food source for the flamingos Tuite

(2000). Hence, in terms of value to Lesser Flamingos, the lakes can exist

in different states. Often multiple states can occur within a single lake in

different areas.

Water-leaving reflectance spectra contain information about the optically-

active water constituents (Kirk, 1994), and hence, these signals can be ex-

ploited in order to infer lake ecological states. Previous studies have classi-

fied natural waters in terms of their optical properties (Jerlov, 1976; Case

I/Case II, Morel and Prieur, 1977), including the shape of the water-leaving

reflectance spectra (Lobo et al., 2012; Kutser et al., 2006; Kurekin et al.,

2014). Reflectance-based classifications have been used to inform algorithm

selection prior to water quality parameter retrieval (Li et al., 2012; Sun

et al., 2012; Shi et al., 2013; Liu et al., 2013). For hypereutrophic lakes,

the red and NIR bands of multispectral sensors have been used to classify

trophic status, by utilising the strong NIR peak which is characteristic of

these waters Matthews et al. (2012); Tebbs et al. (2013b).

A site-specific algorithm exists for quantifying cyanobacterial biomass

in Lake Bogoria, a key feeding lake for the flamingos (Tebbs et al., 2013b).
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However, the development of generic or customised algorithms for quantify-

ing primary producers in all soda lakes would be extremely challenging, due

to their optical complexity and a lack of sufficient in situ data. Hence, an

alternative approach was taken, to classify the functional states of the lakes

based on their spectral signatures. In situ data for selected alkaline-saline

lakes was used to determine the spectral characteristics of the different eco-

logical conditions and to develop a Landsat-based optical classification. In

situ reflectance and water parameter measurements were used to define five

reference classes for development and validation of the classification scheme.

Examination of Landsat imagery identified additional water types not rep-

resented by the in situ data and this information was also used to inform

the classification scheme development. The classification was applied to pro-

duce maps and timeseries for several Eastern Rift Valley lakes, showing the

spatial and temporal distribution of the different ecological states and the

Lesser Flamingo’s food supply.

2. Study Sites

In situ spectral reflectance and water parameter measurements were

made at alkaline-saline lakes in Kenya and Tanzania, including Bogoria,

Elmenteita, Nakuru, Natron and Oloidien (Fig. 1; Table 1). These lakes are

representative of the range of conditions found in soda lakes: Bogoria and

Oloidien are relatively deep and support dense cyanobacterial blooms, while

Elmenteita and Natron are shallow, typically supporting benthic diatoms,

and Nakuru has an intermediate water level.
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Figure 1: Map showing locations of the lakes within the East African Rift Valley. Un-
derlined lakes are alkaline-saline, the others are fresh. Lake Oloidien (not shown) is a
bay of Lake Naivasha which becomes separated at low water levels. The solid line shows
the border between Kenya and Tanzania, the dotted line shows the boundary of the Rift
Valley.
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Table 1: Summary of the alkaline–saline lakes sampled in this study.
Lake Location Depth

(m)
Max
Area
(km2)

Ecology References

Bogoria 0◦15′N
36◦06′E

10–12 34 Can support up to 1 million flamin-
gos feeding on dense A. fusiformis
blooms.

Harper et al.
(2003)

Nakuru 0◦22′S
36◦05′E

4.5 40 Shifts between state depending on
lake level. At times it has supported
most of the East African Lesser
Flamingo population, subsisting on
A. fusiformis blooms.

Vareschi (1978)

Elmenteita 0◦27′S
36◦15′E

3 20 Undergoes rapid changes in pri-
mary producers associated with
level changes. Epipelic diatoms typ-
ically dominate.

Melack (1988)

Oloidien 0◦48′S
36◦156′E

6 6 A bay of freshwater Lake Naivasha
at times of high water levels; when
separated, its salinity progressively
increases, and it begins to support
A. fusiformis.

Harper and
Mwinami (2006)

Natron 02◦25′S
36◦00′E

< 3 804 Sole breeding site for Lesser Flamin-
gos in East Africa. Feeding takes
place in shallow lagoons around the
lake margin.

