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ABSTRACT

Neoproterozoic siliciclastic-dominated 
sequences are widespread along the eastern 
margin of Laurentia and are related to rift-
ing associated with the breakout of Laurentia 
from the supercontinent Rodinia. Detrital zir-
cons from the Moine Supergroup, NW Scot-
land, yield Archean to early Neoproterozoic 
U-Pb ages, consistent with derivation from 
the Grenville-Sveconorwegian orogen and en-
virons and accumulation post–1000 Ma. U-Pb 
zircon ages for felsic and associated mafi c in-
trusions confi rm a widespread pulse of exten-
sion-related magmatism at around 870 Ma. 
Pegmatites yielding U-Pb zircon ages between 
830 Ma and 745 Ma constrain a series of 
defor ma tion and metamorphic pulses related 
to Knoydartian orogenesis of the host Moine 
rocks. Additional U-Pb zircon and monazite 
data, and 40Ar/39Ar ages for pegmatites and 
host gneisses indicate high-grade metamor-
phic events at ca. 458–446 Ma and ca. 426 Ma 
during the Caledonian orogenic cycle.

The presence of early Neoproterozoic 
silici clastic sedimentation and deformation 
in the Moine and equivalent successions 
around the North Atlantic and their absence 
along strike in eastern North America refl ect 
contrasting Laurentian paleogeography dur-

ing the breakup of Rodinia. The North At-
lantic realm occupied an external location 
on the margin of Laurentia, and this region 
acted as a locus for accumulation of detritus 
(Moine Supergroup and equivalents) derived 
from the Grenville-Sveconorwegian orogenic 
welt, which developed as a consequence of 
collisional assembly of Rodinia. Neoprotero-
zoic orogenic activity corresponds with the 
inferred development of convergent plate-
margin activity along the periphery of the 
supercontinent. In contrast in eastern North 
America, which lay within the internal parts 
of Rodinia, sedimentation did not commence 
until the mid-Neoproterozoic (ca. 760 Ma) 
during initial stages of supercontinent frag-
mentation. In the North Atlantic region, this 
time frame corresponds to a second pulse 
of extension represented by units such as 
the Dalradian Supergroup, which uncon-
formably overlies the predeformed Moine 
succession.

INTRODUCTION

The assembly and breakup of Neoproterozoic 
supercontinents Rodinia and Pannotia led to the 
development of a series of evolving sedimentary 
sources and sinks for sediment accumulation 
(Cawood et al., 2007a, 2007b). Neoproterozoic 
to early Paleozoic rift and passive-margin suc-
cessions are well developed around the margins 

of Laurentia (Bond et al., 1984). They consti-
tute a key piece of evidence that Laurentia lay 
at the core of the end Mesoproterozoic to early 
Neoproterozoic supercontinent of Rodinia 
(Dalziel, 1991; Hoffman, 1991). The rift and 
passive-margin successions are well preserved 
within, and their development heralds the ini-
tiation of, the Appalachian-Caledonian orogeny, 
which extends along the east coast of North 
America, through Ireland, Britain, East Green-
land, and Scandinavia (Fig. 1A; Dalziel, 1997; 
Dewey, 1969; van Staal et al., 1998; Williams, 
1984). The character of these successions, 
in terms of both original depositional lithol-
ogy and age range, and subsequent orogenic 
deformational and metamorphic history, varies 
along and across the orogen and likely refl ects 
variations in nature of basement lithologies, the 
nature and timing of the continental breakup 
record, and the timing and drivers of the oro-
genic record. In particular, and the focus of this 
paper, the early Neoproterozoic siliciclastic 
successions in Scotland, along with equivalent 
units in the East Greenland and Scandinavian 
Caledonides , record an early cycle of sedi-
mentation and deformation that is absent from 
the North American Appalachian successions. 
Our aim is to present new data on provenance 
and timing of orogenic activity for the Moine 
Supergroup in Scotland, so as to constrain the 
development of the northeast Laurentian margin 
in the Neoproterozoic  and to relate along-strike 

For permission to copy, contact editing@geosociety.org
© 2014 Geological Society of America; Gold Open Access: This paper is published under the terms of the CC-BY licence.

  349

GSA Bulletin; March/April 2015; v. 127; no. 3/4; p. 349–371; doi: 10.1130/B31068.1; 15 fi gures; 2 tables; Data Repository item 2014324; 
published online 16 September 2014.

†peter.cawood@st-andrews.ac.uk.



Cawood et al.

350 Geological Society of America Bulletin, v. 127, no. 3/4

changes in the margin’s history to evolving 
tectonic settings both peripheral and internal 
to Rodinia.

REGIONAL SETTING

Laurentian rift and passive-margin succes-
sions within the Caledonian orogen in Scotland 
are preserved in three main belts, the Hebridean 
foreland, the Northern Highlands terrane, and 
the Grampian terrane (Fig. 1B). In the Hebridean  
foreland, a little-deformed Cambrian–Ordovi-
cian mixed siliciclastic and carbonate passive-
margin succession is unconformable on pre-
orogen Mesoproterozoic clastic rocks (Torridon, 
Sleat, and Stoer groups) and Archean to Paleo-
proterozoic basement of the Lewisian complex. 
It was this succession that fi rst indicated the Lau-
rentian origin of the foreland (Peach et al., 1907; 
Salter, 1859). The Northern Highlands terrane, 
between the Moine thrust and Great Glen fault, 
contains the Moine Supergroup, a clastic-domi-
nated succession that accumulated during early 
Neoproterozoic lithospheric extension on the 
developing margin of Laurentia. The Grampian 
(or Central Highlands) terrane lies between the 
Great Glen and Highland Boundary faults and 
includes equivalents of the Moine Supergroup 
(Badenoch Group) and the unconformably over-
lying Dalradian Supergroup, a Neoproterozoic 
to early Paleozoic rift and passive-margin silici-
clastic-dominated succession with some inter-
stratifi ed carbonates as well as bimodal mafi c 
and minor felsic igneous rocks.

The Moine Supergroup (Fig. 2) consists of 
thick successions of strongly deformed and 
metamorphosed sedimentary rocks, now repre-
sented mainly by metasandstone and metapelite. 
The sedimentary precursors were deposited in a 
range of fl uvial to marine environments (Bonsor 
et al., 2010, 2012; Glendinning, 1988; Strachan, 
1986). Three lithostratigraphic subdivisions 
have been recognized, from inferred oldest 
to youngest, the Morar, Glenfi nnan, and Loch 
Eil groups (Holdsworth et al., 1994; Johnstone 
et al., 1969; Soper et al., 1998; Strachan et al., 
2002, and references therein). The Morar Group 
is located in the Moine Nappe, whereas the 
Glenfi nnan and Loch Eil groups occur mainly 
within the structurally overlying Sgurr Beag 
Nappe. The East Sutherland migmatites, which 
lie in the Naver Nappe (Fig. 2), are thought to 
form part of the Moine Supergroup, although 
their exact lithostratigraphic affi nities are uncer-
tain. Tectonically emplaced inliers of Neo-
archean (“Lewisianoid”) orthogneisses (Fig. 2) 
are considered to represent the basement on 
which the Moine sediments were deposited 
(Friend et al., 2008; Holdsworth, 1989; Ramsay , 
1958a; Strachan  and Holdsworth, 1988). 
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Detrital  zircons from Moine rocks have yielded 
a range of Neoarchean to earliest Neoprotero-
zoic U-Pb ages consistent with derivation of 
sediment from the present-day NE Laurentia 
sector of Rodinia (Cawood et al., 2004, 2007b; 
Friend et al., 2003; Kirkland et al., 2008).

The Glenfi nnan and Loch Eil groups were 
intruded at ca. 870 Ma by the igneous protoliths 
of the West Highland Granitic Gneiss (Fig. 2) 
and associated metabasic rocks (Dalziel, 1966; 
Dalziel and Johnson, 1963; Dalziel and Soper, 
2001; Friend et al., 1997; Millar, 1999; Rogers 
et al., 2001). Geochronological evidence indi-
cates that the Moine Supergroup, and likely cor-
relatives east of the Great Glen fault (Badenoch 
Group), together with the intrusive protoliths of 
the West Highland Granitic Gneiss and associ-
ated mafi c rocks, was affected by a series of 
Neoproterozoic tectonothermal events between 
ca. 840 Ma and ca. 725 Ma (Long and Lambert, 
1963; Piasecki, 1984; Piasecki and van Bree-
men, 1983; Noble et al., 1996; Highton et al., 
1999; Rogers et al., 1998; Vance et al., 1998; 
Tanner and Evans, 2003; Cutts et al., 2009, 
2010). These events are referred to collectively 
as “Knoydartian” (Bowes, 1968), although the 
documented duration of >100 m.y. presumably 
incorporates multiple discrete events rather than 
a single protracted event (Cawood et al., 2010).

The late Neoproterozoic to early Paleozoic 
breakup of Pannotia and development of the 
Iapetus Ocean was associated with the intrusion 
of granites dated at 600–580 Ma (U-Pb zircon) 
into the Moine Supergroup (Kinny et al., 2003b; 
Oliver et al., 2008). East of the Great Glen fault, 
the depositional history of the mid-Neoprotero-
zoic to Cambrian Dalradian Supergroup refl ects 
progressive rifting and basin deepening on the 
Laurentian margin of Iapetus (Anderton, 1985). 
The initial closure of the Iapetus Ocean during 
the early- to mid-Ordovician (480–470 Ma) 
was marked by the Grampian orogenic event 
(Lambert and McKerrow, 1976), equivalent to 
the Taconic event in the Appalachian orogen 
(Dewey and Shackleton, 1984; Rogers, 1970). 
This resulted from collision of the Laurentian 
margin with a volcanic arc, probably represented 
by the Midland Valley terrane (Fig. 1B), obduc-
tion of ophiolites, and widespread deformation 
and Barrovian metamorphism of the Moine and 
Dalradian successions (Chew and Strachan , 
2013, and references therein; Cutts et al., 
2010; Dewey and Ryan, 1990; Kinny et al., 
1999; Oliver , 2001; Rogers et al., 2001; Soper 
et al., 1999). A further tectonothermal event at 
ca. 450 Ma has been identifi ed on the basis of 
Lu-Hf and Sm-Nd dating of metamorphic gar-
net within the western Moine rocks (Bird et al., 
2013). The fi nal stages of closure of the Iapetus  
Ocean during the Silurian were associated with 

the collision of Baltica with East Greenland 
and the segment of Laurentia that contained the 
Moine Supergroup (the Scottish Promontory of 
Dalziel  and Soper, 2001), resulting in the Scan-
dian orogenic event (Coward , 1990; Dallmeyer 
et al., 2001; Dewey and Strachan , 2003). This 
resulted in regional-scale ductile thrusting, fold-
ing, and Barrovian metamorphism of the Moine 
Supergroup, culminating in westward displace-
ment on the Moine thrust zone (Fig. 2) at ca. 
430–425 Ma (Freeman et al., 1998; Good enough 
et al., 2011; Kinny et al., 2003a; Strachan  and 
Evans, 2008).

