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Abstract. Limited availability of ammonia (NH3) observa-

tions is currently a barrier for effective monitoring of the

nitrogen cycle. It prevents a full understanding of the at-

mospheric processes in which this trace gas is involved and

therefore impedes determining its related budgets. Since the

end of 2007, the Infrared Atmospheric Sounding Interfer-

ometer (IASI) satellite has been observing NH3 from space

at a high spatio-temporal resolution. This valuable data set,

already used by models, still needs validation. We present

here a first attempt to validate IASI-NH3 measurements us-

ing existing independent ground-based and airborne data

sets. The yearly distributions reveal similar patterns between

ground-based and space-borne observations and highlight the

scarcity of local NH3 measurements as well as their spatial

heterogeneity and lack of representativity. By comparison

with monthly resolved data sets in Europe, China and Africa,

we show that IASI-NH3 observations are in fair agreement,

but they are characterized by a smaller variation in concen-

trations. The use of hourly and airborne data sets to com-

pare with IASI individual observations allows investigations

of the impact of averaging as well as the representativity

of independent observations for the satellite footprint. The

importance of considering the latter and the added value of

densely located airborne measurements at various altitudes to

validate IASI-NH3 columns are discussed. Perspectives and

guidelines for future validation work on NH3 satellite obser-

vations are presented.

1 Introduction

Ammonia (NH3) is a key component of our ecosystems and

the primary form of reactive nitrogen (Nr) in the environment

(Erisman et al., 2007; Sutton et al., 2013a). It represents more

than half of Nr atmospheric emissions (Galloway, 2003a).

Mainly released by food production, the drastic increase of

NH3 emission in the atmosphere in the last century was due

to the need to feed an ever-growing population combined

with greatly increased rates of livestock production (Erisman

et al., 2008; Galloway et al., 2008). This increase has nu-

merous environmental impacts on ecosystems (Sutton et al.,

2008; Erisman et al., 2013). As the major basic species in the
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atmosphere, NH3 reacts rapidly with acid gases and drives

the acidity of precipitations and particulate matter (Behera

et al., 2013). Its role in aerosol formation (Hertel et al., 2012)

makes it an important component in air quality and climate

issues (Pope et al., 2009; Erisman et al., 2011). In addition to

being directly toxic to plants at high concentrations (Krupa,

2003), NH3 and its derivatives are also quickly deposited in

the ecosystems, increasing their eutrophication and reducing

biodiversity (Erisman et al., 2007; EEA-European Environ-

ment Agency, 2014). All these impacts are magnified as the

nitrogen atom included in NH3 enters the “nitrogen cascade”

(Galloway et al., 2003b).

Human activities have caused a large increase of NH3: ma-

nure management and agricultural soils are responsible for

more than 82 % of the 49.3 Tg of NH3 emitted globally in

2008 (EDGAR-Emission Database for Global Atmospheric

Research, 2011). The second largest contribution is from

biomass burning, mainly linked to large scale fires (6 Tg in

2008, following EDGAR v4.2 inventory) but also to a lesser

extent to agricultural waste burning (0.76 Tg in 2008). It is

worth noting that global emission inventories have an uncer-

tainty of at least 30 % (Sutton et al., 2013a). The amount of

NH3 emitted in the atmosphere is also strongly dependent on

agricultural practices and climatic conditions (Sutton et al.,

2013a, b) and this causes large variability in emissions on

national/regional scales (Reis et al., 2009). At a local scale,

other sources such as traffic and/or industry can be impor-

tant (Gong et al., 2011). A further increase of NH3 emissions

is expected during this century due to agricultural intensi-

fication and the projected increases in surface temperature,

which favors NH3 volatilization (Fiore et al., 2012; Sutton

et al., 2013a).

Despite the importance of NH3 for the environment, the

atmospheric processes in which it is involved and the re-

lated budgets are still poorly understood (Fowler et al., 2013).

Progress in instrumentation, flux measurements and under-

standing of processes during the last decades have allowed

advances in local/regional modeling (Flechard et al., 2013).

For example, the development of a bi-directional parameteri-

zation of surface/atmosphere exchange of NH3 has improved

regional modeling, for which the information needed as in-

put (e.g., emission inventories, meteorological data) are well

known (Wichink Kruit et al., 2012; Bash et al., 2013). More

limitations exist on NH3 modeling at global scale. As an

example, in the multi-model comparison of Dentener et al.

(2006), only 7 of 23 models included NHx (Fowler et al.,

2013). Even as the NH3 cycle is more and more integrated in

the simulations (e.g., see Hauglustaine et al., 2014), one of

the key limitations for global modeling is still the availabil-

ity of measurements across the globe.

Measuring NH3 is indeed challenging because of

(i) strong temporal and spatial variability of ambient lev-

els, (ii) quick conversion of NH3 from one phase to another

(gas/particulate/liquid) and (iii) its stickiness to the observa-

tional instruments (Sutton et al., 2008; von Bobrutzki et al.,

2010). There are currently very few monitoring stations that

provide daily or hourly resolved NH3 measurements, with

most long-term monitoring of NH3 being made using a pas-

sive sampler or dedicated denuder with a time resolution

of several weeks. Some countries have their own network

providing long-term ground-based observations (e.g., United

States, Netherlands, United Kingdom) but these are the ex-

ception and most of the data sets are restricted to a certain

period (e.g., NitroEurope data set (Flechard et al., 2011)).

Therefore, the spatial coverage of these networks and cam-

paigns is strongly heterogeneous, with the large majority of

available measurements in the Northern Hemisphere and an

underrepresentation of other regions such as tropical agroe-

cosystems (Bouwman et al., 2002). Airborne data sets are be-

ginning to become available (e.g., Nowak et al., 2010; Leen

et al., 2013) and provide information about the vertical distri-

bution of NH3. It is worth noting that a few ship campaigns

(e.g., Norman and Leck, 2005; Sharma et al., 2012) have also

supplied NH3 observations in oceanic atmosphere and that

on-road measurements have recently been performed at land-

scape scale (Sun et al., 2014). The measurement gap iden-

tified above is of special importance considering the large

variability of NH3 in time and space.

Over the last few years satellite instruments able to de-

tect NH3 have begun to fill this observational gap, allowing

new insights on global emissions, distributions and transport

(Clarisse et al., 2009; Shephard et al., 2011; Van Damme

et al., 2014a). Moreover, the spatial footprint of the satel-

lite sounders currently available offers area-averaged mea-

surements that are in much better correspondence with the

grid cell size of current atmospheric chemistry and trans-

port models in comparison to the point monitoring of atmo-

spheric concentrations made at the ground (Flechard et al.,

2013). First comparisons of model results with satellite mea-

surements at global (Clarisse et al., 2009; Shephard et al.,

2011) and continental (Heald et al., 2012; Van Damme et al.,

2014b) scales have been achieved and suggest an underes-

timation of the modeled concentrations. Satellite sounders

with a high spatio-temporal resolution, such as the Infrared

Atmospheric Sounding Interferometer (IASI) or the Cross-

track Infrared Sounder (CrIS; Shephard and Cady-Pereira,

2014), also offer the opportunity to identify area-specific

and time-dependent emission profiles (Van Damme et al.,

2014b). This would improve models that currently use a gen-

eralized and simplistic representation of the timing of emis-

sions (van Pul et al., 2009). Satellite data are also being used

in inversion methods (e.g., Zhu et al., 2013) to evaluate emis-

sion inventories at various scales (Streets et al., 2013).

