HYDROLOGICAL SUMMARY FOR GREAT BRITAIN - SEPTEMBER 1990

Data for this review have been provided principally by the regional divisions of the National Rivers Authority (NRA) in England and Wales, the River Purification Boards in Scotland (RPBs) and by the Meteorological Office. The recent areal rainfall figures are derived from a restricted network of raingauges (particularly in Scotland) and a significant proportion of the river flow data may be subject to revision following reviews of the low flow stage-discharge relations.

For a fuller appreciation of the water resources implications, this hydrological review should be considered alongside assessments of the current reservoir storage and water demand situations in each region. A map is provided (Figure 4) to assist in the location of monitoring sites.

Summary

Cool and windy conditions signalled the end of the hot dry summer early in September. However, whilst in temperature terms an obvious transformation could be recognised, in relation to hydrological conditions the change - at least until the end of the month - was rather more apparent than real. Rainfall totals for September were low throughout most of Great Britain and, with soils exceptionally dry, the impact of the limited rainfall on runoff and recharge rates was negligible in those areas where the drought is most severe.

Provisional data indicate that the England and Wales rainfall total for March to September 1990 is the lowest (for those months) in the 220-year general rainfall series. By month-end, seven-month droughts of significant magnitude could be recognised in all regions of England and Wales and parts of eastern Scotland. In meteorological terms the droughts are very severe in lowland England and with high evaporative losses maintained through much of 1990 (especially in the spring) river flows and groundwater levels were very depressed in September. The remarkable contrast with the abundant rainfall through the preceding winter (in all but a few districts) finds expression in the rapid decline in regional rainfall deficiencies as the time-base is extended. On a water-year (October-September) basis rainfall is within the normal range in all regions - although not in parts of East Anglia and in some other areas - of England and Wales.

Spatial as well as temporal variability in rainfall has been considerable in the recent past. Water-year rainfall in Scotland is the highest in a record extending back to 1869 whilst long-term rainfall deficiencies still exist in eastern Britain, especially in the 22-30 month timeframe. This embraces two winter recharge periods and the drought is most severe in those eastern areas where the existing intense spring/summer drought is overlain on a long-term deficiency in rainfall. In such areas some river flows and groundwater levels are unprecedented and the water resources situation is fragile. Elsewhere flows (and groundwater levels) are substantially below average - and similar to September 1989 over wide areas - but above historical minima.

A decline in soil moisture deficits (SMDs) began in mid-month and accelerated through the first week of October. Some net reservoir replenishment and a little localised groundwater recharge have been recorded since late-September. If the current unsettled spell continues the seasonal upturn should occur rather earlier than in 1989 (and in 1988 in some areas). However, the very depressed nature of groundwater resources determines that above average rainfall through the winter will be essential to restore levels by the spring of 1991. In the eastern lowlands of England substantially above average rainfall will be required to satisfy SMDs and generate a recovery from the exceptionally low current levels.

Rainfall

Anticyclonic conditions dominated weather patterns throughout much of the first half of September. Rainfall was generally patchy in extent and limited in duration. In the lowlands, periods of up to 25 days, ending around mid-month, with only a trace of rainfall were reported - the latest in a series of dry sequences over the last 30 months or so. Frontal activity increased from mid-month and, from the 19th, widespread rainfall was experienced on a number of days. The weekend of the 29/30th was particularly wet with many areas recording over 20 mm. September rainfall exhibited large regional and local variations, partly a reflection of the amount of thundery activity. Broadly speaking, rainfall was above average in northern Scotland and in an area centred on the Cheshire Plain but below average through most of southern Britain. Less than half the average was recorded in a band extending from the East Midlands to the Sussex coast. Rainfall for the Thames and Anglia NRA regions, and some other lowland districts, has been below - often substantially - the average for each month since February and seven-month accumulations starting in March have been exceptionally modest.