The Moine Supergroup was established as an 
important area for the study of multiple defor-
mation events before geochronological investi-
gations revealed unsuspected complexity in its 
orogenic history (e.g., Clifford, 1959; Fleuty, 
1961; Ramsay, 1958a, 1958b, 1960). Many parts 
of the Moine Supergroup have been mapped in 
detail, with deformational sequences interpreted 
in the context of D1–Dx events, each of which 
might be associated with a particular set of tec-
tonic structures (e.g., Brown et al., 1970; Pow-
ell, 1974; Tobisch et al., 1970). The isotopic dat-
ing of deformed igneous intrusions has proved 
useful in assigning tectonic structures to certain 
orogenic events (e.g., Kinny et al., 2003a; Kocks 
et al., 2006; Strachan and Evans, 2008). How-
ever, in other cases, it has been diffi cult to relate 
isotopic data obtained from metamorphic por-
phyroblasts and/or accessory phases to tectonic 
fabrics, meaning that the age(s) of the latter have 
remained ambiguous (e.g., Cutts et al., 2010). 
Furthermore, the relative paucity of modern iso-
topic data means that the ages of tectonic struc-
tures and associated metamorphic assemblages 
are poorly constrained over large tracts of the 
Moine Supergroup.

The present study reports new U-Pb zircon 
data from: (1) Morar Group and possible Glen-
finnan Group metasedimentary lithologies, 
aimed at further evaluating the provenance of 
these units, and (2) a range of meta-igneous 
intrusions and felsic melts, aimed at either estab-
lishing or refi ning the ages of protoliths and/or 
deformation and high-grade metamorphism. In 
addition, U-Pb monazite and 40Ar/39Ar musco-
vite data were obtained from three samples to 
place further constraints on the timing of major 
tectonothermal events.

SAMPLE DESCRIPTIONS AND FIELD 
RELATIONSHIPS

Metasedimentary Units

Samples of metasandstone and metapelite 
were obtained from the Moine rocks on the Ross 
of Mull (Figs. 2 and 3), which have been cor-

related with the Morar and Glenfi nnan groups 
(Holdsworth et al., 1987). Whereas on the main-
land, the two groups are everywhere thought to 
be separated by the Sgurr Beag thrust (Tanner, 
1970), on the Ross of Mull they are interpreted 
to form a continuous sequence (Holdsworth 
et al., 1987). To evaluate further the nature of 
the contact between the two groups at this 
locality, four samples were collected, in strati-
graphic order (Fig. 3): Lower Shiaba Psammite 
(MG01, sampled at NM 44554 18971 [the loca-
tion of each sample is linked to a UK National 
Grid Reference]), Upper Shiaba Psammite 
(MG04, sampled at NM 42829 18367), Scoor 
Pelitic Gneiss (RS01–10, sampled at NM 4201 
1882), and the Ardalanish Striped and Banded 
unit (MG03, sampled at NM 39627 18699). 
Correlation of these units with the Morar and 
Glenfi nnan groups on the mainland is shown in 
Figure 3. Descriptions of the selected samples 
are given in the GSA Data Repository.1 In addi-
tion, a sample of the Morar Group (KD07–02) 
was obtained from the Knoydart Peninsula at 
NM 79698 96119 (Fig. 2). The unit sampled is 
the regionally extensive Ladhar Bheinn Pelite 
(Ramsay and Spring, 1962), thought to be the 
northern continuation of the Morar Pelite (Hold-
sworth et al., 1994), and to lie stratigraphically 
between Lower and Upper Shiaba Psammite 
samples MG01 and MG04 (Fig. 3; see Data 
Repository text [footnote 1]).

Meta-Igneous Intrusions: West Highland 
Granitic Gneiss

Ardgour granitic gneiss (Sgurr Dhomhnuill  
facies; sample “SD Gneiss”). The West High-
land Granitic Gneiss comprises a series of 
highly deformed and metamorphosed gra-
nitic intrusions that mainly occur close to the 
boundary between the Glenfi nnan and Loch 
Eil groups, and also further east adjacent to 
the Great Glen fault (Fig. 2; Johnstone, 1975). 
Barr et al. (1985) concluded that the granitic 
gneisses represent S-type, anatectic granites 
derived by partial melting of Moine metasedi-
mentary rocks during regional high-grade 
metamorphism. In contrast, Dalziel and Soper 
(2001) and Ryan and Soper (2001) argued that 
the igneous protoliths were pretectonic and 
intruded during extensional rifting. Previously 
reported ages for the gneiss include a thermal 
ionization mass spectrometry (TIMS) zircon 
age of 873 ± 7 Ma for a segregation pegmatite 
from the Ardgour granitic gneiss (Friend et al., 
1997) and a U-Pb zircon (secondary ion mass 
spectrometry [SIMS]) age of 870 ± 30 Ma 

1GSA Data Repository item 2014324, analytical 
methods, cathodoluminescence imaging, is available 
at http:// www .geosociety .org /pubs /ft2014 .htm or by 
request to editing@ geosociety .org.
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for the Fort Augustus granitic gneiss (Fig. 2; 
Rogers  et al., 2001).

To more accurately ascertain the age of the 
igneous protolith of the Ardgour granitic gneiss, 
a sample of nonmigmatitic granitic gneiss 
was obtained from NM 84677 66189 (Fig. 2). 
In this southern part of the body, the granitic 
gneiss commonly contains numerous 2–3 cm 
K-feldspar augen, the “Sgurr Dhomhnuill” 
facies of Harry (1953; see Data Repository text 
[footnote 1]).

Glen Doe granitic gneiss and metagabbro. 
The Glen Doe granitic gneiss is the northern-
most body of the West Highland Granitic Gneiss 
(Fig. 2) and occurs in association with meta-
gabbros and metadolerites (Barr et al., 1985; 
Millar, 1990; Millar, 1999; Peacock, 1977). Field 
relationships indicate that the igneous protoliths 
of the granitic gneisses and the metagabbros 
were intruded more or less contemporaneously 
and are pretectonic relative to regional defor-

mation and metamorphism of the host Moine 
rocks (Dalziel and Soper, 2001; Millar, 1990; 
Millar, 1999). A U-Pb zircon age of 873 ± 6 Ma 
obtained from a metagabbro and the mid-ocean-
ridge basalt (MORB) affi nities of spatially asso-
ciated metadolerites are key lines of evidence 
indicating that the ca. 870 Ma event was domi-
nated by extensional rifting and bimodal mag-
matism (Dalziel and Soper, 2001; Millar, 1999).

To test the hypothesis that igneous protoliths 
of the granitic gneisses and the meta gabbros 
were of approximately the same age, four 
samples were obtained from the River Doe sec-
tion (Fig. 2). Two of these were collected from 
the main body of the granitic gneiss: samples 
SH-02–18B (NH 21643 12642) and D24 (NH 
21162 12661). A third granitic gneiss sample 
(D48) was a xenolith within metagabbro (NH 
21864 12583). The fourth sample (D93) was 
a foliated metagabbro collected at NH 21848 
12598 (see Data Repository text [footnote 1]).

Felsic Melts
Cruachan Coille a’Chait pegmatite (MS07–

01). The Cruachan Coille a’Chait pegmatite 
(Fig. 2) was sampled at NH 11532 11103. It is 
the largest of a suite of crosscutting, foliated 
pegmatites intruding interbanded cross-bedded 
metasandstones and metapelites assigned to 
Loch Eil Group (Millar, 1990). The pegma-
tite is a subvertical sheet, up to 2 m in thick-
ness, that cuts obliquely across the subvertical 
composite S0/S1 gneissic banding within host 
Moine lithologies (Fig. 4A). The S0/S1 fabric 
contains intrafolial isoclinal folds, but these do 
not deform the contact between the pegmatite 
and its host rocks. A penetrative S2 schistos-
ity is defi ned within the pegmatite by aligned 
muscovite grains that wrap quartz-feldspar 
aggregates; this fabric is oblique to S0/S1 and 
sub parallel to the contact between the pegma-
tite and host rocks. The fi eld evidence there-
fore suggests that the pegmatite was intruded 
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between the D1 and D2 deformation events 
identifi ed in this area.

Knoydart pegmatite (KD07–04). The Knoyd-
art pegmatite was sampled at NM 79707 96103, 
where it occurs within the Ladhar Bheinn Pelite 
of the Morar Group (Fig. 2). The fi rst indication 
that the Moine Supergroup had been affected 
by Precambrian metamorphism was pro-
vided by Rb-Sr muscovite ages of ca. 740 Ma 
obtained from the pegmatite by Giletti et al. 
(1961). The Knoydart “pegmatite” consists of 
a series of concordant sheets and veins of foli-
ated pegmatite, ~2–3 m in length and ~0.5 m 
thick, within migmatitic pelitic gneiss (Hyslop, 
2009b; see Data Repository text [footnote 1]). 
The pegmatite contains a coarsely developed 
foliation defi ned by quartz-feldspar aggregates 
that is parallel to their margins and a compos-
ite S0/S1/S2 foliation in host pelitic gneisses. 
Although the fi eld evidence is not clear-cut, the 
view adopted here is that the pegmatites formed 
more or less in situ by recrystallization and seg-
regation during the development of the S1 mig-
matitic banding within the host pelitic gneisses 
(see also Hyslop, 2009b).

Carn Gorm pegmatite (SH-03–04A). The 
Carn Gorm pegmatite (Fig. 2) was sampled at NH 
4388 6289, where it occurs within pelitic gneisses 
assigned to the Glenfi nnan Group (Wilson , 1975). 
Long and Lambert (1963) reported muscovite 
Rb-Sr ages from the pegmatite of ca. 747, 721, 
and 662 Ma. The Precambrian age of the pegma-
tite was confi rmed by van Breemen et al. (1974), 
who obtained Rb-Sr muscovite ages between 
755 Ma and 727 Ma. The pegmatite contains a 
coarsely developed foliation that is parallel to the 
margins of the pegmatite and to the S0/S1 gneissic 
fabric in the host rocks (Wilson, 1975). Adjacent 

to the pegmatite, the host pelitic gneisses contain 
abundant musco vite, quartz veins, and lenticular 
quartzofeldspathic segregations (see also Ken-
nedy et al., 1943). Field evidence suggests that 
the pegmatite formed as a result of in situ recrys-
tallization and segregation during high-grade 
metamorphism of the host Moine rocks (Hyslop, 
1992; Long and Lambert, 1963; van Breemen 
et al., 1974).

Loch Cluanie pegmatite (C51). The Loch 
Cluanie pegmatite was sampled at NH10151 
11456, where it occurs within pelitic gneisses 
of the Glenfi nnan Group. The pegmatite is a 
sheet less than 1 m in width and tightly folded 
by N-S–trending upright F3 folds (Fig. 4B). 
At this locality, pelitic gneisses of the topmost 
Glenfi nnan Group were strongly reworked dur-
ing the D3 event. However, on the fl at limbs of 
F3 folds, earlier isoclinal fold structures are pre-
served in boudinaged psammite horizons, and 
rare cross-bedding indicates younging upwards 
and to the east. The pegmatite cuts a composite 
S0/S1 fabric, but its relationship to the pre-F3 iso-
clinal fold structures is not seen. The pegmatite 
appears to carry a much weaker axial-planar S3 
schistosity than the surrounding pelitic gneiss. 
The fi eld evidence suggests that the pegmatite 
was intruded before the D3 event, but its rela-
tionships to earlier structures are somewhat 
ambiguous.