Brown (1971)
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3. Method

3.1. In situ reflectance and water parameter measurements

Reflectance and water parameter measurements were collected at the

study lakes between 2010 and 2012. At lakes Bogoria, Nakuru and Oliodien,

spectral measurements were made from a boat using a GER1500 spectrora-

diometer. Water samples were collected and analysed for chlorophyll-a (Chl-

a), absorption by coloured dissolved organic matter at 440 nm (aCDOM (440)),

total suspended solids (TSS) and inorganic suspended solids (ISS). Secchi

disk depth was also recorded. At Lake Elmenteita and the shallow northern

lagoon at Lake Natron the reflectance of algal communities on bottom sed-

iments was measured using a GER1500 mounted on a tripod. Samples of

benthic microbial communities were collected using a Gilson corer. Samples

of the overlying water were also collected and analysed for Chl-a, aCDOM ,

TSS and ISS.

When collecting spectoradiometric data, a nadir viewing geometry was

used and upwelling radiance was measured between 400 nm and 950 nm. A

reference scan of a calibrated Spectralon reference panel was made between

each measurement and was used to convert absolute reflectance during post-

processing (Robinson and Arthur, 2012). The response of Landsat ETM+

was simulated by convolution of the in situ spectra and the spectral response

function of each band (Irish, 2000). Chl-a was extracted in 90% acetone after

gentle vacuum filtration and followed by manual grinding of the filter paper.

Using a spectrophotometer, the absorbance at 663 nm and 750 nm was

measured and the Chl-a concentration was calculated (Talling and Driver,

1963). Full details of the procedures used for water parameter and spectral

measurements can be found in Tebbs et al. (2013b).

3.2. Landsat ETM+ satellite imagery

Landsat ETM+ images for the lakes were downloaded from the USGS

Global Visualization Viewer, http://glovis.usgs.gov/, for the period 1999–

2012. The images were processed using ENVI+IDL software. Radiometric

calibration to top-of-atmosphere radiance, LTOA, was performed (Chander
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et al., 2009). After May 2003 the Scan Line Corrector on Landsat 7 failed

and, as a result, affected ETM+ images contain lines of missing data. These

gaps were filled using simple spatial linear interpolation.

3.3. Development of the classification

A decision tree (DT) based classification was developed by combining in-

sights gained from in situ measurements and satellite image interpretation

with knowledge from the literature. In situ spectral and water parameter

measurements were used to define a set of five classes, ‘Low biomass’, ‘Sedi-

ment’, ‘Scum’, ‘Microphytobenthos’ and ‘High biomass’, which had distinct

spectral features that would aid their discrimination in Landsat imagery.

Each of the in situ measured spectra was assigned to one of these reference

classes based on water quality parameter measurements and other in situ

observations. For most sites the measured Chl-a was used to assign the

class (‘Low biomass’: Chl-a < 100 µg l−1; ‘High biomass’: 100 < Chl-a <

800 µg l−1; or ‘Scum’: Chl-a > 800 µg l−1). For sites where Chl-a was not

available, visual observations, microscopy and other water parameter mea-

surements were used to infer the class. For further details on the assignment

of the reference classes, and for descriptions of the observed hyperspectral

reflectance spectra, see Tebbs (2014). The in situ spectra re-sampled to

Landsat bands were then sorted according to these reference classes and

used for classification development and validation. Atmospherically cor-

rected Landsat imagery was used to retrieve spectral information for classes

that were not well represented by the in situ data. For development of the

DT, the reflectance in the visible and NIR bands of Landsat ETM+ were

considered. Landsat ETM+ short wave infrared bands were not considered

since water-leaving reflectance is negligible at these wavelengths (Shi and

Wang, 2009).