While NH3 satellite measurements have started to be

used by models, their validation has yet to be performed

even if sparse comparisons have already shown their consis-

tency (e.g., Pinder et al., 2011; Shephard and Cady-Pereira,

2014). We present here the first attempt to validate IASI-NH3

measurements with correlative data from the ground- and

airplane-based measurements. We discuss these results crit-
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ically (Sect. 3) considering the important mistime and mis-

distance errors (Wendt et al., 2013), which are introduced

by comparing measurements of a very reactive species that

are not perfectly collocated in time and space. In the next

section we detail the IASI retrieval scheme implemented to

derive NH3 concentrations as well as the ground-based and

airborne measurements used in this study.

2 Measurement data sets

2.1 Satellite observations

NH3 was first detected in IASI spectra inside fire plumes

above Greece in 2007 (Coheur et al., 2009). Subsequently,

the development of a simplified retrieval method allowed the

first global map of NH3 from IASI observations to be pro-

duced (Clarisse et al., 2009). In Clarisse et al. (2010), a sen-

sitivity study was performed, showing the abilities of infrared

sensors to probe the lower troposphere, depending on atmo-

spheric parameters such as the thermal contrast (see below).

Recently, an improved IASI-NH3 data set has been gener-

ated, combining better sensitivity and error characterization.

The algorithm used to retrieve NH3 columns from the radi-

ance spectra is described in detail and compared to previ-

ous algorithms by Van Damme et al. (2014a). In short, the

improved retrieval scheme exploits the hyperspectral charac-

teristic of IASI and a broad spectral range between 800 and

1200 cm−1. The algorithm consists of two steps. The first is

the calculation of the hyperspectral range index (HRI), a di-

mensionless spectral index, from IASI Level 1C radiance.

This HRI is converted in a second step to a total column of

NH3 using look-up tables (LUTs) built from forward radia-

tive transfer model simulations under various atmospheric

conditions. As the thermal contrast (temperature difference

between the Earth’s surface and the atmosphere at 1.5 km)

is the critical parameter for infrared remote sensing in the

lower troposphere, it is explicitly accounted for in the LUTs.

Its value is derived from the temperature profile and surface

temperature from the IASI Level 2 information provided by

the operational IASI processor (August et al., 2012). The re-

trieval processing also includes an error estimate on the IASI-

NH3 total columns, taking into account the sensitivity of the

satellite measurements to NH3. This error estimate is espe-

cially important for comparisons with independent data sets

(Van Damme et al., 2014b).

A known limitation of the retrieval method is that it uses

only two fixed NH3 profiles for the forward simulations

(Fig. 3 in Van Damme et al., 2014a). The GEOS-Chem model

was used to derive a source profile above land and a trans-

ported profile over oceans. The bias introduced by the use

of these fixed profile shapes to build the LUTs for the to-

tal column retrieval is expected to be no higher than a factor

of 2 on the total column values in the large majority of cases

(Van Damme et al., 2014a). As independent total column data

sets are not available and as the IASI-NH3 measurements

do not provide vertical information, these two modeled pro-

files are used in this paper to convert the retrieved column to

a concentration at the surface and/or at an altitude of interest

for the comparison with correlative data.

The IASI instrument is on board the polar sun-

synchronous MetOp platform, which crosses the equator at

a mean local solar time of 9.30 a.m. and p.m. It therefore al-

lows global retrievals of NH3 twice a day (Clerbaux et al.,

2009). In this study, we only consider the measurements

from the morning overpass as they are generally more sen-

sitive to NH3 because of higher thermal contrast at this

time of day (Van Damme et al., 2014a). Given the high

spatial variability of NH3 concentrations, the footprint of

the satellite measurement is an important parameter to take

into account in comparing the retrieved columns with local

ground-based measurements. IASI has an elliptical footprint

of 12 km by 12 km (at nadir) and up to 20 km by 39 km

(off nadir), depending on the satellite viewing angle. The

availability of measurements is mainly driven by the cloud

coverage as only the observations with a cloud coverage

lower than 25 % are processed. Van Damme et al. (2014b)

have shown, given the strong dependence on thermal con-

trast, that spring–summer months are better suited to accu-

rately measure NH3 from IASI (error below 50 %). The de-

tection limit of NH3 depends on both thermal contrast and

the vertical distribution of NH3; an illustration of this can

be found in Fig. 5 of Van Damme et al. (2014a). As an ex-

ample of detection limits on individual observation, a NH3-

retrieved column is considered detectable when the column

is above 9.68× 1015 molec cm−2 (1.74 µg m−3) given a ther-

mal contrast of 20 K, while the column should be larger than

1.69× 1016 molec cm−2 (3.05 µg m−3) for 10 K. Note that,

due to the combination of high temporal and spatial variabil-

ity of this trace gas, IASI-NH3 observations are characterized

by a high coefficient of variation: 187.8 % (for measurements

with a relative error below 100 %) and 85.6 % (error below

50 %) for the morning measurements above land in 2011.

2.2 Ground-based observations

Monitoring NH3 from the ground is not straightforward

due to technical limitations and to high variability of con-

centrations in time and space (von Bobrutzki et al., 2010;

Hertel et al., 2012). While the availability of NH3 con-

centration and flux measurements at sub-landscape scales

is increasing, measurements at landscape to regional scale

are sparser (Flechard et al., 2013). In this study we use

surface measurements from the US Ammonia Monitoring

Network (AMoN, nadp.sws.uiuc.edu/amon/), the European

Monitoring and Evaluation Programme (EMEP) network

(nilu.no/projects/ccc/emepdata), the NitroEurope (NEU) In-

tegrated project (nitroeurope.eu), the Netherlands National

Air Quality Monitoring Network (LML, lml.rivm.nl), the

IGAC/DEBITS/AFRICA (IDAF) network (idaf.sedoo.fr)

www.atmos-meas-tech.net/8/1575/2015/ Atmos. Meas. Tech., 8, 1575–1591, 2015
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Table 1. Data sets used to compare with IASI satellite observations.

Network No. of sites Technique Resolution Location Period used

AMoN 28 Passive diffusion-type sampler 2 weeks USA 2011

EMEP 27 Various Monthly Europe 2011

IDAF 10 IDAF passive sampler Monthly Africa 2008 to 2011

NEU 53 DELTA systems Monthly Europe 2008 to 2010

NNDMN 43 DELTA systems and ALPHA passive sampler Monthly China 2009 to 2013*

LML 8 Annular denuder systems Hourly Netherlands 2008 to 2012

* All 2008 as well as January and February 2014 has been added for the Shangzhuang time series of Fig. 4.

and a series of observations from the Chinese Nationwide

Nitrogen Deposition Monitoring Network (NNDMN, made

available on request by X. Liu, China Agricultural Univer-

sity). The AMoN and EMEP data sets are used for the global

comparison, the NEU and LML data sets are used for the

regional assessment, while NNDMN and IDAF observations

are used for both. These networks and their respective char-

acteristics are summarized in Table 1. Additional details are

provided below.