Glenelg pegmatite (SH-03–01C). The Glenelg  
pegmatite was sampled at Rudha Camas na 
Caillin (NG 8504 0795) south of Arnisdale 
(Fig. 2), where Lewisianoid basement has been 
interfolded isoclinally with Moine psammites of 
the Morar Group (Ramsay, 2010). This episode 
of deformation is the earliest to affect the Moine 
rocks and has therefore been designated “D1” 

(Ramsay, 1958a, 2010). Subsequent “D2” defor-
mation affected both Lewisianoid basement and 
its Moine cover and resulted in widespread tight 
folding on all scales, development of a perva-
sive “S2” schistosity and “L2” lineation, and 
formation of granitic segregations (Ramsay, 
1958a). Granitic segregations are deformed by 
D2 folds, but more commonly they appear to 
have been intruded during the fi nal stages of 
D2. These syn- to late-D2 segregations are typi-
cally no more than 10–15 cm thick at maximum 
and are typically slightly boudinaged, but they 
are generally undeformed internally and thus 
do not carry either S2 or L2. The sample was 
obtained from an ~15-cm-thick pegmatitic seg-
regation that occurs as a concordant sheet within 
Lewisia noid orthogneisses.

ANALYTICAL METHODS

Detrital zircons from the metasedimentary 
units were analyzed in situ using the high-reso-
lution ion microprobe at Curtin University. 
To minimize bias, separated detrital zircons 
were placed randomly on the mount and ana-
lyzed sequentially. Zircons from the Ardgour 
and Glen Doe granitic gneisses, the Glen Doe 
metagabbros, and the Knoydart and Cruachan 
Coille a’Chait pegmatites were analyzed using 
the ion microprobes at Curtin University (sensi-
tive high-resolution ion microprobe [SHRIMP]) 
and NORDSIM (Cameca 1270). Isotopic dilu-
tion–thermal ionization mass spectrometry (ID-
TIMS), undertaken at the University of Texas at 
Austin, was used to investigate zircons from the 
Ardgour and Glen Doe granitic gneisses and the 
Glenelg and Carn Gorm pegmatites (the TIMS 
data set for the latter also including monazite 
analyses). TIMS analyses and laser-ablation–
inductively coupled plasma–mass spectrometry 
(LA-ICP-MS) analyses of the Loch Cluanie 
pegmatite were carried out at the Natural Envi-
ronment Research Council Isotope Geosciences 
Laboratory. To further constrain the timing of 
metamorphic events, muscovite from the Knoy-
dart pelite and the Cruachan Coille a’Chait peg-
matite was investigated using the 40Ar/39Ar dat-
ing technique at the Western Australian Argon 
Isotope Facility at Curtin University. A detailed 
outline of analytical methods, cathodolumines-
cence (CL) imaging, and U-Pb data tables are 
given in the GSA Data Repository (DR text; 
Tables DR1–DR6; Fig. DR1 [see footnote 1]). A 
summary of age results is presented in Table 1.

Results

For the SIMS data, individual concordia ages 
were calculated using Isoplot (Ludwig, 2003) 
for the detrital zircon data set. This approach 
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Figure 4. Field sketches of peg-
matites intruding Moine sedi-
mentary rocks in the vicinity 
of Loch Cluanie (after Millar, 
1990). (A) Cruachan Coille 
a’Chait pegmatite (NH 1532 
11103) exposed on small hill 
above the shores of the loch. 
The pegmatite crosscuts an 
early D1 fold in psammites of 
the Loch Eil Group and carries 
a variable but generally well-
developed S2 fabric. (B) Peg-
matite exposed on shores of 
loch (NH 10151 11456) intru-
sive into pelitic gneisses of the 
Glenfi nnan Group.
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was used because it precludes the practice of 
selecting the best 238U/206Pb or 207Pb/206Pb for 
individual analyses when the data set displays 
a large range of ages (Ludwig, 1998). Only 
individual concordia ages with robust statistical 
parameters are given, with uncertainties at the 
2σ level. Pooled concordia ages, intercepts, and 
weighted averages were calculated using Isoplot 
(Ludwig, 2003) and are given at the 95% confi -
dence level.

The probability density distribution diagrams 
of the ages of detrital zircons were constructed 
from the individual concordia ages and statisti-
cal parameters (mean square of weighted devi-
ates [MSWD] and probability of fi t [P]) fol-
lowing the approach of Nemchin and Cawood 
(2005). This involves double weighting of the 
data based on the probability of concordance 
and errors highlighting the most concordant 
data (probability of concordance > 0.05).

U-Pb Zircon Data from 
Metasedimentary Units

The zircon grains have an average size of 
50–200 µm. The grains display rounded mor-
phologies with a length:width ratio in the 
range 3:1–2:1. Internal structures of the grains, 
revealed by CL images, are dominated by com-
plex oscillatory zoning (Fig. DR1 [see foot-
note 1]). Rounded homogeneous central parts of 
grains that can be readily interpreted as inherited 
cores are uncommon. Faint zoning and multi-
stage dissolution and growth zoning features are 
widely observed. In all fi ve samples, the zircons 
are interpreted as detrital grains that were incor-
porated into the sedimentary protolith during 
deposition. Only in one sample (KD07–02) were 
local thin homogeneous overgrowths observed 
that could be interpreted as having formed in 
situ, either by metamorphic overgrowth or fl uid-
related alteration under amphibo lite-facies con-

ditions (Hanchar and Miller, 1993). Three grains 
in this sample were large enough to allow sepa-
rate core and rim analyses.

Lower Shiaba Psammite (MG01). In total, 
79 analyses from 79 grains yielded ages rang-
ing from ca. 2640 Ma to 1000 Ma (Table DR1 
[see footnote 1]). The youngest reliable concor-
dia age was 1011 ± 57 Ma (MSWD = 0.20, P = 
0.67). Twenty-one analyses show discordance 
higher than 10%, including three that are signif-
icantly displaced from concordia (Fig. 5). The 
other analyses plot on or close to the concor-
dia curve but show a spread from ca. 1800 Ma 
to ca. 1000 Ma. The U and Th concentrations 
show large variations (U = 36–8630 ppm, Th = 
18–3126 ppm, Th/U = 0.13–1.11; Table DR1 
[see footnote 1]). None of these variations can 
be related to age. On the frequency distribu-
tion diagram (Fig. 5), a main peak is observed 
at ca. 1750 Ma, with subordinate peaks at ca. 
1600 Ma, 1500 Ma, 1200 Ma, and 1050 Ma.

Upper Shiaba Psammite (MG04). Ages from 
64 analyses obtained from 64 grains range from 
ca. 2870 Ma to 865 Ma (Fig. 5). The youngest 
reliable concordia age is 1259 ± 35 Ma (MSWD 
= 2.05, P = 0.15). Twelve analyses have a 
discordance higher than 10%, with eight sig-
nifi cantly displaced from the concordia curve. 
The other analyses display a cluster between 
1800 Ma and 1600 Ma (Fig. 5). U and Th con-
centrations are rather high and display large 
variations (18–4536 ppm U and 4–893 ppm Th). 
Two analyses show low Th/U (0.03–0.04) and 
U contents higher than 2000 ppm, suggesting 
postcrystallization resetting or alteration. The 
ages of these grains do not represent the age of 
their formation and these data were not included 
into the density probability plot. As for the pre-
vious sample, the chemical characteristics are 
not correlated with age. On the frequency plot, a 
dominant population is present at ca. 1750 Ma, 

and a minor population is seen at ca. 1500 Ma 
(Fig. 5).

Scoor Pelitic Gneiss (RS01–10). Ages for 82 
analyses from 82 grains range from 2718 Ma 
to 954 Ma. The youngest reliable individual 
concordia age yielded 954 ± 48 Ma (MSWD = 
3.10, P = 0. 10). Ten analyses show discordance 
higher than 10%, but the data plot close to the 
concordia diagram, forming two distinct groups. 
A small cluster of data is observed at 2600 Ma, 
with the remaining data showing a large spread 
from 1800 Ma to 1000 Ma (Fig. 5). U and Th 
concentrations are moderate (U = 12–976 ppm 
and Th = 8–543 ppm) compared to the other 
samples. Only one analysis shows high U and 
Th concentrations (3025 ppm and 1623 ppm, 
respectively) and yields a reliable concordia age 
of 1433 ± 13 Ma (MSWD = 0.14, P = 0.71). 
On the frequency plot (Fig. 5), a predominant 
population is present at 1800 Ma, and minor 
peaks are at 2600 Ma, 1600 Ma, 1400 Ma, and 
at ca. 1100 Ma.

Ardalanish Striped and Banded Formation 
(MG03). Detrital ages for 68 analyses from 68 
grains yielded ages ranging from ca. 1880 Ma to 
490 Ma. Twenty analyses are >10% discordant. 
The individual analyses form two groups on the 
concordia diagram (Fig. 5). The older group 
spans 1800–1400 Ma, and the younger spans 
ca. 1200 Ma to 900 Ma. The U concentrations 
of the grains range from 45 to 2087 ppm, and 
the Th content ranges from 13 to 806 ppm. Two 
analyses are distinct from these two groups, 
plotting at ca. 500 Ma and 700 Ma. The younger 
analysis is from the rim of a grain, which has a 
low Th content (1 ppm) and a Th/U ratio of 0.01, 
unusual for zircon (Rubatto, 2002). As with the 
Upper Shiaba Psammite data, this rim might 
have been altered by postcrystallization pro-
cesses and has not been included in the density 
plot. The ca. 700 Ma analysis has a discordance 

TABLE 1. SAMPLE NUMBERS, LITHOLOGIC UNIT, GRID REFERENCE, AND AGE OF ANALYZED SAMPLES

)aM(egAecnereferdirGtinucihpargitartS.onelpmaS
75±11011798145544MNetimmasPabaihSrewoL10GM
53±95217638192824MNetimmasPabaihSreppU40GM
84±45928811024MNssienGcitileProocS01-10SR
15±9989968172693MNtinudednaBdnadepirtShsinaladrA30GM
91±7999116989697MNetilePnniehBrahdaL20-70DK

)etivocsum(4±8549116989697MNetilePnniehBrahdaL20-70DK
11±2689816677648MNssiengcitinargruogdrAfoseicaf”lliunhmohDrrugS“ssiengDS
32±0482462134612HNssiengcitinargeoDnelGB81-20-HS

8±9681662126112HNssiengcitinargeoDnelG42D
7±0883852146812HN)orbbagatemnihtilonex(ssiengcitinargeoDnelG84D