3.4. Atmospheric correction

Images were converted to surface reflectance by applying a Dark Ob-

ject Subtraction - Cosine of the solar zenith angle (DOS-COST) method

8



(Chavez, 1996). The atmospheric path radiance, Lhaze, was estimate using

the method from Chavez (1988):

Lhaze,λ = Lhaze,0(λ/λ0)
−α (1)

where λ and λ0 are the central wavelengths of the spectral bands and

α is the Angström coefficient which describes the wavelength dependence.

Lhaze,0 is estimated from the lowest pixel radiance in the starting haze band,

assuming a constant level of haze across the image. α was estimated using a

regression of ln(λ/λ0) versus ln(Lhaze,λ/Lhaze,0) for image bands 1 to 3 (for

further details see Tebbs, 2014).

3.5. Production of classified maps and timeseries

The DT was applied to atmospherically corrected Landsat ETM+ im-

agery to produce classified maps. For each image, the surrounding land

surface was masked out using the Modified Normalised Difference Water In-

dex (MNDWI = (Green − SWIR)/(Green + SWIR); Xu, 2006) applied

to atmospherically corrected imagery. Timeseries were produced to show

variation in the ecological classes present in selected lakes over time.

4. Results

4.1. Limnological conditions

A wide variety of water types were observed at the lakes sampled, as

summarised in Table 2.
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Table 2: Summary of mean water parameter values observed at the study lakes. Water quality parameters are quoted as mean ±
standard deviation.

Lake Dates Chl-a aCDOM (440) TSS ISS Secchi Dominant primary producers
(µg l−1) (m−1) (mg l−1) (mg l−1) (cm)

Bogoria Apr 2010 901 ± 971 15 ± 3 54 ± 39 10 ± 7 14 ± 5 A. fusifomis

Apr 2012 272 ± 93 - - - 35 ± 6 A. fusiformis (unhealthy state)

Oloidien Mar–Apr
2011

265 ± 93 12.3 ± 1.5 59 ± 96 0.007 ± 1 19 ± 4 Filamentous cyanobacteria, either An-
abaenopsis elenkinii or a small sized eco-
type of A. fusiformis (V. Robinson pers.
com.)

Nakuru Apr 2012 172 ± 25 - - - 22 ± 1 Single celled, non-vacuolate Synechococ-
cus (V. Robinson pers. com.)

Elmenteita Apr 2010 65 ± 72 - - - - Site 1: A. fusiformis; Site 2: benthic
diatoms.

Mar 2011 215 ± 176 14 ± 4 127 ± 82 60 ± 65 20 ± 3 Small diatoms.

Natron
northern
lagoon

Apr 2011 - 34 ± 5 2300 ±
900

2000 ± 900 - Microphytobenthos

10



4.2. Development of an optical classification scheme

4.2.1. Insights gained from in situ data

In situ spectra were re-sampled to Landsat ETM+ bands, sorted accord-

ing to the reference classes (Fig. 2) and used to identify spectral features

characteristic of particular ecological states. The re-sampled in situ spec-

tra exhibited a large amount of variability in shape and magnitude (Fig.

2). For low biomass waters, all bands showed very low reflectance with the

highest magnitude typically being seen at R560 (Fig. 2.A). The sediment

spectra either peaked at R662 or increased in magnitude towards longer

wavelengths. The spectra for high cyanobacterial biomass exhibited a peak

at R560, a minima at R662 and a high reflectance in the NIR band, R835.

A similar spectral shape was observed for cyanobacterial scum, but with

much higher NIR reflectance. Finally, for sites where microphytobenthos

was observed the magnitude increased gradually, from one band to the next,

towards longer wavelengths. Hence, the spectral shapes observed for sedi-

ment and microphytobenthos were very similar. The key difference was that

for microphytobenthos R662/R560 was less than R835/R662, due to the Chl-a

absorption feature at 670 nm.

4.2.2. Insights gained from examination of Landsat imagery

Examination of the Landsat satellite imagery showed that some classes

were poorly represented by or completely absent from the in situ dataset.