Provisional data indicate that the minimum March to September rainfall total for England and Wales, established during the 1870 drought, was eclipsed this year. Considering any seven-month sequence, there have only been three drier periods (two in 1976, one in the 1921 drought) this century. By late-September a significant drought extended across most of southern Britain but regional variations in intensity were appreciable. Moderate (return periods in the range 20-50 years) to severe (50-100 years) seven-month droughts exist in northern England and the South West with extreme rainfall deficiencies (>100 years) in other regions. The drought is especially intense in the Anglia, Thames and Southern NRA regions. For the Thames catchment as a whole there is no precedent (in an areal rainfall record from 1883) for a March-September rainfall total of less than 190 mm.

The current drought in England and Wales follows directly on the wettest winter for seventy-five years. Throughout large tracts of southern Britain the December 1989 to February 1990 rainfall was almost twice that for the ensuing seven months. An obvious consequence is the steep decline in drought intensities for periods beyond seven-months. For all regions of the NRA, with the exception of Anglian, the 1990 rainfall totals, and the 1989/90 water-year totals, are within the normal range albeit mostly somewhat below average. This amelioration is far less pronounced along the eastern seaboard and the hydrological impact of the drought is currently most evident in those catchments, where long term rainfall deficiencies can still be recognised extending back to at least the autumn of 1988.

In Scotland, moderate spring/summer droughts may be recognised with persistent long-term deficits along the eastern coast. More remarkable though are the exceptionally wet conditions which have characterised western Scotland over much of the last year; typically only 2 months in 1990 have been below average. The provisional 1990 and water-year rainfall totals for the Clyde and Highland RPB areas are without modern parallel (though caution needs to be exercised due to the skeletal network upon which recent monthly rainfall totals are based). For Scotland as a whole the October-September rainfall total is the highest on record and the January-September figure exceeds the previous maximum by a very wide margin.

Evaporation and Soil Moisture Deficits (SMDs)

Whilst temperatures were a little below average in September, sunshine amounts were high in southern Britain and the windy conditions encouraged evaporation losses. MORECS data indicate that potential evaporation (PE) totals (for grass) for the 1989/90 water are the highest on record (in a series from 1961) throughout most of Great Britain. Actual evaporation (AE) totals (for grass) are similarly outstanding in much of western and northern Britain. In the English lowlands the inhibiting effect of long-standing high SMDs has resulted in far more moderate AE totals with very low annual figures typifying some eastern districts.

SMDs generally increased through the first half of September, declined moderately until near the month-end when some brisk reductions were reported. As of the 2nd October, field capacity had been reached throughout most of Scotland away from the eastern lowlands and parts of north-west England. In contrast, deficits in excess of 100 mm extend across much of central and southern England, and up the eastern seaboard to Northumbria. This high deficit zone includes the outcrop areas of the major aquifers in England. Typically, end-of-September deficits were 30-50 mm above average in these regions. Larger anomalies occur in parts of Wales and the South-West where field capacity is normally approached in October.

SMDs throughout much of southern and eastern Britain are the equivalent of 6-8 weeks average rainfall and, as in 1989, will serve to greatly moderate the hydrological impact of rainfall through the rest of the autumn.

River Flows

Whilst a modest increase in monthly runoff totals from August to September characterised rivers in Scotland and parts of northern England, in southern Britain the summer recessions continued into the autumn; by mid-September some exceptionally low daily flows were recorded. Subsequently, and especially over the weekend of the 29/30th, surface runoff boosted flow rates over wide areas although little impact on baseflow dominated rivers was evident.

September runoff totals were well below average in all regions; mean flows in the range 30-60% of the long term average typifying many catchments. It is rare for such notably low flows to extend across almost all of Great Britain. Runoff for September was not substantially different from that for August and, over large areas, equates closely to the corresponding figures for 1989. Runoff rates remain most depressed in eastern, central and southern England although some western streams draining less permeable catchments recorded notable low runoff totals also. The Dorset and Kent Stours each established new September minimum mean flows as did the Brue and the Yscir. For the Thames, the September mean flow (naturalised) is the lowest since 1949. Lower late summer/early autumn flows were, however, recorded in most areas during the droughts of 1976 (in the east), 1972 (western and northern Britain) and, often, in 1964 and 1959.