)mir(91±2478952184812HNssiengcitinargeoDnelGfoorbbagateM39D
6±0873016970797MNetitamgeptradyonK40-70DK

)etizanom+nocriz(8±04798268834HNetitamgepmroGnraCA40-30-HS
)etizanom(1±45498268834HNetitamgepmroGnraCottsohssiengyratnemidesateMC40-30-HS

42±3973011123511HNetitamgeptiahC’aellioCnahcaurC10-70SM
)etivocsum(2±6243011123511HNetitamgeptiahC’aellioCnahcaurC10-70SM

3±0386541115101HNetitamgepeinaulChcoL15C
4±64459704058GNetitamgepglenelGC10-30-HS

Note: Age of sedimentary units is for youngest detrital grain. All ages are concordia U-Pb zircon ages, except Carn Gorm pegmatite and host metasedimentary gneiss 
ages, which are U-Pb monazite, and Ladhar Bheinn Pelite and Cruachan Coille a’Chait pegmatite, which include both U-Pb zircon and Ar/Ar muscovite plateau ages.
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Figure 5. (Left column) Con-
cordia diagrams based on 204Pb-
corrected zircon U-Pb data 
for samples of psammitic and 
pelitic rocks from the Ross of 
Mull and Knoydart. Error el-
lipses are shown at the 2σ level. 
Analytical data are available 
from the GSA Data Repository 
(see text footnote 1); n = num-
ber of zircon analyses in each 
sample. (Right column) Prob-
ability density distribution dia-
grams for detrital zircon data 
from psammitic and pelitic 
samples from the Ross of Mull 
and Knoydart. Dashed vertical 
lines separate boundaries of the 
Paleoproterozoic, Mesoprotero-
zoic, and Neoproterozoic and 
are taken at 1600 Ma, 1000 Ma, 
and 545 Ma. Solid gray line 
highlights 1750 Ma age. The 
small arrows indicate the age 
of the youngest detrital zircon; 
n = number of zircon analyses 
in each sample. Analytical data 
are available from the GSA 
Data Repository (see text foot-
note 1).
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>10% and poor statistical parameters (Table 
DR1 [see footnote 1]). The youngest reliable 
individual concordia age obtained was 899 ± 
51 Ma (MSWD = 0.90, P = 0.34). No correla-
tion between the chemical composition and age 
was observed. The frequency diagram (Fig. 5) 
shows two main peaks at 1800 Ma and ca. 1650 
Ma and four minor peaks at ca. 1500 Ma, 1300 
Ma, 950 Ma, and ca. 500 Ma.

Ladhar Bheinn Pelite (KD07–02). Forty-two 
analyses were obtained from 39 zircon grains. 
Nine grains have a U concentration higher than 
1000 ppm (Table DR1 [see footnote 1]). The 
ages range from 2687 Ma to 616 Ma, with the 
latter age obtained from the inner part of a rim 
and yielding poor statistical parameters. Plot-
ted on a concordia diagram and a frequency 
density plot (Fig. 5), the data set displays age 
clusters at 2600–2400 Ma, 1800–1600 Ma, 
1200–1000 Ma, and ca. 850 Ma. The youngest 
age population at ca. 850 Ma is defi ned by only 
three analyses, with only one reliable individual 
concordia age yielding 829 ± 8 Ma (MSWD = 
2.71, P = 0.10). These data were obtained from 
rims or external parts of cores and are consistent 
with crystallization of zircon during mid-Neo-
proterozoic Knoydartian metamorphism (Cutts 
et al., 2010; Vance et al., 1998).

U-Pb Zircon Data from Meta-Igneous 
Intrusions

Ardgour granitic gneiss (Sgurr Dhomhnuill ). 
Using TIMS data, nine zircon fractions and 
two monazite fractions were analyzed (Table 
DR2 [see footnote 1]). The Z4 fraction was a 
single acicular grain, the typical morphology of 
magmatic origin (Dalziel, 1963), and Z3 was 
a euhedral prism with concentric (magmatic) 
zonation in CL. Three analyses of single or 
small multigrain zircon fractions and two analy-
ses of multigrain monazite fractions constitute 
a well-defi ned discordia yielding upper- and 
lower-intercepts ages of 862 ± 11 Ma and 433 ± 
3 Ma (2σ; Fig. 6A), respectively, with robust 
statistics (MSWD = 0.44, P = 0.72). Fraction 
Z2, which lies slightly below the discordia 
line, apparently included a small inherited core 
or experienced minor Pb loss. Since the upper 
intercept is defi ned by the fractions Z3 and Z4, 
which show magmatic features, this age at 862 ± 
11 Ma is interpreted as the crystallization age of 
the magmatic protoliths. The lower intercept is 
well constrained by two overlapping analyses of 
monazite that yield a concordia age of 433 ± 1 
(MSWD = 0.00056, P = 0.98). Because mona-
zite is a typical metamorphic mineral, the age 
at 433 Ma ± 3 Ma is interpreted to be related to 
a metamorphic event. Four fractions show ages 
older than 862 Ma (fractions Z5, Z6, Z7, and 
Z8). CL images of these grains (before dissolu-

tion) reveal rounded cores with euhedral over-
growths. Three fractions, Z5, Z7, and Z8, defi ne 
a poorly correlated discordia line, yielding an 
upper-intercept age at 1748 ± 93 Ma (MSWD 
= 9.8, P = 0, 2σ; Fig. 6A) when anchored at 
862 ± 11 Ma. The Paleoproterozoic intercept 
and the presence of rounded zircon cores sup-
port the interpretation of inheritance from the 
Moine metasedimentary host rocks (see also 
Friend et al., 1997; Rogers et al., 2001; Table 
DR1 [see footnote 1]).

Using SIMS data, 28 grains were analyzed at 
Curtin University (Table DR1 [see footnote 1]). 
They yielded ages ranging from ca. 1710 Ma to 
620 Ma. The data scatter along and below the 
concordia curve, and a set of points defi nes a 
discordia line with an upper intercept at 1716 ± 
120 Ma and a lower intercept at 831 ± 36 Ma 
but with poor statistics (Fig. 7; MSWD = 2.80, 
P = 0). Only three cores were investigated and 
yielded reliable concordia ages of 864 ± 55 Ma 
(MSWD = 0.001, P = 0.98), 1132 ± 64 Ma 
(MSWD = 0.25, P = 0.62), and 1709 ± 47 Ma 
(MSWD = 0.077, P = 0.78). The 25 analyses 
from grain rims are scattered on the concordia 
curve (Fig. 7) but fail to defi ne a discordia with 
reliable intercepts. However, the data cluster 
around 800 Ma and yield a concordia age of 
853 ± 11 Ma (95% confi dence, MSWD = 2.50, 
P = 0.12). This is within error of the TIMS age 
reported previously, which is taken as the age of 
crystallization of the magmatic protolith.

Glen Doe granitic gneiss and metagabbro. 
TIMS (Texas) and SIMS (Curtin SHRIMP) data 
obtained from sample SH-02–18B are of uncer-
tain signifi cance (Tables DR1 and 2 [see foot-
note 1]). TIMS analyses of fi ve zircon fractions 
or single grains (Z1, Z5, Z6, Z7, Z8) yielded 
an upper intercept of 798 ± 15 Ma and a lower 
intercept of 432 ± 65 Ma (MSWD = 1.90, P = 
0.13; Fig. 6B). These could correspond, respec-
tively, to the protolith crystallization age and 
major disturbance of isotopic systems during 
the Caledonian orogeny. Similarly, TIMS frac-
tions Z2, Z3, and Z4 lie above discordia line 
defi ned by fractions Z1 and Z5–Z8 (Fig. 6B), 
consistent with a mid-Neoproterozoic event 
causing zircon growth or partial resetting. TIMS 
fractions Z9, Z10, and Z11 suggest incorpora-
tion of inherited cores.

SHRIMP analyses were carried out on zircon 
cores and rims from the same sample (Table 
DR2 [see footnote 1]). The rims are scattered 
along and above the concordia curve defi ning 
a discordia line with reliable lower and upper 
intercepts at 585 ± 160 Ma and 736 ± 64 Ma 
(MSWD = 0.61, P = 0.79), respectively (Fig. 8). 
The cores yielded a reliable concordia age of 
840 ± 23 Ma (95% confi dence, MSWD = 2.20, 
P = 0.14; Fig. 8).

Additional analytical data were obtained 
from SIMS (NORDSIM) analyses of granitic 
gneiss samples D24 and D48 (Table DR3 [see 
footnote 1]; Figs. 9A and 9B). Zircons from 
both samples form euhedral prisms with typi-
cal igneous CL zonation. Fifteen grains were 
analyzed from granitic gneiss sample D24. Of 
these, fi ve analyses were discordant or showed 
evidence for Pb loss. The remaining 10 analyses 
yielded a concordia age of 869 ± 8 Ma (MSWD 
= 0.084, P = 0.77). Fifteen grains were also 
analyzed from sample D48, a granitic xenolith 
within metagabbro at Glen Doe. All 15 analyses 
yield a concordia age of 880 ± 7 Ma (MSWD = 
0.53, P = 0.82). The SIMS zircon ages for D24 
and D48 therefore overlap within analytical 
uncertainty. They are interpreted as dating crys-
tallization of the magmatic protolith, consistent 
with the protolith ages for the Ardgour granitic 
gneiss of 862 ± 11 Ma (this paper) and 873 ± 
7 Ma (Friend et al., 1997).

Zircons from deformed metagabbro sample 
D93 show igneous zonation under CL but fre-
quently have thin, CL-bright rims. Fourteen 
spots were analyzed from this sample (Table 
DR3 [see footnote 1]) and show a spread of ages 
(206Pb/238U ages between 878 Ma and 731 Ma). 
Older analyses are obtained from grain cores; 
however, these show a range in 206Pb/238U ages 
suggesting either variable Pb loss, or mixing of 
core and rim during ablation. Six analyses from 
overgrowths yield a concordia age of 742 ± 
19 Ma (MSWD = 0.037, P = 0.85; Fig. 9C). 
This is interpreted as dating Knoydartian defor-
mation and metamorphism of the metagabbro.

U-Pb Zircon and Monazite Data from 
Felsic Melts

Cruachan Coille a’Chait pegmatite (MS07–
01). Forty-two grains were extracted from this 
sample, and 51 analyses were made by SHRIMP 
at Curtin University (Table DR1 [see footnote 
1]). Zircons display an elongated and prismatic 
shape and are dark brown in color, typical of 
strongly metamict grains, and they are black in 
CL. The average size of the grains is approxi-
mately ~150 µm, but the largest reach 800 µm 
in length. The average length:width ratio of the 
grains is ~5:1.

Plotted on the concordia diagram, the data 
display a large spread. The obtained ages range 
from 988 Ma to 371 Ma, but only 18 analy-
ses are concordant (discordance lower than 
10%). Among the discordant data, 20 of them 
are reverse discordant (discordance lower than 
–10%; Table DR1 [see footnote 1]). Note that 
the data form a cluster at ca. 860 Ma (Fig. 10A).