The EMEP network has been running since the 1980s,

with data provided by the countries as part of the Convention

on Long-Range Transboundary Air Pollution. These data are

made available after national and EMEP quality assessments

have been conducted (EMEP, 2014). For this analysis data

from 27 sites were used, which have been generated from

various national networks contributing to EMEP, so that in-

strumentation differs from one site to another (EBAS, 2014).

The AMoN network was established in 2010 in the USA to

monitor NH3 with Radiello passive diffusion-type samplers

(with a time resolution of 2 weeks) (NADP-National Atmo-

spheric Deposition Program, 2012). From this network, we

use the 28 sites which have started to provide measurements

no later than 1 March 2011.

The NEU data set was generated using DELTA (DEnuder

for Long-Term Atmospheric sampling) systems, detailed in

Sutton et al. (2001). The network, which focused on Eu-

rope in the framework of the NEU Integrated project, is ex-

tensively described in Sutton et al. (2007) and Tang et al.

(2009). Much effort was dedicated to providing a consis-

tent data set with a high level of comparability (as the mea-

surements were performed by different groups), including an

inter-comparison study (Tang et al., 2009). It is worth not-

ing that the precision for monthly means of a clean site using

DELTA systems has been reported as below 10 % (Sutton

et al., 2001). We use in our analyses the observations of 53

sites from 2008, 2009 and 2010 (Flechard et al., 2011). The

Piana del Sele site was excluded as it is known to be un-

representative for the area due to agricultural activities close

by. The IDAF network is one of the few networks provid-

ing measurements not only for tropical agroecosystems but

also for the whole Southern Hemisphere. It uses passive sam-

plers (Ferm, 1991) which have been validated in situ and are

associated with a reproducibility of 14.6 % (IDAF, 2014).

Measurements at the 10 IDAF sites have been considered.

The data used here for 2008–2011 show a similar annual cy-

cle with comparable amplitudes to the data from the same

network covering 1998 to 2007 presented by Adon et al.

(2010). The NNDMN data set for China was generated us-

ing both DELTA systems (31 sites) and ALPHA (Adapted

Low-cost, Passive High Absorption) samplers (12 sites) ac-

cording to the methodology of Sutton et al. (2001) and Tang

et al. (2001), as detailed for this network in Liu et al. (2011).

The network mainly covered farmland sites but also included

several grassland (two) and forest (four) sites across China.

Lastly, the LML network was operated using continu-

ous annular denuder systems for the period considered here

(1 January 2008–31 December 2012), based on the method-

ology of Wyers et al. (1993), although a switch to mini-

Differential Optical Absorption Spectroscopy (miniDOAS)

systems is planned for the near future in order to reduce

running costs (Volten et al., 2012). The instrumentation

used for this subset is characterized by a precision of 11 %

(Wyers et al., 1993). It provides hourly NH3 measurements

at eight sites representative for the Netherlands since 1992

(Nguyen and R. Hoogerbrugge, 2009).

2.3 Airborne observations

Airborne measurements offer the advantage of providing

concentrations at various altitudes and typically covering

a surface area that is more representative of the satellite foot-

print than single ground-based observations. As NH3 emis-

sions result primarily from ground-based sources, measure-

ments at higher altitudes are also characterized by less spa-

tial variability, allowing improved comparison with satellite

columns. Aircraft observations are able to capture, to some

extent, the intra-footprint variability spread in situ which is

integrated in each satellite observation. By comparison, air-

craft observations of NH3 typically focus on short-term cam-

paign measurements.

The airborne data set used for this analysis was collected

during the CalNex campaign (California Research at the

Nexus of Air Quality and Climate Change), which took

place in May and June 2010 in California, USA (Ryerson

et al., 2013; Parrish, 2014). NH3 was measured by chemi-
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Figure 1. Vertical distribution of NH3 airborne measurements from

the NOAA WP-3D flights during the CalNex campaign in Califor-

nia (2010). Each color corresponds to 1 day of measurement.

cal ionization mass spectrometry (CIMS, uncertainty of ±

(30 %+ 0.2 ppbv)) during 16 flights of the National Oceanic

and Atmospheric Administration (NOAA) WP-3D aircraft

(Nowak et al., 2007, 2010, 2012). The observations were

made at 1 Hz which is equivalent to 100 m spatial resolution,

with the majority of measurements at altitudes from 10 m to

2 km above ground. Nowak et al. (2012) used this data set

to show the underestimation of NH3 emissions from dairy

farms and automobiles in regional emissions inventories and

to assess the impact of these sources on the formation of am-

monium nitrate. Figure 1 presents the high-resolution NH3

profiles from the campaign, with x axis being linear from

0 to 100 pbbv and logarithmic from 100 to 1000 ppbv. The

large majority of measurements range from 0 to 100 ppbv,

with few measurements reaching as high as several hundred

ppbv.

3 Results and discussions

This section starts with a comparison between IASI-NH3

observations and ground-based measurements. A first qual-

itative NH3 global comparison is performed for the year

2011, followed by quantitative regional analyses with data

sets over Europe, China and Africa. Then the ground-based

hourly measurements provided by the Dutch national net-

work (LML) are used to evaluate the IASI measurements col-

located in time and to discuss the challenges of validating the

satellite measurements of reactive species, showing high spa-

tial and temporal variability. The added value of the airplane

measurements for validation of IASI-NH3 measurements is

presented in Sect. 3.2.

3.1 Comparison with ground-based observations

3.1.1 Global evaluation

Figure 2 shows the NH3 distribution measured by IASI for

2011 and gridded at 0.25◦ lat× 0.5◦ long resolution for the

areas covered by the available measurement data sets. In

this graphic a weighting procedure has been applied on the

IASI daily columns to take into account the error variabil-

ity of the data set within the average (Van Damme et al.,

2014a). The main agricultural source areas are observed in

the Indo-Gangetic plain, the North China Plain (NCP) as well

as intensive agricultural valleys such as the Ferghana Val-

ley in central Asia and the San Joaquin Valley in California

(Clarisse et al., 2009, 2010). High NH3 values are also seen

over burned areas mainly in Eastern Europe (April) (IFFN-

GFMC-16, 2011), over the Magadan region in eastern Rus-

sia (May and especially second part of July) (NASA, 2011)

and in Indonesia (March). Ground-based data sets of NH3

concentrations for 2011 have been superimposed in Fig. 2.

What is striking from the collected data sets for that year

is the scarcity of the NH3 measurements in some parts of

the world. Except for the IDAF stations in Africa, no mea-

surements were available for 2011 in the rest of the trop-

ical region and in the Southern Hemisphere. Nevertheless,

we find a broadly similar pattern in the surface measurement

as in the satellite-derived distribution, with the largest con-

centrations for the Chinese stations, followed by the IDAF

sites in Africa. Europe and the USA present lower concen-

trations with the exception of the Eibergen station (EMEP)

in the Netherlands (see also below).