Return periods associated with the September mean flows encompass a wide range. For very high baseflow catchments (e.g. the Lud, Mimram and Itchen) the return periods are similar to those for August. In more responsive rivers some of the return periods are notably larger even where runoff increases (relative to the average) from August to September have been small. In part, this reflects the absence of recent autumn droughts, notwithstanding the low flows in some areas during 1988 and 1989. The 1984 and 1976 droughts were in rapid decline by September and many flow records do not include the 1964 and 1959 droughts which lasted until later in the year. As an illustration of the impact this can have, the return period for the September flow on the Kent Stour (see Table 4) reduces to about 25 years if an estimate of the 1959 discharge is incorporated in the analysis. Notwithstanding this caveat, the return periods testify to very severe hydrological droughts in parts of Yorkshire, East Anglia, Kent and Wessex.

Accumulated runoff totals are very low for periods of up to 7 months, especially so in the 4-6 month timeframe. The summer half-year (April to September) runoff totals rank in the lowest three or four on record for many catchments - at least where record lengths are less than 30 years. Unprecedented summer runoff totals were recorded on the Dee (Grampian), South Tyne and the Severn (where the effects of river regulation temper the significance of the data presented in Table 3). Very low summer flows characterised responsive western catchments (e.g. the Eden and Cynon) and lowland rivers with substantial baseflows. Long return periods, in excess of 25 years, are associated with the April-September runoff totals for a range of lowland rivers and some others, notably the Yorkshire Derwent.

Clear evidence of the extraordinary transformation in hydrological conditions around the end of the winter may be found in the accumulated runoff totals for 1990 as a whole. Spate conditions in January and, particularly, February counterbalance the spring/summer drought in most regions and the mean flows for 1990 fall within the normal range in all but central and southern England and northwards along the eastern seaboard. For some Scottish rivers - notably the Tay and Clyde - and a few in north-west England, the nine-month runoff is the highest on record. A similar picture emerges from the tabulation for the water-year. However, only a relatively moderate amelioration in the drought's magnitude is evident in some eastern rivers especially those draining permeable catchments. Twelve-month accumulations are amongst the lowest on record for a number of eastern catchments and modest for some further inland (the Trent and Brue being examples) and, generally, longer term accumulations provide further evidence of a very persistent runoff deficiency. The Trent, Coln, Stour (Kent) and Itchen are among those rivers for which runoff has been below average for at least 20 months in the last two years. It is 23 months since an above

average flow was registered on the Lud and 24 on the Derwent (Yorks) and the Whiteadder.

The river flow response to the recent unsettled spell has been determined largely by the rainfall amounts and the prevailing soil moisture conditions. Flooding occurred in Scotland early in October but in southern England the moderate surface runoff was not the precursor of any general seasonal upturn.

Groundwater

With the continuation of low rainfall in September, there has been little, if any, significant recharge to any aquifer in England and Wales. The recessions which commenced in most areas in February have continued largely unabated. By the end of September, levels were well below average in all aquifers (some monitoring sites excepted) and, generally, a little below those recorded at the same time during the 1989 drought. Throughout the major aquifers, water-tables stood at their lowest September levels since 1976 and in some eastern units groundwater levels were unprecedented.

Groundwater levels are affected not merely by the recharge of the winter months - modest in 1989/90 along the eastern seaboard - but also by the depth of the recession during the previous summer and autumn. For example, at the Fairfields site (East Anglia Chalk - not featured on Figure 3), the sustained recession of 1989 was followed by only a limited rise in groundwater levels and the summer recession of 1990 commenced from a level that was already below the seasonal mean and, by September had reached a level approaching the minimum recorded value.