The zircons are metamict with high U and low 
Th contents and display reverse discordance and 
Pb loss leading to discordance (Fig. 10A). As a 
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consequence of the differing matrix behavior of 
the sample and standard, the 238U/206Pb ratio is 
likely biased, and so must be any discordia line 
or individual concordia age derived from it. A 
much more robust approach to determining the 
age of the sample is to use 207Pb/206Pb data, which 
do not suffer from these effects. Therefore, we 
selected the data with a 207Pb/206Pb ratio of 0.068, 
which form the cluster at 860 Ma, and these 
analyses yielded an age of 865 ± 4 Ma (95% 
confi dence, N = 14, MSWD = 0.76, P = 0.70; 
Fig. 10B). This age is, however, inconsistent 
with structural relations outlined previously (see 
also Fig. 4) that indicate the pegmatite is associ-
ated with the Knoydartian orogenic event, which 
to date has yielded ages in the range 840 Ma 
to 725 Ma. The discordia line through the data 

set yields intercepts at 793 ± 24 Ma and 383 ± 
46 Ma (MSWD = 19, P = 0). The age of the 
upper intercept is reasonable on the basis of 
regional relations but is not statistically reliable.

Knoydart pegmatite (KD07–04). SIMS data 
were collected at Curtin University (Table DR1 
[see footnote 1]). Zircons display prismatic or 
subprismatic shapes. They commonly show 
metamict features, are black in CL, and have 
high U concentrations (1574–7874 ppm). Six-
teen analyses were made in 16 grains, yield-
ing ages ranging from ca. 1017 Ma to 409 Ma 
(Fig. 10C). The data display two clusters at ca. 
800 Ma and 500 Ma, the former including the 
majority of the analyses. Four analyses includ-
ing the oldest age are very discordant (percent-
age of discordance higher than 10%). Two of 

them are reverse discordant (discordance lower 
than –10%; Table DR1 [see footnote 1]). As with 
MS07–01, zircons are metamict and have a high 
U concentration, which is likely responsible for 
the reverse discordance and the scattering of the 
data (Fig. 10C). The 238U/206Pb ratios are likely 
biased; hence, we applied the same approach as 
for sample MS07–01. The younger population 
yielded a weighted average age of 462 ± 21 Ma 
(95% confi dence, N = 4, MSWD = 0.92, P = 
0.43), and the older population yielded an age of 
780 ± 6 Ma (95% confi dence, N = 9, MSWD = 
0.69, P = 0.70). This latter age is interpreted as 
the age of crystallization of the pegmatite.

Carn Gorm pegmatite (SH-03–04A). Zir-
cons are euhedral and acicular, with cloudy, sig-
nifi cantly altered cores and pristine bi pyramidal 
overgrowths. CL imaging of polished grains 
revealed oscillatory concentric zonation in the 
overgrowths. The shape and zoning of the grains 
suggest that the overgrowths formed during 
crystallization of the pegmatite. Euhedral tips 
were broken off several acicular grains and ana-
lyzed by TIMS (Table DR2 [see footnote 1]). 
Several monazite fractions were also analyzed. 
Monazite fractions (M1, M2, M3, M4) defi ne a 
concordia age of 456 ± 1 Ma (MSWD = 0.45, 
P = 0.87 concordance and equivalence; Fig. 
6C). The combined zircon and monazite data 
(except reversely discordant monazite frac-
tions M5, M6, M7) defi ne a well-correlated line 
with an upper intercept of 740 ± 8 Ma and a 
lower intercept of 456 ± 4 Ma (MSWD = 0.65, 
P = 0.66). As the zircon fractions fall near the 
upper intercept, ca. 740 Ma is interpreted to be 
the crystallization age. This age is consistent 
with the published Rb-Sr age of 730 ± 20 Ma 
obtained from large muscovite books within the 
pegmatite (van Breemen et al., 1974). Several 
monazite fractions lie near the upper and lower 
intercepts and are reversely discordant, likely 
due to the unsupported 206Pb produced from 
high initial 230Th concentrations. Four monazite 
fractions overlap at the lower intercept, which is 
interpreted to indicate the timing of metamor-
phism associated with the deformation of the 
pegmatite during the Caledonian orogenesis. 
Two monazite fractions from a sample of the 
host metasedimentary gneiss (SH-03–04C) col-
lected adjacent to the pegmatite (NH 4379 6297) 
also yielded a U-Pb concordia age of 454 ± 
1 Ma (MSWD = 1.4, P = 0.24 concordance and 
equivalence; Fig. 6D), similarly interpreted to 
correspond to Caledonian metamorphism.

Loch Cluanie pegmatite (C39). ID-TIMS 
and LA-ICP-MS data were obtained at the 
NERC Isotope Geosciences Laboratory (Tables 
DR4 and DR5 [see footnote 1]). Zircons are 
elongate prisms between 100 and 200 μm in 
length, with aspect ratios between 5:1 and 10:1. 
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They are colorless, and no cores were observed. 
Three grains were analyzed by chemical abra-
sion (CA) ID-TIMS (Fig. 9D, inset). Despite 
having undergone chemical abrasion, the result-
ing analyses show evidence of minor Pb loss, 
lying on a normal discordia with an upper inter-
cept of 830 ± 3 Ma (MSWD = 0.046). Twenty-
three analyses of zircon grains using laser-abla-
tion single-collector ICP-MS plot on or close to 
concordia (all are <5% discordant). However, 
the data again fall on a trend indicating minor 
Pb loss. A concordia age defi ned by the seven 
grains with least apparent Pb loss gives an age 
of 827 ± 5 Ma (MSWD = 3.1), within error of 
the ID-TIMS age. The best estimate of the age 

of the Loch Cluanie pegmatite is given by the 
ID-TIMS age of 830 ± 3 Ma.

Glenelg pegmatite (SH-03–01C). Five zircon 
(single grains and multigrains) fractions were 
analyzed by TIMS (Table DR2 [see footnote 1]). 
Fractions Z1 and Z3 are euhedral tips (igne-
ous overgrowths) that were broken off of larger 
grains and analyzed separately. Fractions Z4 and 
Z5 are analyses of whole grains. Z4 is a single 
grain, and Z5 contains three small grains. Zir-
con fractions Z1, Z2, and Z3 plot close to or on 
the concordia curve (Fig. 6E). Together with the 
two other fractions, they defi ne a discordia line 
with a lower-intercept age of 446 ± 4 Ma, which 
can be interpreted as the crystallization age, and 

an upper-intercept age of 1749 ± 12 Ma, which 
might refl ect the contribution of inherited cores. 
Storey et al. (2004) mentioned a 1750 Ma U-Pb 
zircon age from the nearby western portion of 
the Glenelg-Attadale Inlier (Fig. 2).

40Ar/39Ar Muscovite Data
Muscovites from two samples were analyzed 

using the 40Ar/39Ar technique to place constraints 
on the late cooling history of the region (Table 2; 
Table DR6 [see footnote 1]). Muscovites from 
sample KD07–02 (Ladhar Bheinn Pelite) yielded 
a statistically robust plateau age of 457.9 ± 
3.5 Ma (MSWD = 0.6, P = 0.8; Fig. 11A). This 
is interpreted to refl ect cooling following Ordo-
vician (Grampian) metamorphism of the Ladhar 
Bheinn Pelite. In contrast, muscovites extracted 
from sample MS07–01 (Cruachan Coille a’Chait 
pegmatite) yielded a plateau age of 425.9 ± 
1.9 Ma (MSWD = 0.5, P = 0.94; Fig. 11B). This 
age is interpreted to refl ect cooling following 
Silurian (Scandian) metamorphism of the peg-
matite and its host Moine rocks.

DISCUSSION

Provenance and Age of the 
Moine Supergroup

Detrital zircons from the Moine successions 
on Mull and at Knoydart (Figs. 2 and 3) range 
in age from Archean to early Neoproterozoic, 
with most grains yielding late Paleoprotero-
zoic and a range of early to late Mesoprotero-
zoic ages (Fig. 5). The overall age range and 
distribution of specifi c age peaks are similar to 
those obtained from previous analyses of Moine 
metasedimentary rocks (Cawood et al., 2004; 
Friend et al., 2003; Kirkland et al., 2008), as 
well as broadly coeval successions around the 
North Atlantic (Cawood et al., 2007b, 2010). 
The overall detrital zircon age signatures of the 
Moine samples, in combination with the south-
to-north paleofl ow of the southern Morar and 
Loch Eil groups (Glendinning, 1988; Strachan, 
1986), are consistent with derivation from the 
Grenville-Sveconorwegian orogen and envi-
rons. In the late Mesoproterozoic to early Neo-
proterozoic, this source region formed a major 
mountain belt and supplied detritus along the 
axis of the Moine basin (Cawood et al., 2010).

The distribution and frequencies of ages 
within the samples analyzed from the Moine 
succession display a number of temporal trends. 
Archean grains are only present in minor quanti-
ties (<10%) in the Morar and lower Glenfi nnan 
groups and have not yet been recorded in samples 
from the upper Glenfi nnan, Loch Eil, and Glen 
Urquhart successions, and they are also absent 
from Moine-equivalent strata (Badenoch Group) 
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east of the Great Glen fault (Fig. 12). Late Paleo-
proterozoic detritus is particularly prevalent in 
the Morar and Glenfi nnan groups, with promi-
nent peaks at around 1750 Ma and 1650 Ma. 
Mesoproterozoic ages include peaks at around 
1550–1500 Ma and a range of ages between 1300 
and 1000 Ma (Figs. 6 and 12). The proportion of 
Mesoproterozoic detritus increases, relative to 
Paleoproterozoic detritus, in the younger units. 
The East Sutherland migmatites within the Naver 
Nappe also contain a relatively high proportion 
of Mesoproterozoic detritus (Fig. 12), indicating 
derivation from a similar source and/or temporal 
equivalence to the upper Glenfi nnan and younger 
units of the Moine succession.