In September 2004, a collapse of the A. fusiformis bloom took place

in Lake Bogoria (Oduor and Schagerl, 2007b; Tebbs et al., 2013a). It is

likely that, at this time, the lake was dominated by the decay products of

A. fusiformis (Tebbs et al., 2013b). The detritus present in the lake caused

the lake spectra to peak at R662 (Fig. 3.D), giving a spectral shape similar

to sediment but with a lower magnitude. Therefore, a R835 threshold was

added to distinguish these pixels from sediment.

Areas of bleached scum were identified in true colour imagery of Lake

Bogoria, based on their green/white colour and their complex spatial struc-

ture. Although bleached scum was not observed at L. Bogoria during this

study, it has been observed there on several previous occasions (pers. obs.).
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Figure 2: In situ reflectance spectra resampled to Landsat ETM+ bands, sorted into the
following classes based on in situ water parameter measurements: ‘Low biomass’ (panel
A); ‘Sediment’ (panel B); ‘Scum’ (panel C); ‘Microphytobenthos’ (panel D) and ‘High
biomass’ (panel E).
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Prolonged UV exposure of the surface layer of cells degrades photosynthetic

pigments, reducing absorption in the visible, and breaks down cell structure,

reducing scattering in the NIR. Hence, these bleached scum areas had a sim-

ilar spectral shape to low biomass waters but with higher reflectance in all

bands, particularly at R560 (Fig. 3.B). Therefore, a threshold of R560 > 0.65

was applied to separate bleached scum from areas of low biomass. Areas of

advanced bleached scum, which has started to turn brown, were also ob-

served in the imagery. The spectra of these areas peaked at R662 (Fig.

3.C). An additional rule was added, based on the ratio R560/R835, to sepa-

rate advanced bleached scum from sediment. Bleached scum and advanced

bleached scum were spectrally separable but ecologically they have the same

significance so they were grouped together as a single ‘bleached scum’ class.

4.2.3. Insights gained from the literature

The rule for differentiating scum from other classes was developed using

the scum threshold (Chl-a > 800 µg l−1) and the bottom-of-atmosphere

reflectance based Chl-a algorithm for Lake Bogoria derived in Tebbs et al.

(2013b):

Chl-a = 26 + 190(R835/R662)

From this it follows that spectra with R835/R662 > 4.07 should be classed

as scum.

4.2.4. Decision tree

Based on these observations a DT was developed (Appendix A, Fig.

A.1), which was able to distinguish six classes (Table 3). Each of the rules

in the DT has a bio-physical basis.

4.3. Verification of the decision tree

To assess the suitability of the DT the re-sampled in situ spectra were

classified using the DT. The classification was then verified by comparing

the predicted classes with the reference classes (Table 4). Since no bleached

scum was observed in situ, initially the verification was carried out using DT

shown in Fig A.1, but with the rule identifying bleached scum left out (initial

13
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Figure 3: Reflectance spectra captured from atmospherically corrected Landsat ETM+
imagery for water types not represented by the in situ spectral library, including sediment
(panel A), bleached scum (panel B), heavily bleached scum (panel C) and detritus (panel
D).
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Table 3: Final classification of optical water classes using in situ and Landsat data.

Class Characteristics Alternative interpreta-
tion

Value to flamingos

1 Low biomass Non-vacuolate phyto-
plankton or detritus

None

2 Sediment - None
3 Scum - Low
4 Bleached scum Sediment None
5 Microphytobenthos Mixed sediment and

high biomass
Moderate

6 High biomass - High

Table 4: Confusion matrix for the initial DT. Note that the initial DT did not include
class 4 as there was no in situ data available for this class.

Landsat based classification

Class 1 2 3 4 5 Total Accuracy (%)

Reference data

1 6 1 2 9 67
2 12 4 16 75
3 5 3 8 63
4 - - - - - - -
5 3 16 1 20 80
6 8 6 55 69 80
Total 14 16 5 26 61 122
Accuracy (%) 43 75 100 62 90

DT). The overall classification accuracy was 77%. Much of the disagreement

between the predicted and reference classes is believed to be due to the

difficulties in correctly assigning the reference classes to the in situ spectra,

as described in Tebbs (2014), rather than failure of the classification scheme.