Although the comparison with the IASI measurements

is qualitatively reasonable, we find that in North America

the satellite-retrieved columns are relatively higher than the

ones reported by the AMoN network. It is worth noting that

the sites with yearly concentrations available for 2011 are

mainly located outside the intensive source areas for the

USA. In China, the highest values are observed (from the

ground and IASI) in the NCP and in the Chengdu Plain

(Sichuan basin). The satellite columns are lower in southeast-

ern China, which is consistent with the high-resolution NH3

emissions inventory from Huang et al. (2012). In Europe, the

EMEP stations are mainly located in its central part, where

IASI-NH3 columns have low values, in agreement with the

ground-based concentrations. The Netherlands is the prin-

cipal hotspot region in the northern part of central Europe

in both the satellite and surface measurements. A second

www.atmos-meas-tech.net/8/1575/2015/ Atmos. Meas. Tech., 8, 1575–1591, 2015
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Figure 2. Yearly averaged surface concentrations (µg m−3, left vertical color bar) from IDAF, AMoN, EMEP and NNDMN data sets plotted

on top of the NH3 IASI satellite column (×1016 molec cm−2, right vertical color bar) distribution for 2011 gridded at 0.25◦ lat× 0.5◦ long.

Columns and relative error (%, bottom left inset) have been calculated as a weighted mean of all IASI measurements within a cell, following

equations described in Van Damme et al. (2014a) (columns with an associated relative above 100 % have been filtered).

hotspot in Europe is the Po Valley of northern Italy. Although

this was not represented by the EMEP measurements, this

is subject of a specific analysis under the ECLAIRE project

(eclaire-fp7.eu).

3.1.2 Regional focus

Monthly resolved data sets

Figure 3 presents a similar comparison with focus over

Europe (left), China (middle) and Africa (right). The

top panels show the IASI-retrieved column distributions

(×1016 molec cm−2, right vertical color bar) on which

the ground-based concentrations from the NEU and the

NNDMN network (µg m−3, left vertical color bar) and the

volume mixing ratio (VMR) from the IDAF network (ppbv,

left vertical color bar) have been superimposed. The bottom

panels provide the corresponding correlation plots with their

linear regression fits (reduced major axis), and Pearson’s cor-

relation coefficient (r , underlined when significant). For this

comparison the IASI columns have been converted to sur-

face concentrations by using the model profiles considered

in the retrieval procedure (Van Damme et al., 2014a). Al-

though such a conversion introduces additional errors, it al-

lows direct comparison with similar quantities. We note that

while the conversion to surface observation does not change

the correlation much, it determines the intercept. The use of

an inadequate profile shape leads unavoidably to biased sur-

face concentrations from IASI. As an example, the Pearson’s

r calculated when comparing IASI total columns and NEU

ground-based concentrations is equal to 0.284, while it is

equal to 0.275 when comparing satellite and ground-based

surface concentrations.

For Europe, the averaged satellite distribution for 2008,

2009 and 2010 is presented with superimposed the 3-year

mean NEU ground-based observations (Fig. 3, top left). High

values can in particular be seen in the western part of Rus-

sia, which is an area that was strongly impacted by the Rus-

sian fires of 2010 (R’Honi et al., 2013). The effect of these

fires appears to be overrepresented in the satellite distribu-

tion due to the weighted averaging procedure associated with

the higher IASI sensitivity in fire plumes (Van Damme et al.,

2014a, b). However, overall IASI observes a similar pattern

as that reported by the NEU sites. The highest surface con-

centrations are measured in northwestern Europe, going up

to 7 µg m−3 at Cabauw, Netherlands, where satellite columns

are above 2×1016 molec cm−2. The lowest surface concen-

trations reported by the NEU network are observed at the

northern European stations, where IASI columns are low too.

The statistical analysis (Fig. 3, bottom left) gives a significant

correlation. This is especially true considering that we are

comparing monthly averaged surface concentrations from

ground-based instruments (integrated over day and night)

with the monthly satellite mean that includes only measure-

ments from the morning overpass time (only monthly means

with an IASI-weighted relative retrieval error below 100 %

have been taken into account). The linear regression is indi-
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Figure 3. Top: ground-based quantities (left vertical color bar) from NEU (µg m−3, left panel), NNDMN (µg m−3, middle panel) and IDAF

(ppbv, right panel) data sets plotted on top of the NH3 satellite columns (×1016 molec cm−2, right vertical color bar) distribution gridded at

0.25◦ lat× 0.5◦ long, both averaged for the period covered by the data sets. Stations with less than two-thirds of measurement availability for

the period considered have been excluded. The relative error distribution from IASI retrieval is shown as inset (top left, %, horizontal color

bar). Columns/errors have been calculated as a mean of all the measurements within a cell, weighted by the relative error following equations

described in Van Damme et al. (2014a). Bottom: monthly NEU (left panel), NNDMN (middle panel) ground-based concentrations (µg m−3)

and IDAF (right panel) ground-based VMR (ppbv) vs. IASI-retrieved NH3 surface concentrations (µg m−3) or VMR (ppbv). The color scale

corresponds to the IASI retrieval errors (%). Dashed red lines represent the linear regression and gray dashed lines represent the one-to-one

line. The Pearson’s r (underlined when significant (p value below 0.05)), slope and intercept are also indicated in red.

cated in red and is characterized by a Pearson’s r of 0.28 (n=

1337 number of coincidences), a slope of 0.42 and an inter-

cept at 2.1 µg m−3. Note that if the satellite data are restricted

to the monthly mean concentrations with associated error be-

low 75 %, the Pearson’s r increases to 0.35 (n= 961). Al-

most all the sites in Europe are characterized by a positive

correlation coefficient when it is significant (p value below

0.05). The highest correlation (r = 0.81) is obtained for the

Fyodorovskoye site (RU-Fyo), and this is explained by the

very large columns observed during the Russian fire event of

2010. The second site characterized by a high correlation co-

efficient is the Monte Bondone site (IT-MBo) with r = 0.71,

which is characterized by high NH3 concentrations in sum-

mer and low in winter, consistent with local livestock grazing

patterns. By contrast, the most northern sites (located in Fin-

land) indicate a negative correlation (Hyytiälä, r =−0.44;

Lompolojänkkä, r =−0.43; Sodankylä, r =−0.45) with an

associated p value slightly above 0.05. These are the sites

with very low ground level concentrations (3-year average

close to 0.1 µg m−3), suggesting that the monthly variabil-

ity for such small concentrations in a region associated with

low thermal contrast cannot be reliably detected by IASI.

The other NEU stations with a significant r above 0.5 in-

clude Brasschaat (BE-Bra, 0.54), Fougères (FR-Fou, 0.58)

and Vall d’Alinyà (ES-VDA, 0.58). The list of stations and

their respective correlation coefficient, as well as their asso-

ciated p and n values, is provided in Table A1.

For China (2009 to 2013), the spatial patterns in NH3

abundance are in good agreement (Fig. 3, top middle panel).

We find the highest concentrations in the NCP area and

the lowest in remote areas such as the Linzhi site (LZ, on

the Tibetan Plateau) and several sites in northeast China.

To better illustrate the potential for a high degree of cor-

respondence between the satellite columns and the surface

measurements, we provide in Fig. 4 the monthly averaged

time series at Shangzhuang (SZ) from the ground and from

space (r = 0.72). This suburban station northwest of Bei-

jing (40.14◦ N, 116.18◦ E), surrounded by agriculture and far
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Figure 4. Time series of monthly averaged NH3 satellite columns (top, blue, molec cm−2) and ground-based concentrations (bottom, red,

µg m−3) at Shangzhuang site (40.14◦ N, 116.18◦ E) in the North China Plain (NCP) from January 2008 to February 2014. The associated

weighted mean error for each month is calculated following equations described in Van Damme et al. (2014a) and presented here as error

bars. Asterisks highlight the fertilization peaks of March, July and October 2013 (Shen et al., 2011).

from a main road (Shen et al., 2011), has one of the longest

records of NH3 concentrations in China, from January 2008

to February 2014. The IASI-derived total columns (top, blue,

molec cm−2) reproduce nicely the ground-based concentra-

tions (bottom, red, µg m−3) time evolution with concentra-

tion peaks in summer (June–July), close to 25 µg m−3 at the

surface and around 3×1016 molec cm−2 observed from IASI.