In the Morar Group, the youngest grains yield 
ages of ca. 1011 and ca. 1259 Ma (this paper), 

ca. 1070 Ma and 1022 Ma (Kirkland et al., 
2008), ca. 1032 Ma (Friend et al., 2003), and 
ca. 980 Ma (Peters, 2001). In the Glenfi nnan 
Group, the youngest grains are ca. 954 Ma and 
ca. 899 Ma (this paper), ca. 1009 Ma (Kirkland 
et al., 2008), ca. 947 Ma (based on inherited 
detrital grains in West Highland Granitic Gneiss; 
Friend et al., 2003), and ca. 917 Ma (Cutts et al., 
2010). In the Loch Eil and Glen Urquhart suc-
cessions, the youngest grains are ca. 962 Ma and 
ca. 883 Ma, respectively (Cawood et al., 2004), 
and in the Badenoch Group, the youngest grain is 
ca. 900 Ma (Cawood et al., 2003). The youngest 
detrital grain in the East Sutherland migmatitic 
succession of the Moine is ca. 926 Ma (Kinny 
et al., 1999). These results suggest that the Morar 
Group accumulated after 1000–980 Ma, with a 

signifi cant time break (>50 m.y.) prior to deposi-
tion of the Glenfi nnan and Loch Eil groups after 
900–880 Ma. However, our samples collected 
across the apparently continuous stratigraphic 
contact between the Morar and Glenfi nnan 
groups on the Ross of Mull (Holdsworth et al., 
1987) do not indicate any marked difference in 
provenance. The increase in Mesoproterozoic 
detritus and early Neoproterozoic grains in the 
Glenfi nnan Group may simply represent evolu-
tion of the Grenville-Sveconorwegian source 
region to include younger phases of the orogenic 
welt. Nonetheless, the possibility still remains 
that a fundamental temporal break between these 
two successions has been obscured at this local-
ity by the effects of deformation and metamor-
phic recrystallization.
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Source of 950–900 Ma Detritus

Although the source of the Moine sediment 
has generally been ascribed to the Grenville 
orogenic province (Cawood et al., 2004, 2007b; 
Kirkland et al., 2008), this cannot account for 
the youngest 950–900 Ma detritus. The ter-
mination of Grenville orogenic activity at ca. 
1.0 Ga was followed by cooling and uplift, as 
recorded by 40Ar/39Ar mineral ages (Gower and 
Krogh, 2002; Rivers, 1997, 2012). In contrast, 
the Sveconorwegian province shows a similar 
overall age signature of late Mesoproterozoic 
tectonism and plutonism, but with orogenic 
activity extending as late as 920 Ma (Bingen 
et al., 2008, and references therein). Thus, the 
Sveconorwegian province provides a potential 
southern source for the 950–900 Ma detritus 
within the Moine succession.

A related issue concerns the tectonic setting 
of early Neoproterozoic deformation and meta-
morphism along the margin of eastern Laurentia 
as recorded in Svalbard, East Greenland, and 
the Shetland Islands. One viewpoint is that col-
lision of Laurentia and Baltica formed a putative 
third arm of the Grenville-Sveconorwegian belt 
(Lorenz et al., 2012; Park, 1992). Isotopic data 
from a shear-bounded basement inlier within the 
Northern Highlands terrane at Glenelg (Fig. 2) 
yield evidence for eclogite-facies metamorphism 
at around 1080 Ma on the basis of Sm-Nd min-
eral and whole-rock dating (Sanders et al., 1984), 
with retrograde zircon growth in the eclogites 
at 1010 ± 13 Ma (Brewer et al., 2003) and at 
least partial exhumation on the boundary shear 
zone at 669 ± 31 Ma on the basis of a titanite 
age (Storey et al., 2004). Mesoproterozoic meta-
morphism of the inlier predates deposition of the 
Moine succession, based on constraints from 
the youngest detrital zircons. Given the major 
and minor faults (e.g., Fig. 1B) that separate the 
inlier from the autochthonous foreland, and sig-
nifi cant strike-slip displacement of the Northern 
Highland terrane during Caledonian orogenesis 
(Dewey and Strachan, 2003), it is diffi cult to 
evaluate the original paleogeographic position 
of the inlier and the tectonic signifi cance of this 
isolated Mesoproterozoic age.

The alternative viewpoint to an extension 
of the Grenville orogen northward through 

Scotland, Greenland, and Norway is that early 
Neoproterozoic (980–920 Ma) tectonothermal 
activity along the present-day eastern Lauren-
tian margin was related to development of an 
external accretionary plate margin, the Val-
halla orogen of Cawood et al. (2010; see also 
Gasser  and Andresen, 2013; Kirkland et al., 
2011). Cawood et al. (2010) argued on the basis 
of paleomagnetic data (see also Cawood and 
Pisarevsky, 2006; Elming et al., 2014) from end 
Meso protero zoic to early Neoproterozoic units 
that Baltica lay south of East Greenland, and 
this conclusion, combined with lithotectonic 
analysis, implies that this North Atlantic region 
did not occupy an internal location between 
Laurentia and Baltica but rather developed 
on the margin of the supercontinent (Fig. 13). 
Furthermore, Cawood et al. (2010) consid-
ered the 980–920 Ma tectonothermal activity 
discrete both tectonically and spatially from 
the Grenville orogeny and referred to it as the 
Renlandian orogeny of the Valhalla orogen. 
Calc-alkaline igneous activity and high-grade 

metamorphism along this plate margin, such as 
that documented in Svalbard, East Greenland, 
Shetlands, and East Sutherland at 960–915 Ma 
(Cutts et al., 2009; Gasser and Andresen, 2013; 
Leslie and Nutman, 2003; Kinny and Strachan, 
2010, personal commun.), would have provided 
further potential sources for the detritus of this 
age within the Moine.

Mafi c and Felsic Magmatism at 870 Ma

New U-Pb zircon ages for the Glen Doe 
and Sgurr Dhomhnuill intrusions of the West 
Highland Granitic Gneiss suite, and near coeval 
metagabbro intrusions at Glen Doe (Figs. 6–9), 
confi rm a widespread pulse of magmatism at 
around 870 Ma within the Sgurr Beag Nappe 
(see also Friend et al., 1997; Millar, 1999; 
Rogers et al., 2001). These meta-igneous bod-
ies intrude the Glenfi nnan and Loch Eil groups 
(Figs. 2 and 3) and provide a broad younger age 
limit on their accumulation. Furthermore, the 
intrusions display all structural events recorded 
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TABLE 2. 40Ar/39Ar RESULTS

scitsiretcarahcuaetalPscitsiretcarahclareneG

Sample no. Mineral 
Integrated age

(Ma, ±2σ)
Plateau age
(Ma, ± 2σ) 

Total 39Ar released
(%) MSWD P

MS07-01 Muscovite 425.8 ± 2.0 425.9 ± 1.9 100.0 0.49 0.94
KD07-02 Muscovite 457.3 ± 4.1 457.9 ± 3.6 100.0 0.64 0.80

Note: Summary table indicating integrated, plateau/miniplateau and isochron ages for the Moines Formation samples. Mean square of weighted deviates (MSWD) 
for plateau, percentage of 39Ar degassed used in the plateau calculation, number of analysis included in the isochron, and 40Ar/36Ar intercept are indicated. Plateau age 
calculated using trapped 40Ar/36Ar is indicated. Analytical uncertainties on the ages are quoted at 2 sigma (2σ) confi dence levels and at 1σ for the 40Ar/36Ar intercept. Bold 
data indicate the accepted age for a given sample.
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in the Moine metasedimentary rocks, indicat-
ing that the timing of igneous activity provides 
an older age limit on Knoydartian deformation 
(Dalziel and Soper, 2001). The detrital age sig-
nature of the Glenfi nnan and Loch Eil groups 
is similar to the inheritance pattern of zircons 
within the granitic gneiss bodies, indicating that 
the latter were indeed derived from melting of 
the former (Friend et al., 1997, 2003; Rogers 
et al., 2001) as suggested earlier on the basis 
of geologic and structural mapping and com-
parison of zircon morphologies (Dalziel, 1963, 
1966). The bimodal nature of the magmatism 
at this time is consistent with mafi c magmatic 
underplating of the crust, leading to widespread 
crustal melting (Fowler et al., 2013; Ryan and 

Soper, 2001). The MORB geochemical affi ni-
ties of the mafi c phases associated with the West 
Highland Granitic Gneiss suggest crustal exten-
sion and thinning (Millar, 1999) and may indi-
cate propagation of the inferred spreading center 
associated with the Asgard Sea (Cawood et al., 
2010) into the Laurentian margin (Fig. 13).

Ages and Signifi cance of Felsic 
Pegmatites—Knoydartian Orogeny

The U-Pb zircon age of 830 ± 3 Ma for the 
Loch Cluanie pegmatite falls within the older 
range of Knoydartian metamorphic and peg-
matite ages (Fig. 14). Although the Cruachan 
Coille a’Chait pegmatite is not reliably dated, 
it is important because the pegmatite crosscuts 
a preexisting gneissic fabric (Fig. 4A), thus 
demonstrating a Neoproterozoic age for the 
earliest deformation and metamorphism of its 
host Moine rocks. A possible age of ca. 793 Ma 
falls within the early phase of the Knoydartian 
orogeny. The U-Pb zircon age for the Knoydart 
pegmatite (786 ± 4 Ma) similarly falls within 
the older range of Knoydartian metamorphic 
and pegmatite ages, its intrusion age compar-
ing closely to that of the U-Pb monazite age of 
the Sgurr Breac pegmatite (784 ± 1 Ma; Rogers 
et al., 1998) at a similar structural level within 
the Morar Group ~7 km to the southeast (Fig. 2). 
Both pegmatites are concordant with gneissic 
fabrics in their host rocks and are inferred to 
have formed more or less in situ as a result of 
segregation during a high-grade metamorphic 
event (Hyslop, 2009b; Rogers et al., 1998). Inde-
pendent evidence for high-grade metamorphism 
at ca. 820–790 Ma is provided by Sm-Nd gar-
net ages from Morar Group pelites (Vance et al., 
1998) and U-Pb ages from monazite inclusions 
within zoned garnets in the Glenfi nnan Group 
near Glen Urquhart (Cutts et al., 2010). In con-
trast, the U-Pb zircon age of 740 ± 8 Ma for the 
Carn Gorm pegmatite falls within the younger 
range of Knoydartian metamorphic ages (Fig. 
14). Its fi eld relations are comparable with the 
Knoydart and Sgurr Breac pegmatites, consistent 
with a further episode of high-grade metamor-
phism leading to in situ melting. The new age for 
the Carn Gorm pegmatite is within error of the 
U-Pb zircon age of 742 ± 19 Ma obtained from 
metamorphic rims within deformed Glen Doe 
metagabbro. Independent evidence for a younger 
high-grade metamorphic event at ca. 740 Ma is 
provided by titanite ages of 737 ± 5 Ma from the 
SW Morar Group (Tanner and Evans, 2003) and 
U-Pb ages from monazites present as inclusions 
within zoned garnets in the Glenfi nnan Group 
near Glen Urquhart (Cutts et al., 2010).