Verification was also carried out on the final DT, including the rule for

distinguishing bleached scum. The addition of this rule had little effect on

the classification result, except that the classification of two scum spectra

changed to bleached scum.

4.4. Application of the classification scheme to Landsat ETM+ imagery

The DT was used to produce classified maps for lakes where in situ

measurements were collected, and also for Lake Logipi due to its potential

15



importance to Lesser Flamingos (Fig. 4).

The classified maps of Lake Bogoria agreed extremely well with visual

observation of RGB true colour imagery (Fig.4.A). They appeared to accu-

rately delineate areas of scum, bleached scum and sediment. The success

of the classification scheme for Bogoria was aided by the relative simplicity

of the lake, the existing knowledge of its optical properties (Tebbs et al.,

2013b) and local knowledge which was available for identifying the presence

of bleached scum in the satellite imagery.

The classified maps for Lake Nakuru gave very good agreement with the

RGB imagery (Fig.4.B). The classification picked out areas of cyanobacterial

scum and small plumes of sediment and low biomass waters originating from

the main river inflows. It also identified bands of microphytobenthos close

to the lake edge.

For Lake Elmenteita, most classified maps gave reasonable agreement

with the RGB imagery (Fig.4.C). However, on some occasions, when the

lake was classed as bleached scum, visual interpretation of the imagery sug-

gested that the lake was actually being influenced by sediment; unlike Lake

Bogoria, Elmenteita is shallow, so sediment re-suspension is possible. It is

difficult to be certain of this explanation due to a lack of in situ knowl-

edge about lake conditions to aid interpretation of the satellite imagery.

Elmenteita is highly complex due to its shallow depth and it is more diverse

than other alkaline-saline lakes in terms of the phytoplankton communities

it supports. Therefore, the in situ spectra collected at Elmenteita many not

be representative of the range of conditions present in the lake.

Although no in situ data from Lake Logipi were available for develop-

ment of the classification scheme, classified maps of the lake appear very

convincing (Fig.4.D). They agree closely with visual interpretations of the

RGB imagery and they also agree with the classes that we would expect to

find there, predominantly sediment and microphytobenthos.

Classified maps of Lake Oloidien included the adjacent freshwater Lake

Naivasha. The maps illustrated the contrast between the two lakes, since

Lake Naivasha was classified predominantly as low biomass, while Oloidi-

ens’s waters were classed as high cyanobacterial biomass (Fig.4.E). The
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maps also highlighted that the classification can only reliably be applied

to alkaline-saline lakes (which do not support macrophytes) because areas

classed as high cyanobacterial biomass for Lake Naivasha were in fact mixed

pixels of water and floating vegetation (papyrus and water hyacinth), which

are spectrally identical to scum in Landsat bands 1 to 4.

Classified maps of Lake Natron’s northern lagoon showed areas of sedi-

ment and microphytobenthos, as observed in situ, and other lagoons around

the lake’s margin were classed as either sediment, microphytobenthos or high

biomass, as would be expected (Fig.4.F). The uniquely hypersaline brine at

the centre of Lake Natron, which typically appears red in Landsat satel-

lite imagery due to extremophile bacteria, was classified as ‘High biomass’.

Lesser Flamingos cannot feed on this red, single-celled bacteria; therefore,

the centre of the lake should be masked out and the classification should

only be applied to lagoons around the lake edge, which are kept fresher by

inflowing water from springs and rivers.