Looking at interannual variability, for example in 2013, the

fertilization peaks of March, July and October are clearly

observed (Shen et al., 2011). It is interesting to note that

the highest January surface concentration (5.1 µg m−3) and

satellite total column (7.8×1015 molec cm−2) are measured

during the severe winter pollution episode of 2013 (see Boy-

nard et al., 2014; Wang et al., 2014). The correlation anal-

ysis for the monthly values of the 43 NNDMN sites gives

a Pearson’s r equal to 0.39 (considering the IASI data with

a monthly relative retrieval error below 100 %) and a slope

of the regression equal to 0.21 (n= 1149). The Pearson’s

r is globally higher than for Europe probably due to the

higher concentrations in China. This is also observed in the

monthly retrieval error which are overall lower. In addition to

Shangzhuang, the sites with a significant Pearson’s r above

0.5 are China Agricultural University (CAU, 0.51), Ling-

shandao (LSD, 0.55), Changdao (CD, 0.58), Gongzhuling

(GZL, 0.52), Bayinbuluke (BYBLK, 0.59), Fengyang (FY,

0.64), Ziyang (ZY, 0.58), Yanting (YT, 0.70) and Dianchi

(DC, 0.64), where the p values for these sites are all less

than 0.01. Only one site in the NNDMN network gives a sig-

nificant negative correlation: the cleanest site in the network

in Tibetan Plateau (LZ, r =−0.75). With a mean ground-

based concentration of 1.03 µg m−3, this again illustrates, as

suggested with the Finnish sites, the limitation of IASI to

provide reliable monthly NH3 values at very low concentra-

tions. The results for all the sites are presented in Table A2.

For Africa, both IASI and surface network report the high-

est values in western and central Africa and the lowest in

South Africa for the 4-year average (2008 to 2011, Fig. 3

top right panel). However, over Western Africa the highest

VMR are reported by the network for the dry savanna sites

(located above 10◦ N), while IASI observes higher columns

closer to the coast. This could possibly be due to the lack

of IASI sampling above these Sahelian sites during the rainy

season in June–July, which is characterized by large concen-

trations measured at the surface. The high density of live-

stock concentrated on the fresh pasture at that time implies

high surface emissions. However, this time period is typically

also associated with a high deposition and/or cloud coverage,

preventing IASI from capturing these events while they are

monitored from the ground (Adon et al., 2010). Adon et al.

(2010) have shown that the dry savanna sites are character-

ized by higher concentrations during the wet season (June–

July); conversely, the wet savanna sites (closer to the West

African coast) present the larger amount during the dry sea-

son (January–February). The latter may therefore be better

monitored by IASI. The right bottom plot (Fig. 3) compares

the surface VMR for Africa in ppbv. There is no correlation

when the data of all the sites are grouped. This could be ex-

plained by the sparsity of the IDAF data set combined with

the difficulties of the satellite to catch specific high emission

events. The only station showing a positive significant Pear-

son’s r is Lamto (Ivory Coast, 0.39), which is not surpris-

ingly a wet savanna site. The comparison for each station

individually is provided in Table A3.

In general, the regression intercept is relatively high, while

the slope is relatively low. For all three regions the largest

measured concentrations are underestimated in the IASI

surface-derived data. This smaller range of concentrations

could be a consequence of using a fixed vertical profile shape
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Table 2. Statistical analysis of the comparison of LML and IASI satellite surface concentrations in the Netherlands from 1 January 2008 to

31 December 2012. The spatial averaging (two bottom rows in the table) consists of considering the mean of all the ground-based observations

and the mean of the satellite observations in the area covered by the LML network (considered here as the box 51.185–53.022◦ N and 4.01–

7.106◦ E). The temporal averaging (bottom row) consists in taking the mean of the observations (at the overpass time of the satellite) on

a monthly basis. The slope and the intercept of the linear regression are indicated by a and b while the significant Pearson’s correlation

coefficients (r) are underlined (p value below 0.05); n corresponds to the number of points. Only IASI-derived values with a relative retrieval

error below 100 % have been taken into account.

Site (lat–long) a b r n

Vredepeel (51.541◦ N–5.854◦ E) 0.04 2.49 0.16 94

Huijbergen (51.435◦ N–4.360◦ E) 0.3 1.08 0.31 54

De Zilk (52.298◦ N–4.510◦ E) 0.16 0.89 0.39 45

Wieringerwerf (52.805◦ N–5.051◦ E) 0.03 1.26 0.11 91

Zegveld (52.139◦ N–4.838◦ E) 0.07 1.38 0.21 93

Eibergen (52.096◦ N–6.606◦ E) 0.12 1.46 0.38 102

Wekerom (52.113◦ N–5.709◦ E) 0.03 1.91 0.25 87

Valthermond (52.877◦ N–6.931◦ E) 0.63 −1.39 0.49 78

All sites individually 0.07 1.68 0.29 644

All sites spatially averaged 0.21 0.96 0.28 960

All sites spatially and temporally averaged 0.19 1.86 0.47 58

in the retrieval procedure for IASI spectra. Indeed, in the case

of a low boundary layer height, concentrations are larger in

that narrow layer, which is not considered by the straight-

forward procedure applied to retrieve IASI surface concen-

trations from the columns. Moreover, the vertical profiles

above land from the GEOS-Chem model have already been

identified as being too low above California, especially for

strongly polluted areas (Schiferl et al., 2014). Another rea-

son could lie in the influence of very local sources on the

ground-based data (see further). Contrary to what we find for

high concentrations, there is a positive bias of IASI for low

concentrations. There are at least three possible reasons for

this. The first stems from the way the relative retrieval er-

rors are taken into account. Applying weighted averaging of

IASI columns using the relative retrieval error tends to fa-

vor the largest concentrations, as the lower values are associ-

ated with higher error estimates for the same value of thermal

contrast (Van Damme et al., 2014a). A second reason, in the

case of very low NH3 amounts, is that the random error of the

HRI always translates into a positive contribution of the col-

umn (and hence does not average to zero for zero NH3). The

third reason is again linked with a misrepresentation of NH3

vertical distribution. In low NH3 abundance cases and/or in

areas where NH3 is being deposited, there is no strong ver-

tical gradient near the surface. The use of a polluted profile

shape (peaking at the surface) in the retrieval procedure of

IASI surface concentrations tends to overestimate the surface

contribution of the total columns.

We recall that all regressions shown and discussed in this

section are based on weighted monthly IASI-derived NH3

means, with the weight being determined by the relative error

of the individual retrieved columns. We also made the com-

parisons with unweighted monthly means and found some-

what different parameters for the regression line but an over-

all weak impact on the regression coefficients. In all cases,

the slope remains well below 0.5 and the intercept smaller

but still positive.