Available Knoydartian age data span from 
840 to 725 Ma (Table DR7 [see footnote 1]) and 

fall into an older (840–780 Ma) and younger 
(740–725 Ma) set separated by a 40 m.y. gap, 
suggesting that the Knoydartian incorporates at 
least two distinct events. Only the Moine and 
Sgurr Beag thrust sheets show evidence for both 
older and younger phases of the Knoydartian 
event, whereas the Grampian terrane (Badenoch 
Group; Fig. 3) only shows evidence for the older 
event. This is consistent with age data from the 
Dalradian Supergroup, the lower parts of which 
are thought to have been deposited unconform-
ably at ca. 750 Ma on the Badenoch Group 
(Robertson and Smith, 1999), overlapping with 
the youngest Knoydartian deformation and 
metamorphism in the Northern Highlands ter-
rane (Fig. 14). Thus, the Badenoch Group was 
unlikely to have been in direct stratigraphic con-
tinuity with the main Moine succession, with 
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Figure 14. Time-space plot of age constraints on principal Neo-
protero zoic metasedimentary units and of tectonothermal events 
within the thrust sheets of the Moine Supergroup, Scotland. Num-
bers on data points refer to the following sources: 1—Friend et al. 
(2003), U–Pb zircon age of 1032 ± 12 Ma for youngest detrital grain 
in Morar Group, Moine Nappe; 2—Kirkland et al. (2008), U-Pb 
zircon age of 1022 ± 24 Ma for youngest detrital grain in Morar 
Group, Moine Nappe; 3—this paper, U-Pb age of 1011 ± 57 Ma for 
youngest detrital grain in lower psammite, Morar Group, Moine 
Nappe; 4—Peters (2001), U-Pb zircon age of 980 ± 4 Ma for young-
est detrital  grain in Morar Group, Moine Nappe; 5—this paper, 
U-Pb zircon age of 899 ± 51 Ma for youngest detrital grain in 
Glenfi nnan Group, Moine Nappe; 6—Kirkland et al. (2008), U-Pb 
magmatic zircon overgrowth age of 842 ± 20 Ma on detrital Morar 
Group zircon, Moine Nappe; 7—Rogers et al. (1998), U-Pb mona-
zite ages of 827 ± 2 Ma and 781 ± 1 Ma for the synmetamorphic 
Ardnish and Sgurr Breac pegmatites intrusive into Morar Group; 
8—Vance et al. (1998), Sm-Nd garnet whole-rock ages of 823 ± 5 Ma 
and 788 ± 4 Ma for growth zones in garnet from the Morar Group; 
9—this paper, U-Pb zircon age of 786 ± 7 Ma for Knoydart pegma-
tite, Moine Nappe; 10—Tanner and Evans (2003), U-Pb titanite age 
of 737 ± 5 Ma from calc-silicate pod in Morar Group, Moine Nappe; 
11—Storey et al. (2004), U-Pb titanite age of 669 ± 31 Ma occurring 
within, and inferred to date, a shear zone between eastern and west-
ern units of the Glenelg-Attadale Inlier, which also contains Morar 
Group rocks; 12—Burns et al. (2004), Nd depleted mantle model 
age of around 1000 Ma for the Strathy Complex, possible basement 
assemblage to the East Sutherland Moine succession in the Naver 
Nappe; 13—Kinny and Strachan (2010, personal commun.), U-Pb 
zircon age of ca. 965 Ma for protolith to orthogneiss intrusive into 
Moine rocks of Naver Nappe; 14—Friend et al. (2003), U-Pb zir-
con age of 926 ± 68 Ma for youngest detrital grain from within the 
Kirtomy migmatites in East Sutherland Moine succession, Naver 
Nappe; 15—Kirkland et al. (2008), U-Pb zircon age of 1009 ± 22 Ma 
for youngest detrital grain in sample of Glenfi nnan Group, Sgurr 
Beag Nappe; 16—Cawood et al. (2004), U-Pb zircon age of 962 ± 32 Ma for the average of four analyses from youngest detrital grain in 
sample of Loch Eil Group, and U-Pb zircon age of 883 ± 35 Ma for the average of two analyses from youngest detrital grain in sample 
of Glen Urquhart psammite, Sgurr Beag Nappe; 17—Friend et al. (2003), U-Pb zircon age of 947 ± 59 Ma for youngest detrital grain in 
sample of granite gneiss incorporating metasediments of the Glenfi nnan Group, Sgurr Beag Nappe; 18—Cutts et al. (2010), U-Pb zircon 
age of 917 ± 13 Ma for youngest detrital grain from sample of Glenfi nnan Group, Sgurr Beag Nappe and U-Pb zircon age of 725 ± 4 Ma 
and inductively coupled plasma–mass spectrometry (ICP-MS) monazite ages of 825 ± 18 Ma, 782 ± 11 Ma, and 724 ± 6 Ma for monazite 
from migmatites within the Glenfi nnan Group, Sgurr Beag Nappe; 19—this paper, U-Pb zircon ages of 869 ± 8 Ma and 860 ± 18 Ma for 
Glen Doe granitic gneiss, 880 ± 7 Ma for granitic xenolith in Glen Doe metagabbro, and 742 ± 19 for metamorphic rims on zircon grains 
within the metagabbro; 20—U-Pb zircon ages of felsic and mafi c igneous bodies emplaced into the Glenfi nnan and Loch Eil groups of the 
Sgurr Beag Nappe give ages of 873 ± 7 Ma for the Ardgour granite gneiss (Friend et al., 1997), 873 ± 6 Ma for mafi c sheets (Hyslop, 2009a), 
and 870 ± 20 Ma for the Fort Augustus granite gneiss (Rogers et al., 2001); 21—this paper, thermal ionization mass spectrometry (TIMS) 
and secondary ion mass spectrometry (SIMS) U-Pb zircons ages for samples of Sgurr Dhomhnuill phase of Ardgour granite gneiss of 863 ± 
4 Ma and 852 ± 10 Ma, respectively; 22—this paper, U-Pb zircon ages for Cruachan Coille a’Chait pegmatite, Loch Cluanie of ca. 793 ± 
24 Ma and 830 ± 3 Ma for pegmatite on shore of Loch Cluanie; 23—this paper, U-Pb monazite age for Carn Gorm pegmatite of 756 ± 4 Ma; 
24—van Breemen et al. (1974), Rb-Sr muscovite age for Carn Gorm pegmatite of 730 ± 20 Ma; 25—Highton et al. (1999), U-Pb zircon ages 
of 926 ± 6 Ma for youngest detrital grain and 840 ± 11 Ma for melt crystallization and new zircon growth in Badenoch Group, and the 
succession is part of the sub-Grampian basement to the Dalradian Supergroup and inferred to be an equivalent to the Moine succession 
(Piasecki, 1980); 26—Cawood et al. (2003), U-Pb zircon age of 900 ± 17 Ma for youngest detrital grain from sample of Badenoch Group; 
27—Noble et al. (1996), U-Pb monazite ages of 806 ± 3 Ma, 808 +11/–9 Ma, and 804 +13/–12 Ma for pegmatites and mylonitic rocks from 
the Grampian shear zone separating sub-Grampian basement and Dalradian Supergroup; 28—approximate age of 750 Ma based on Rb/Sr 
ages of muscovites in pegmatites from Badenoch Group (Piasecki and van Breemen, 1983, and references therein); 29—Halliday et al. 
(1989) and Dempster et al. (2002) have determined U-Pb zircon ages for the Tayvallich Volcanics and inferred comagmatic intrusive rocks 
of around 600–595 Ma. Abbreviations: DS—Dalradian Supergroup; ES—East Sutherland Moine succession; BG—Badenoch Group, sub-
Grampian basement; GL—Glenfi nnan and Loch Eil groups, including Glen Urquhart psammite; GF—Glenfi nnan Group; MG—Morar 
Group; SC—Strathy complex.
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juxtaposition on the intervening Great Glen 
fault occurring during the Paleozoic Caledonian 
orogeny (cf. Dewey and Strachan, 2003).

Implications for Caledonian 
Tectonic Models

New U-Pb zircon and monazite data for the 
Carn Gorm pegmatite and its host gneisses 
indicate a high-grade metamorphic event at ca. 
456 Ma. This is younger than published ages for 
the Ordovician Grampian orogenic event else-
where in the eastern Moine Supergroup. These 
include a U-Pb TIMS titanite age of 470 ± 2 Ma 
from the Fort Augustus granitic gneiss (Rogers  
et al., 2001) and a U-Pb SIMS zircon age of 463 
± 4 Ma from a synkinematic pegmatite at Glen 
Urquhart (Cutts et al., 2010). The ca. 456 Ma 
event in the Carn Gorm pegmatite and host 
gneisses is perhaps more likely to be associ-
ated with the ca. 450 Ma tectonothermal event 
recently identifi ed as having affected large tracts 
of the Morar Group (Bird et al., 2013). Of par-
ticular relevance to the present study is a Sm-Nd 
garnet age of 450 ± 2 Ma obtained from the 
Morar Group basal pelite at Glenelg (Bird et al., 
2013). The U-Pb zircon age of 446 ± 2 Ma for the 
Glenelg pegmatite therefore confi rms Late Ordo-
vician high-grade metamorphism and pegmatite 
formation as well as pervasive “D2” deformation 
in this part of the Morar Group. The “D2” folds 
and associated mineral lineations in the Glenelg 
area had been correlated previously with simi-
larly oriented “D2” structures within the Morar 
Group further north in Sutherland known to be 
of Silurian (Scandian) age (Kinny et al., 2003a). 
However, the new data presented here show that 
this is incorrect, emphasizing the diffi culties 
in using fold style and fabric orientation as the 
basis for correlation, even over relatively small 
areas. As is likely to be the case for Knoydar-
tian events, there are considerable variations in 
the relative intensities of the various Caledonian 
metamorphic events across the Moine Super-
group. This is reinforced by the 40Ar/39Ar data 
for the Ladhar Bheinn Pelite, which indicate no 
substantial reheating since ca. 458 Ma, whereas 
muscovites within the Cruachan Coille a’Chait 
pegmatite further east were presumably reset at 
ca. 426 Ma, during the Scandian orogenic event. 
The U-Pb zircon lower-intercept age of 433 ± 
3 Ma obtained from the Ardgour granitic gneiss 
refl ects substantial reheating within the central 
outcrop of the Moine succession during the 
Scandian orogenic event.

Overall, the geochronological data suggest 
that the Moine Supergroup was affected by 
signifi cantly more orogenic events than would 
be indicated by D-numbers alone. This can be 
explained in various ways: The early isoclinal 

folds may themselves be polyphase (Strachan 
et al., 2010), deformation as well as metamor-
phism varied spatially in intensity (see earlier 
herein), and it is also probable that some major 
folds and ductile thrusts have a composite his-
tory (Bird et al., 2013).