The severity of the drought situation is emphasised by the fact that groundwater levels are everywhere (with one or two isolated exceptions) below the seasonal means for September, and often well below this, even approaching or below the minimum recorded values. The most severely affected area is within the Chalk outcrop of Yorkshire, where the levels at the Dalton Holme site are unprecedentedly low. South of the Humber, at Little Brocklesby (Lincolnshire Chalk), the situation is but little better with levels at their lowest since 1976. Continuing southwards, in the coastal aquifers (Fairfield and Little Bucket Farm) groundwater levels are seriously depressed, and this state of affairs is continued along the south coast - albeit somewhat moderated. Only at the Lime Kiln Way site are levels, although in recession, above the seasonal mean; this may in part reflect the exceptionally high peak level registered in the early spring. Inland, the observation well at Rockley is nearly dry, Ampney Crucis close to the minimum recorded level for September and the New red Lion, Peggy Ellerton and Llanfair sites all well below the seasonal means.

The relatively high rainfall during late-September has not yet caused an end to the overall recession although local and very moderate water-table responses have been reported for fissured aquifer units in some areas (e.g. parts of the Sussex coast). Some upturn may be recognisable in October as the infiltration associated with the late-September/early-October rainfall reaches the water-table but this will herald no general recovery in the absence of further substantial autumn rainfall.

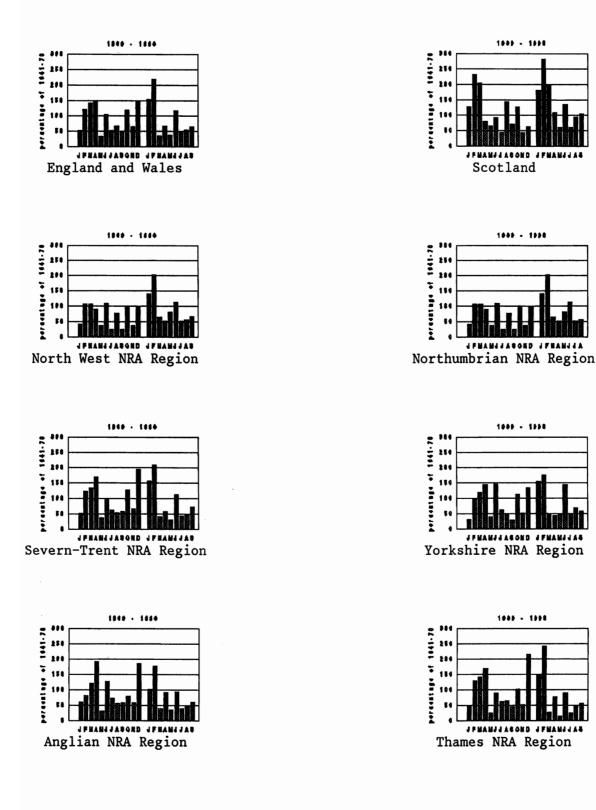
Following the extreme 1976 drought, winter rainfall was generally some 50% above average over the aquifer outcrop areas, resulting in dramatic recoveries in groundwater levels. If similar precipitation occurs over the winter of 1990-91, groundwater levels will recover equally rapidly. If, however, the precipitation is of equal magnitude to the winter of 1988-89, then the recessions in the summer of 1991 will, generally, start from unprecedentedly low levels and the water resources outlook will be a matter of concern. Although the rainfall of the winter of 1989-90 was high in most districts, it was concentrated into very short periods, notably late-January and February, and the dramatic rise in groundwater levels registered in western and central aquifer units was followed in most cases by an equally dramatic fall. With regard to water resources the very early onset of recessions - at a time when levels are normally still rising - counteracted much of the benefit associated with the heavy recharge early in the year.