Hourly resolved data set

The LML data set offers long-term hourly resolved NH3

measurements allowing the investigation of individual IASI

observations and testing the effect of averaging different time

scales. However, it is worth noting that this network provides

measurements in an area (the Netherlands) that is not partic-

ularly favorable for infrared remote sensing of surface pol-

lution (low thermal contrast and relatively high cloud cover-

age). Table 2 summarizes the results from the comparison of

the IASI concentrations (columns converted to surface con-

centrations as above) to those measured from the ground.

The upper part presents the comparison from the linear re-

gression for each individual site (slope (a) and intercept (b)

of the linear regression, Pearson’s r (underlined when sig-

nificant) and the number of observations (n)). We took into

account only the IASI measurements covering the stations,

which means that the true elliptical footprint is considered

and only the observations including the LML site are kept.

Six of the sites show significant correlation and for all, ex-

cept for one (Valthermond, which has a negative intercept

and fairly high slope), we find a very low slope (0.03–0.3)

but a high intercept between 0.89 µg m−3 (De Zilk) and 1.91

(Wekerom). This shows again the difficulties of IASI to cap-

ture the entire range of local surface concentrations, as ex-

plained above. The best Pearson’s r are observed for Valther-
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mond (0.49), De Zilk (0.39) and Eibergen (0.38) sites. When

all the sites are taken together we obtain a Pearson’s r of

0.29, a slope of 0.07 and an intercept of 1.68 µg m−3. These

results, obtained by comparing individual IASI value with

ground-based measurement at the overpass time of the satel-

lite, could be due, as discussed previously, to the misrepre-

sentation of the vertical distribution in the processing of the

spectra and the need to consider the boundary layer height.

A factor preventing one from drawing strong conclusions

from this comparison is the spatial representativity of the

ground-based measurement within the large footprint of the

satellite (going from 113 km2 at nadir to around 613 km2

for the highest satellite viewing angles). It means that local

sources inside the satellite footprint could have a strong in-

fluence on the IASI column values but not be represented in

the ground-based data sets due to the high horizontal gradi-

ent of NH3 concentrations around the source (Fowler et al.,

1998; Sutton et al., 1998; Hertel et al., 2012). Conversely,

background concentrations within the IASI pixel will tend

to mask single local sources. The representation issue of

ground-based measurement stations has already been high-

lighted during model performance evaluation (Wichink Kruit

et al., 2012). To avoid this uncertainty, which is difficult to as-

sess in the validation, we could consider the general rule that

the LML network is representative for the entire Netherlands

(Nguyen and R. Hoogerbrugge, 2009). For instance, using

the eight stations together we can calculate a daily mean

concentration of NH3 at the overpass time of the satellite

that we compare with the IASI-weighted mean of the mea-

surements inside the area covered by the network (consid-

ered here as the following box: 51.185–53.022◦ N and 4.01–

7.106◦ E). Doing so, we find that the Pearson’s r increases to

0.28, while the slope and the intercept of the linear regression

are 0.21 and 0.96 µg m−3, respectively.

Finally, to investigate the impact of temporal variability

and to compare with the previous results of monthly resolved

data, we calculated monthly average of IASI measurements

above the Netherlands and the LML ground-based concen-

trations at the IASI overpass time. The time series of Fig. 5

show the temporal variability in 2008, 2009, 2010, 2011 and

2012 of IASI-NH3 columns (top panel, blue, molec cm−2)

and of the surface concentrations derived from IASI columns

(bottom panel, red, µg m−3) and monitored by the LML sites

(bottom panel, black, µg m−3). Only values with a relative re-

trieval error below 100 % have been taken into account. The

spring peak linked with fertilization practices in the Nether-

lands is clearly identifiable in the LML and IASI time series

in March/April. Looking at the surface concentrations, a fair

agreement is found between the ground-based and the satel-

lite observations. The monthly variability is consistent be-

tween both instruments even if the IASI-derived values are

not reproducing with the same amplitude the peaks observed

from the ground. This could be due, as explained previously,

to a misrepresentation of the NH3 vertical distribution. As

shown in the lowest row of Table 2, the comparison based

Figure 5. Monthly time series of NH3 satellite columns (top, blue,

molec cm−2) and surface concentrations at the overpass time of the

satellite (bottom) from all the sites of the Dutch LML network av-

eraged (black, µg m−3) and from IASI satellite observations (red,

µg m−3) (in the box 51.185–53.022◦ N and 4.01–7.106◦ E, cor-

responding to the area covered by the Dutch network), covering

2008, 2009, 2010, 2011 and 2012. The associated error bars are

based on the retrieval error for each monthly column, calculated

following equations described in Van Damme et al. (2014a). Only

monthly means associated with weighted relative retrieval errors be-

low 100 % are shown.

on monthly data is characterized by a Pearson’s r of 0.47,

substantially higher than the ones obtained with the previous

data sets. The linear regression has a slope of 0.19 and an

intercept of 1.86 µg m−3.

3.2 Comparison with airborne observations

California is an important NH3 source area in the USA. Ma-

jor sources include livestock operations, agricultural fertil-

izers, waste management facilities and motor vehicles (Par-

rish, 2014). Figure 6 presents the NH3 distributions for the

area and period covered by the CalNex campaign (from

30 April to 24 June 2010). The airborne distribution (top

panel, ppbv) is consistent with the satellite one (bottom

panel, ×1016 molec cm−2). The retrieval error distribution is

also presented as inset (bottom left of right panel, %). The

pattern observed is characterized by the highest concentra-

tions in the San Joaquin and Sacramento valleys, as well as

in the South Coast Air Basin (SCAB). High concentrations

are also measured in the Imperial Valley and to a lesser ex-

tent in the neighborhood of Phoenix. Note that the high val-

ues reported by the airborne measurements on 22 June above

upper western part of Colorado are also measured by IASI.

To compare satellite observations with the CalNex data

set, the IASI total columns are first converted to concentra-

tions at the altitude of interest for each airborne measurement

located inside the satellite footprint. The concentrations (air-

borne or satellite based) covering the footprint of IASI are
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Figure 6. NH3 distribution measured from CIMS instrument on-board NOAA WP-3D aircraft (left, ppbv) and IASI satellite (right,

molec cm−2) averaged for the flight period of the CalNex campaign (from 30 April 2010 to 24 June 2010). Averaged relative retrieval

error (%) of the IASI-NH3 columns are presented as inset in the lower left corner of right panel. Only column means associated with

weighted relative retrieval errors below 100 % are shown.

Figure 7. Spatial distribution of 1515 airborne observations made

on-board the NOAA WP-3D aircraft at various altitudes superim-

posed on the corresponding IASI footprint. The color scale cor-

responds to the individual concentrations (ppbv) measured by the

CIMS instrument, while the value for IASI is the average of the

VMR calculated from the same total column at the different alti-

tudes of the aircraft.

then averaged in a second step. This results in 222 corre-

sponding pairs of observations to which we can apply thresh-

olds on the mistime (being the time difference between the

IASI overpass and the airborne measurement), the retrieval

error or the number of airborne observations by IASI foot-

print.

As an illustration, Fig. 7 shows observations in the SCAB

(satellite footprint centered at 34.12◦ N and 118◦W) charac-

terized by a satellite mean concentration of 2.17 ppbv (asso-

ciated with a relative retrieval error of 25 %) and an airborne

Table 3. Statistical analysis of the CalNex and IASI satellite vmr

comparison. The slope (a) and the intercept (b) of the linear regres-

sions are indicated for various criteria on the data selection, as well

as their respective Pearson’s correlation coefficients (r , in italic font

when significant); n correspond to the number of pairs of observa-

tions.