Along-Strike Laurentian 
Margin Comparisons

Neoproterozoic siliciclastic-dominated 
sequences are widespread along the eastern con-
tinental margin of Laurentia, stretching from the 
southern Appalachians to northern Greenland 
(Rankin et al., 1993; Strachan et al., 2012; Watt 
and Thrane, 2001; Williams et al., 1995). These 
rocks are generally related to rifting associated 
with the initiation of the breakout of Laurentia 
from the supercontinent Rodinia (Bond et al., 
1984). The Moine Supergroup and correla-
tive successions in Shetlands, East Greenland, 
Svalbard, and Norway are amongst the earliest 
record of Neoproterozoic lithospheric exten-
sion and subsidence. These successions differ 
from those in eastern North America by their 
older age of sediment accumulation, between 
ca. 1000 and 870 Ma, and evidence for at least 
two pulses of Neoproterozoic deformation and 
metamorphism, the Renlandian and Knoydar-
tian orogenies at 980–920 Ma and 845–725 Ma, 

respectively (Figs. 14 and 15; Cawood et al., 
2010). In eastern North America, the oldest suc-
cessions related to Rodinia breakup occur in the 
Blue Ridge and are dated as mid-Neo protero-
zoic, accumulating between ca. 760 and 700 
Ma (Aleinikoff et al., 1995; Evans, 2000; Tollo 
et al., 2004). Correlatives of the Blue Ridge suc-
cession include the Dalradian Supergroup in the 
Grampian Highlands terrane in Scotland, the 
Eleonore Bay Supergroup in East Greenland, 
and the Murchinsonfjorden and Sofi ebogen 
successions in Svalbard (Cawood et al., 2007b, 
2010). These North Atlantic successions are 
inferred to have been deposited unconformably 
on the predeformed correlatives of the Moine 
Supergroup (Robertson and Smith, 1999; Son-
derholm et al., 2008). Understanding the ori-
gin of these early Neoproterozoic successions 
around the North Atlantic, and their absence 
from eastern North America, is important in 
constraining Laurentian paleogeography during 
the breakup of Rodinia. Cawood et al. (2010) 
have argued that regions incorporated into the 
Appalachian orogen in eastern North America 
occupied an internal location within Rodinia 
during the early Neoproterozoic, whereas rocks 
dispersed around the North Atlantic realm and 
subsequently constituting part of the Caledo-
nian orogen occupied an external location (Figs. 
13 and 15). This external location was brought 
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about by the end-Mesoproterozoic ~95° clock-
wise rotation of Baltica with respect to Lauren-
tia. Throughout much of the Mesoproterozoic, 
the present-day northern margin of Baltica 
was adjacent to East Greenland, resulting in a 
linear Grenville-Sveconorwegian orogen (e.g., 
Gower et al., 1990; Karlstrom et al., 2001). End-
Mesoproterozoic rotation of Baltica resulted 
in its Scandinavian margin facing Scotland, 
the Rockall Bank, and southeast Greenland, a 
position it maintained until the opening of the 
Iapetus Ocean at the end of the Neoproterozoic 
(Cawood et al., 2001; Cawood and Pisarevsky, 
2006). Rotation resulted in oroclinal bend-
ing of the Grenville-Sveconorwegian orogen 
in the south and opening of the Asgard Sea in 
the north (Figs. 13 and 15) such that the early 
Neoproterozoic successions occupied a periph-
eral location (in sense of Murphy and Nance, 
1991) with respect to Rodinia (see also Gasser 
and Andresen, 2013; alternative interpretation 
in Lorenz et al., 2012). This peripheral loca-
tion on the margin of Laurentia provided both 
a site for extension and sediment accumulation, 
represented by the Moine Supergroup, and for 
deformation, metamorphism, and magmatism 
associated with crustal thickening during Ren-
landian and Knoydartian orogenesis, which 
were in part driven by subduction following 
closure of the interior ocean, all as part of the 
Valhalla orogenic cycle (Fig. 14). Cutts et al. 
(2010, and references therein) determined max-
imum pressure and temperature conditions for 
Moine rocks during Knoydartian orogenesis of 
700 °C and 0.9 GPa. In contrast, eastern North 
America at this time (1000–760 Ma) occupied 
an intracratonic position within Rodinia (Fig. 
15), and only toward the end of this period did 
it start to undergo lithospheric extension and 
sedimentation, along with associated igneous 
activity as preserved in the Appalachian Blue 
Ridge (e.g., Tollo et al., 2004). In Scotland, this 
second phase of extension, represented by the 
Dalradian succession, marks the opening of the 
Iapetus Ocean and initiation of the Caledonian 
orogen and is inferred to have commenced at a 
similar time (ca. 760 Ma; Prave et al., 2009) to 
that in the Appalachians (Figs. 14 and 15).

During the early Paleozoic, the eastern 
Laurentian Neoproterozoic successions were 
affected by a series of approximately coeval oro-
genic events associated with closure of the Iape-
tus Ocean, although the tectonic drivers for, and 
hence the intensities of, these events vary along 
strike. Late Cambrian to Late Ordovician oro-
genic events were generally short-lived (Dewey, 
2005) and resulted from accretion of crustal rib-
bons to the Laurentian margin. In the Canadian 
Appalachians, these are referred to collectively 
as “Taconic” (Rogers, 1970; Williams, 1995), 

comprising three geodynamically distinct oro-
genic events (van Staal and Barr, 2012, and ref-
erences therein; van Staal et al., 2007, 2009). The 
Late Cambrian (ca. 495 Ma) “Taconic 1” event 
represents the west-directed obduction of an 
oceanic arc onto peri-Laurentian crust in New-
foundland (van Staal et al., 2007; Waldron and 
van Staal, 2001) but has no counterpart in the 
Irish–Scottish–East Greenland Caledonides. In 
contrast, the Early Ordovician (ca. 480–470 Ma) 
“Taconic 2” event, associated with ophiolite 
obduction onto the Laurentian margin and arc-
continent collision (Cawood and Suhr, 1992; 
Cawood et al., 1995; Chew et al., 2010; Roberts, 
2003; van Staal et al., 1998), is the main Ordo-
vician orogenic phase in the Appalachians and 
Caledonides. It correlates with the Grampian 
orogenic event that regionally deformed and 
metamorphosed the Laurentian Neoproterozoic 
successions of Scotland and Ireland (Dewey 
and Ryan, 1990; Oliver et al., 2000; Soper et al., 
1999). Moine rocks in East Sutherland were 
migmatized (Kinny et al., 1999) during meta-
morphism up to 650–700 °C and 11–12 kbar 
(Friend et al., 2000), and elsewhere in the east-
ern Moine rocks, there was growth of new garnet 
(Bird et al., 2013), monazite (Cutts et al., 2010; 
this study), and titanite (Rogers et al., 2001). In 
Newfoundland, the Late Ordovician (ca. 460–
450 Ma) “Taconic 3” orogenic event resulted 
from the accretion to the Laurentian margin of 
the Popelogan-Victoria arc (van Staal et al., 2009, 
and references therein). This occurred broadly 
coeval with the ca. 450 Ma metamorphic event 
identifi ed in the western Moine rocks. In New-
foundland, this was associated with garnet-grade 
metamorphism (Vance and O’Nions, 1990), and 
in the western Moine rocks, it was associated 
with synkinematic growth of garnet (Bird et al., 
2013), ductile deformation, and segregation of 
granitic pegmatites and veins (this study). In 
Scotland, this orogenic event has similarly been 
attributed to the accretion to the Laurentian mar-
gin of an arc or microcontinental fragment (Bird 
et al., 2013). In the Scandinavian Caledonides, 
the Laurentian-derived Uppermost Allochthon 
in Scandinavia (Baltica) contains evidence for 
arc-microcontinent accretion events that are 
approximately coeval with Taconic 2 and 3 and 
correlative events in Ireland-Scotland (Corfu 
et al., 2003; Roberts, 2003; Roberts et al., 2007).

Silurian orogenic events and fi nal closure of 
the Iapetus Ocean resulted from the collision 
of an amalgamated Gander-Avalonia-Baltica 
crustal block with eastern Laurentia. The mid-
Silurian (430–422 Ma) Salinic event in New-
foundland occurred approximately coeval with 
the Erian event in western Ireland (Dewey et al., 
1997), although the two vary in their inten-
sity. Whereas in Newfoundland this collision 

resulted in strong deformation and metamor-
phism up to migmatite grade (Cawood et al., 
1994; D’Lemos et al., 1997; Dunning et al., 
1990; van Staal et al., 1994), in Ireland-Scotland, 
it was relatively “soft,” with minor deformation 
and low-grade metamorphism associated with 
sinistrally oblique docking of Gander/Avalo-
nia with Laurentian terranes along the Iapetus 
suture (Soper and Woodcock, ~500–700 km fur-
ther north of their present position relative to the 
Grampian terrane, and they record the effects of 
the Silurian (435–425 Ma) Scandian orogenic 
event that resulted from the collision of Bal-
tica with this segment of the Laurentian margin 
(Dewey and Strachan, 2003). The Moine rocks 
were affected by regional-scale ductile deforma-
tion and metamorphism up to 650 °C and 5–6 
kbar (Friend et al., 2000). Late Silurian to Early 
Devonian sinistral displacement along the Great 
Glen fault juxtaposed the Northern Highland 
terrane against the Grampian terrane, which was 
largely unaffected by any Silurian deformation 
or metamorphism (Dewey and Strachan, 2003).

CONCLUSIONS

Principal conclusions of our revised geochro-
nology of the Moine Supergroup are:

(1) Detrital zircons from the Moine succes-
sions on Mull and at Knoydart in NW Scotland 
range in age from Archean to early Neoprotero-
zoic. The data reported here, in combination with 
regional paleofl ow data, add weight to the gen-
eral consensus that the Moine sediments were 
derived post–1000 Ma from the erosion of the 
Grenville-Sveconorwegian orogen and environs.

(2) New U-Pb zircon ages for the Glen Doe 
and Sgurr Dhomhnuill intrusions of the West 
Highland Granitic Gneiss suite and coeval 
metagabbro intrusions confi rm a widespread 
pulse of extension-related bimodal magmatism 
at ca. 870 Ma within the Sgurr Beag Nappe. 
These bodies provide an older age limit on Neo-
proterozoic “Knoydartian” orogenic activity, 
as they record all structural events preserved in 
their host rocks.

(3) Pegmatites yielding U-Pb zircon ages 
of 830 ± 3 Ma, ca. 793 Ma, 786 ± 7 Ma, and 
740 ± 8 Ma constrain a series of deformation 
and metamorphic pulses related to Knoydartian 
orogenesis of the host Moine rocks.

(4) U-Pb zircon, monazite, and 40Ar/39Ar ages 
for pegmatites and host gneisses record rework-
ing at ca. 458–446 Ma and ca. 426 Ma during 
the Caledonian orogenic cycle.

(5) The geochronological data demonstrate 
that some previously published structural cor-
relations are incorrect, emphasizing the diffi -
culties in basing these on fold style and fabric 
orientation, even over relatively small areas. The 
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Moine Supergroup was affected by signifi cantly 
more orogenic events than might be suspected 
by the analysis of tectonic structures in any 
single area. Deformation and metamorphism 
varied spatially in intensity, and it is probable 
that some major folds and ductile thrusts have a 
composite history.

(6) The presence of early Neoproterozoic 
siliciclastic sedimentation and deformation in 
the Moine and equivalent successions around 
the North Atlantic and their absence along strike 
in eastern North America refl ect contrasting 
Laurentian paleogeography during the breakup 
of Rodinia. The North Atlantic realm occupied 
an external location on the margin of Laurentia 
and accumulated detritus (Moine Supergroup 
and equivalents) derived from the Grenville-
Sveconorwegian orogen. Neoproterozoic oro-
genic activity corresponds with the inferred 
development of convergent plate-margin activ-
ity along the periphery of the supercontinent. In 
contrast, in eastern North America, which lay 
within the internal parts of Rodinia, sedimen-
tation did not commence until the mid-Neo-
protero zoic (ca. 760 Ma) during initial stages 
of supercontinent fragmentation, and there is no 
evidence of orogenic activity of this age.
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