The classified maps also showed that areas of mixed sediment and high

biomass were wrongly classified as microphytobenthos due to their similar

spectral shape (Fig.4.A). The lake surface area mask wrongly categorised

the densest areas of cyanobacterial scum as land, but this typically only

affected a very small area of the image.
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Figure 4: RGB true colour Landsat ETM+ imagery and classified images for lakes: Bogoria, 2005-05-16 (panel A); Nakuru, 2007-09-11
(panel B); Elmenteita, 2008-08-28 (panel C); Logipi, 2007-08-26 (panel D); Naivasha, 2011-03-30 (panel E); and Natron, 2007-09-27
(panel F).
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4.5. Timeseries of lake classes

Fig. 5 shows timeseries of water types present in lakes Bogoria, Nakuru,

Elmenteita and Logipi (1999–2012).

In Lake Bogoria, high cyanobacterial biomass was the most common

class, followed by low biomass and bleached scum, with mean areas of 19.6,

5.8 and 3.9 km2 respectively. The timeseries showed a gradual transition

from low to high biomass from 1999 to 2001, and several episodes of low

biomass which correspond to bloom collapse events (Tebbs, 2014). There

were periods when most of the lake surface was covered by bleached scum.

A particularly prominent episode of bleached scum followed by low biomass

was observed in mid 2004, which coincided with a major A. fusiformis die-off

event (Oduor and Schagerl, 2007a).

In Lake Nakuru, high cyanobacterial biomass was also the most common

class, followed by low biomass and cyanobacterial scum (mean areas: 23.6,

8.5 and 3.1 km2 respectively). Prior to 2008 the lake was dominated by high

biomass and scum. In 2008, following rising lake levels throughout 2007, and

the occurrence of low cyanobacterial biomass became more common. There

was a slight return of high biomass waters in 2010 after decreasing lake

levels throughout 2009. The lake then returned to a state of low biomass

from the end of 2010 onwards. Throughout the whole class timeseries a very

small amount of bleached scum was observed in Lake Nakuru. The results

are consistent with Kaggwa et al. (2012) which showed low biomass in Lake

Nakuru at the start of 2009.

Lake Elmenteita showed the most variability in the composition of water

types present. The lake was dominated by high biomass, but high levels of

bleached scum were also present (mean areas: 6.8 and 5.2 km2 respectively).

Between 2000 and 2006 the occurrence of low biomass increased. There was

a shift towards high biomass from 2011 onwards. The lake showed two dry

periods and one low period.

Lake Logipi showed a high degree of variability in lake surface area, with

intermittent flooding and quite regular dry periods. Sediment dominated

waters were the most common, followed by microphytobenthos and high

biomass waters (mean areas: 36.2, 9.7 and 8.1 km2 respectively). The lake
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almost always supported some microphytobenthos and high biomass; out of

all the lakes it had the highest average microphytobenthos concentration.

The largest areas of high biomass and microphytobenthos were observed in

2007 and from late 2011 to the end of 2012.
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5. Discussion

The spectral measurements collected in this study illustrate the wide

range of optical water types present in alkaline-saline lakes (Fig. 2). Results

showed that it is possible to separate different ecological states based on

their spectral signatures. Observations were consistent with previous stud-

ies which showed that the magnitude of the reflectance peak in the NIR

can be used as an indicator for Chl-a or trophic status (Gitelson, 1992;

Matthews et al., 2012). NIR reflectance also contains information about

phytoplankton species; vacuolate cyanobacteria have a higher NIR signal

than non-vacuolate species (Dubelaar et al., 1987). Therefore the low NIR

reflectance observed at Nakuru was a result of both lower biomass and the

presence of a singled celled and hence non-vacuolate phytoplankton species.

Some papers would refer to the spectral shape classified as low biomass in

this study as being characteristic of high biomass waters, however it actu-

ally represents the lower end of the biomass range observed in alkaline-saline

lakes.

The areas of bleached scum observed in Lake Bogoria were similar to

areas of heavily bleached cyanobacterial scum observed as white patches

in Landsat imagery at other hypereutrophic lakes (Oberholster and Botha,

2010). The classification scheme was not able to distinguish mixed sediment

and high biomass from microphytobenthos in Landsat imagery, due to their

similar spectral shape. Fortuitously, the value to flamingos in both cases is

moderate.