Retrieval error Mistime a b r n

No filter No filter 0.07 2.31 0.36 222

No filter < 3 h 0.18 0.64 0.72 75

< 100 % < 3 h 0.18 0.49 0.82 70

< 100 % < 1 h 0.17 0.13 0.99 15

concentration of 2.65 ppbv. This subset of observations has

been selected as the one with the highest density of airborne

measurements for a given IASI footprint (with a relative re-

trieval error below 100 %) considering a mistime below 3 h.

The IASI footprint in that case includes 1515 individual air-

borne observations spanning altitudes from 272 m to 2.6 km.

The results obtained from the comparison are presented

in Table 3. The first row gives the statistical parameters for

all the coupled observations. This comparison is character-

ized by a Pearson’s r of 0.36 (n= 222), a slope of 0.07 and

an intercept at 2.33 ppbv. Only considering pairs of obser-

vations with a mistime of less than 3 h, the Pearson’s r in-

creases significantly to 0.72 (n= 75). If a threshold on the

relative retrieval errors is also taken into account (in this case

being < 100 %), the r increases further to 0.82. Finally, if we

constrain the mistime to be lower than 1 h, the Pearson’s r

reaches 0.99 (n= 15). With increased filtering, a decrease of

the intercept is also observed. However, it is notable that the

slope of the regression does not change substantially, remain-

ing at around 0.17 to 0.18, indicating underestimates of NH3

in VMR compared to the aircraft measurements using CIMS.
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4 Conclusions and perspectives for the validation

Overall, IASI satellite measurements of NH3 are consistent

with the available data sets used in this study. This paper

presents only the first steps to validate IASI-NH3 columns.

As shown, it is not straightforward and depends strongly

on data availability as well as on their representativity for

satellite observations. The yearly distributions reveal consis-

tent patterns and highlight the scarcity and the spatial het-

erogeneity of NH3 observations from the ground, with very

few measurements in the Southern Hemisphere and tropical

agroecosystems. Comparisons with monthly resolved data

sets in Europe, China and Africa have shown that IASI NH3-

derived concentrations are in fair agreement considering that

the ground-based observations used here for comparison are

mainly monthly integrated measurements, while the satellite

monthly weighted means are only taking observations at the

morning overpass time into account.

The comparison between IASI-derived concentrations and

the surface concentrations measured locally was assessed us-

ing linear regressions. Statistically significant correlations

were found at several sites, but low slopes and high intercepts

were calculated in all cases. Overall, this points to a too-

small range in the IASI surface concentrations, which could

partly be due to the lack of representativity of the point sur-

face measurements in the large IASI pixel. Another possible

reason for the difference lies in the use of a simple profile

shape in the retrieval procedure, which does not take into

account variations in the boundary layer height and hence

in the mixing of pollution close to the surface. As shown

in previous studies, accounting for realistic boundary layer

heights in the retrieval of tropospheric column from satel-

lite measurements improves on the comparison with surface

measurements (e.g., see Boersma et al., 2009). A third possi-

ble contributing reason for the large intercept and low slope

is a bias in the IASI values derived from weighted averag-

ing, where more weight is given to data with the least uncer-

tainty. Under clean conditions, when there is a weak signal,

this tends to give more weight to high values, which partly

explain the high intercept values.

In addition to the comparison with ground-based mea-

surements, this paper has also provided a comparison of the

IASI-derived VMR to vertically resolved CIMS measure-

ments from the NOAA WP-3D airplane during the CalNex

campaign in 2010. The main advantage of such a compar-

ison lies in the fact that numerous airborne measurements

are available within the satellite footprint, strongly reducing

spatial representativity issues. Moreover, airborne measure-

ments are performed at altitudes that are more in line with the

sensitivity of infrared nadir sounders. Consequently, a much

higher correlation between IASI and the airplanes is found,

e.g., characterized by a correlation coefficient of 0.82 for sub-

set of observations associated with a retrieval error below

100 % for IASI and a mistime below 3 h. Low slopes and

large intercept values from the linear regressions are never-

theless obtained, as they were with the ground-based mea-

surements, further suggesting a poor representativity of the

profile shape used for IASI retrievals for these high pollution

regions.

More generally, this first attempt to validate the NH3 mea-

surements from IASI has highlighted known limitations in

both the retrieval procedure (fixed vertical profile and bound-

ary layer height) and in the correlative measurements, which

are in many cases not representative of what the satellite

measures horizontally and vertically. All statistical results

were shown for concentrations (or VMR) and do not al-

low the validity of the IASI-derived columns to be assessed,

which is – considering the limited vertical sensitivity achiev-

able – the most relevant quantity available from these satel-

lite measurements. Therefore, here we highlight the need

to acquire more comprehensive data sets of NH3 columns,

e.g., by using boundary layer heights and NH3 profile mea-

surements (and/or estimates) to infer the columns abundance

from the surface observations. For this purpose, dedicated

measurement campaigns focusing on the NH3 vertical pro-

file or additional total column measurements from ground-

based Fourier transform infrared, which are becoming avail-

able (Vigouroux et al., 2013), will no doubt allow improve-

ments in the validation of NH3 satellite-retrieved columns in

the future.
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Appendix A

Table A1. Statistical analysis of the NEU data set and monthly IASI

satellite surface concentrations comparison for each stations during

2008, 2009 and 2010. Each site is characterized by its site code and

name, coordinates, its Pearson’s correlation coefficient (r) and the

associated p value as well as its number of points (n). Only monthly

values with a relative IASI retrieval errors below 100 % have been

taken into account.

Site code Site name Lat (◦ N) Long (◦ E) r p value n

IT-Amp Amplero 41.90 13.61 −0.26 0.50 9

UK-Amo Auchencorth Moss 55.79 −3.24 0.08 0.67 33

FR-Bil Bilos 44.52 −0.90 0.05 0.86 14

BE-Bra Brasschaat 51.31 4.52 0.56 0.00 27

HU-Bug Bugac 46.69 19.60 −0.12 0.51 34

NL-Ca1 Cabauw 51.97 4.93 0.40 0.02 35

IE-Ca2 Carlow 52.85 −6.90 0.02 0.92 31

IT-Col Collelongo 41.85 13.59 −0.09 0.61 34

IE-Dri Dripsey 51.99 −8.75 0.31 0.14 24

UK-ESa East Saltoun 55.90 −2.84 −0.01 0.97 9

ES-ES1 El Saler 39.35 −0.32 −0.19 0.30 33

PT-Esp Espirra 38.64 −8.60 0.31 0.07 34

FR-Fon Fontainbleau 48.48 2.78 0.17 0.35 31

FR-Fou Fougères 48.38 −1.18 0.58 0.00 24

RU-Fyo Fyodorovskoye 56.46 32.92 0.81 0.00 27

DE-Geb Gebesee 51.10 10.91 0.47 0.01 27

UK-Gri Griffin 56.62 −3.80 −0.48 0.41 5

FR-Gri Grignon 48.84 1.95 0.08 0.67 32

DE-Gri Grillenburg 50.95 13.51 0.39 0.04 29

DE-Hai Hainich 51.08 10.45 −0.03 0.89 28

FR-Hes Hesse 48.67 7.07 0.12 0.55 28

DE-Hoe Höglwald 48.30 11.10 −0.02 0.90 30

NL-Hor Horstermeer 52.03 5.07 0.21 0.24 33

FI-Hyy Hyytiälä 61.85 24.30 −0.44 0.05 21

DE-Kli Klingenberg 50.89 13.52 −0.14 0.47 29

CH-Lae Laegern 47.48 8.37 −0.04 0.81 31

FR-Lq2 Laqueuille 45.64 2.74 0.19 0.33 30

ES-LMa Las Majadas 39.94 −5.77 0.22 0.21 34

FR-LBr Le Bray 44.72 −0.77 0.50 0.14 10

FI-Lom Lompolojänkkä 68.21 24.35 −0.43 0.10 16

BE-Lon Lonzee 50.55 4.74 0.21 0.32 25

NL-Loo Loobos 52.17 5.74 0.33 0.08 29

DE-Meh Mehrstedt 51.28 10.66 0.26 0.20 25

PT-Mi1 Mitra II (Evora) 38.54 −8.00 −0.11 0.58 29

IT-MBo Monte Boone 46.03 11.08 0.71 0.00 36

SE-Nor Norua 60.08 17.47 −0.19 0.37 25

CH-Oe1 Oensingen 47.29 7.73 0.03 0.89 30

UA-Pet Petrodolinskoye 46.50 30.30 0.35 0.05 30

PL-wet Polwet 52.76 16.31 −0.21 0.28 28

FR-Pue Puechabon 43.74 3.60 0.09 0.63 35

IT-Ren Renon 46.59 11.43 −0.05 0.79 33

DK-Lva Rimi 55.70 12.12 0.54 0.11 10

DK-Ris Risbyholm 55.53 12.10 0.54 0.27 6

IT-Ro2 Roccarespampani 42.39 11.92 0.06 0.72 33

IT-SRo San Rossore 43.73 10.28 0.03 0.85 32

SE-Sk2 Skyttorp 60.13 17.84 −0.40 0.25 10

FI-Sod Sodankylä 67.36 26.64 −0.41 0.07 20

DK-Sor Soroe 55.49 11.65 −0.05 0.82 24

NL-Spe Speulderbos 52.25 5.69 0.10 0.57 33

DE-Tha Tharat 50.96 13.57 0.44 0.02 30

ES-VDA Vall d’Alinyà 42.15 1.45 0.58 0.00 35

BE-Vie Vielsalm 50.31 6.00 0.11 0.65 21

DE-Wet Wetzstein 50.45 11.46 0.47 0.01 28

Table A2. Statistical analysis of the NNDMN data set and monthly

IASI satellite surface concentrations comparison for each stations

during 2009, 2010, 2011, 2012 and 2013. Each site is characterized

by its name and coordinates, its Pearson’s correlation coefficient (r)

and the associated p value as well as its number of points (n). Only

monthly values with a relative IASI retrieval errors below 100 %

have been taken into account.

Site Long (◦ E) Lat (◦ N) r p value n

CAU (China Agricultural University) 116.28 40.02 0.51 0.00 45

BNU (Beijing Normal University) 116.37 39.96 0.64 0.17 6

DBW (Dongbeiwang) 116.28 40.05 – – 0

SZ (Shangzhuang) 116.18 40.14 0.72 0.00 45

BD (Baoding) 115.48 38.85 0.27 0.39 12

QZ (Quzhou) 115.02 36.87 0.32 0.03 44

YQ (Yangqu) 112.67 38.06 0.39 0.01 45

LSD (Lingshan Dao) 120.17 35.78 0.55 0.00 32

CD (Changdao) 120.74 37.91 0.58 0.00 37

YC (Yucheng) 116.63 36.92 0.42 0.12 15

ZMD (ZMD) 114.02 33.01 −0.16 0.30 45

ZZ (Zhengzhou) 113.63 34.75 0.38 0.01 43

DL (Dalian) 121.61 38.91 0.43 0.01 40

GZL (Gongzhuling) 124.82 43.50 0.52 0.00 38

LS (Lishu) 124.34 43.31 0.34 0.03 40

WY (Wuyin) 129.25 48.11 0.24 0.54 9

GH (Genhe) 121.52 50.78 −0.36 0.34 9

TFS (Tufeisuo) 87.28 43.56 0.23 0.50 11

SDS (Shengdisuo) 87.34 43.51 0.21 0.53 11

DL (Duolun) 116.49 42.20 0.52 0.29 6

BYBLK (Bayinbuluke) 84.15 43.03 0.59 0.03 14

WW (Wuwei) 102.61 37.96 −0.19 0.25 39

YL (Yangling) 108.08 34.27 0.02 0.89 45

FH (Fenghua) 121.53 29.61 0.30 0.06 38

FZ (Fuzhou) 119.57 26.06 0.02 0.92 38

WX (Wuxue) 115.94 30.07 0.47 0.01 28

BY (Baiyun) 113.27 23.16 −0.23 0.16 41

ZZ (Zhanjiang) 110.33 21.26 0.05 0.74 39

TJ (Taojiang) 112.16 28.52 0.35 0.05 33

FY (Feiyue) 113.20 28.33 0.16 0.36 35

HN (Huinong) 113.24 28.31 0.34 0.05 35

XS (Xishan) 113.18 28.36 0.47 0.00 36

NJ (Nanjing) 118.50 31.52 0.35 0.16 18

FY (Fengyang) 117.53 32.87 0.64 0.03 11

WJ (Wenjiang) 103.86 30.68 0.02 0.92 38

ZY (Ziyang) 104.63 30.13 0.58 0.00 38

YT (Yanting) 105.46 31.27 0.70 0.00 29

JJ (Jiangjin) 106.26 29.29 0.14 0.67 12

YNAU (Yunnannongda) 102.75 25.13 0.42 0.17 12

DC (Dianchi) 102.64 25.00 0.64 0.03 12

KY (Kunyang) 102.73 25.04 0.39 0.21 12

LZ (Linzhi) 94.36 29.65 −0.75 0.00 12

XN (Xining) 101.79 36.62 1.00 1.00 1

Table A3. Statistical analysis of the IDAF data set and monthly

IASI satellite surface concentrations comparison for each stations

during 2008, 2009, 2010 and 2011. Each site is characterized by its

name and coordinates, its Pearson’s correlation coefficient (r) and

the associated p value as well as its number of points (n). Only

monthly values with a relative IASI retrieval errors below 100 %

have been taken into account.

Site Lat (◦ N) Long (◦ E) r p value n

Banizoumbou 13.52 2.63 −0.01 0.95 47

Katibougou 12.93 −7.53 0.01 0.95 47

Agoufou 15.33 −1.48 0.06 0.73 35

Lamto 6.22 −5.03 0.39 0.01 40

Djougou 9.65 1.73 −0.04 0.81 42

Zotélé 3.25 11.88 0.22 0.18 36

Bomassa 2.20 16.33 −0.36 0.03 38

Amersfoort −27.07 29.87 0.04 0.84 34

Louis Trischardt −22.99 30.02 −0.15 0.43 31

Cape point −34.35 18.48 0.05 0.84 17
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