Lake Bogoria showed episodes of extensive bleached scum coverage while

Lake Nakuru had negligible bleached scum, suggesting that Nakuru is more

well mixed than Bogoria. Bleached scum is likely to deter flamingos from

feeding since they risk clogging clog their filter system. Kaggwa et al. (2012)

found that flamingos numbers fluctuated at Bogoria throughout 2009 de-

spite a relatively constant A. fusiformis biomass. This could be due to the

presence of scum in mid 2009 as observed in the class timeseries (Fig. 5).

Kaggwa et al. (2012) observed algal mats during their study and suggested

this as a potential cause for the observed flamingo deaths. Other studies
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have suggested that toxins produced by thick cyanobacterial scums have

contributed to flamingo deaths (Lugomela et al., 2006).

In Lake Elmenteita, the class timeseries showed a transition from high

biomass to low biomass in mid 2004 which agrees with decreasing Chl-a

concentrations observed by Oduor and Schagerl (2007b). However, it also

suggested that the lake has become more suitable for Lesser Flamingos since

2011, when it moved to a state of high biomass. This is not in agreement

with ground observations which suggest that few flamingos have used the

lake since 2008 (V. Robinson, pers. comm.). This is further evidence that

the results for Elmenteita are less reliable than for the other lakes. It also

suggests that the red:NIR threshold for distinguishing between low and high

biomass waters may need further tuning.

Logipi showed a high degree of variability in lake surface area, in agree-

ment with observations by Castanier et al. (1993). The class timeseries

showed that Lake Logipi was most suitable for Lesser Flamingos from 2007

to early 2008 and from late 2011 to the end of 2012, the latter is signifi-

cant because at this time, due to high lake levels, Oloidien, Elmenteita and

Nakuru did not support significant numbers of flamingos. 3/4 of a million

were at L. Bogoria and the authors of this paper initially hypothesised that

the rest of the E. African population could have been at Lake Logipi. Our

results support this hypothesis by suggesting that Logipi would have been

able to support significant numbers of flamingos at this time.

Similar classification schemes for lakes could be developed using MERIS,

and the planned Ocean and Land Cover Instrument (OLCI) on Sentinel-3,

to improve the classification capability by allowing finer spectral features to

be sampled. The classification could also be adapted for the planned Multi

Spectral Instrument (MSI) on Sentinel-2, allowing information on lake eco-

logical state to be captured with both high spatial and high temporal resolu-

tion. The robustness of the classification could be improved with additional

in situ measurements, particularly for under-represented water types such

as bleached scum and highly variable lakes such as Elmenteita. The authors

will extend this work in future by applying the classification to all lakes in

the flamingos’ key site network, in order to assess the spatial and tempo-
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ral variability of the Lesser Flamingos’ food supply throughout the whole

Eastern Rift Valley.

6. Conclusion

This study has demonstrated the potential of high spatial resolution, low

spectral resolution sensors for providing ecologically valuable information at

a regional scale, for alkaline-saline lakes and similar hypereutrophic inland

waters. A Landsat-based optical classification was developed which was

able to distinguish five classes (‘Low biomass’, ‘Sediment’, ‘Scum’, ‘Micro-

phytobenthos’ and ‘High biomass’) with an overall classification accuracy

of 77% when verified against in situ measurements. Examination of the

Landsat ETM+ imagery showed the presence of an additional water type,

‘Bleached scum’, which was not represented in the in situ dataset, and the

classification was modified accordingly. Classified maps and timeseries have

demonstrated the differences between alkaline-saline lakes in terms of the

water types present. The results have highlighted the importance to Lesser

Flamingos of Lake Logipi. Significant food resources were present in the

lake at times when feeding conditions were poor at the flamingos other main

feeding lakes. This is an important result because Lake Logipi is difficult to

monitor in situ due to its extreme remoteness.
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Figure A.1: Final DT showing how Landsat lake reflectance spectra are classified into one
of 6 classes based on the reflectance in each band. Note the initial DT did not include
class 4 (bleached scum).
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