		Aug 1989	Sep	Oct	Nov	Dec	Jan 1990	Feb	Mar	Apr	May	Jun	Jul	Aug	
England and Walcs	mm %	58 65	41 49	98 118	61 63	134 149	133 154	142 219	23 39	38 66	25 37	70 115	35 47	49 54	
wales NRA REGIOI		05	49	110	05	143	134	217	55	00	57	115	47	54	
					~	100	100	107	45	50	40	~	~~		
North West	mm %	116 93	29 24	145 123	84 69	100 83	196 175	187 231	47 65	52 68	49 60	97 117	55 53	70 55	
Northumbria	mm	77	20	71	35	75	111	133	33	28	51	68	40	57	
Not mumor la	%	76	25	95	37	100	139	202	63	51	80	111	52	56	
Severn Trent	mm	44	38	82	52	135	107	110	21	30	19	62	29	39	
	%	54	57	126	66	193	155	208	40	58	30	111	44	48	
Yorkshire	mm	41	20	77	45	98	118	112	24	24	29	83	34	61	
	%	46	28	112	51	132	153	175	45	43	48	143	48	68	
Anglia	mm	35	30	41	36	98	52	74	15	36	16	45	22	30	
	%	55	58	79	58	185	101	177	38	90	34	92	39	47	
Thames	mm	44	28	65	37	141	91	114	12	35	7	46	15	34	
	%	63	45	102	51	214	147	242	26	76	13	88	25	49	
Southern	mm	29	37	79	50	142	121	135	6	43	11	59	12	32	
	%	40	52	101	53	175	159	238	12	90	20	118	21	45	
Wessex	mm	43	49	101	58	165	124	157	15	35	13	63	30	42	
	%	52	62	123	60	183	147	265	26	65	19	117	49	51	
South West	mm %	62 61	107 103	148 131	100 75	196 145	195 151	238 264	25 30	47 66	24 29	98 151	58 69	61 60	
	70														
Welsh	mm %	91 76	62 50	180 140	109 76	199 137	240 176	214 223	37 43	45 52	33 36	94 115	48 50	62 52	
Scotland	mm	184	96	187	60	96	250	291	247	97	55	124	67	119	1
	%	143	70	126	42	62	182	280	268	108	60	135	60	92	1
RIVER PURI	FICATIO	ON BOA	RDS												
Highland	mm	222	118	258	79	109	293	364	395	136	57	137	94	161	2
	%	150	75	139	47	56	179	274	346	119	55	125	74	109	1
North-East	mm	84	57	87	29	54	103	145	87	44	48	108	47	78	
	%	. 79	66	90	28	53	114	195	140	72	62	154	51	73	1
Тау	mm	140	83 72	136 111	51 43	86 64	236 200	249 270	186 227	60 80	43 45	122 147	40 39	74 63	
	%	119	72												
Forth	mm %	144 124	69 64	112 106	39 36	79 72	220 222	221 287	134 194	55 81	39 46	119 159	50 51	80 69	
Tweed	mm %	113 99	47 51	68 77	30 29	78 87	166 179	180 260	53 91	31 51	46 61	101 149	54 61	61 54	
Solway	mm	176	77	145	59	119	250	282	97	71	77	120	76	106	
Solway	11111 %	135	51	145	41	79	179	303	107	81	84	133	69	82	
Clyde	mm	252	120	244	73	107	316	343	290	127	58	134	96	149	1
	%	177	69	133	44	58	196	304	276	123	60	130	74	105	-
: Septemb		res for				les for	1990 a	re ba					res su		by t

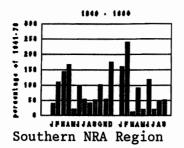
TABLE 1	1989/90	RAINFALL	AS A	PERCENTAGE O)F THE	1941-70	AVERAGE
---------	---------	----------	------	--------------	---------------	---------	---------

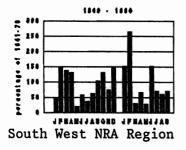
MORECS bulletin. The Scottish national value was provided by the London Weather Centre.

England and mm Walcs % LTA]	R - SEP 90 Est Return eriod, years	Est	- SEP 90 Return od, years	E	89 - SEP 90 st Return riod, years	NOV 88 - SEP 9 Est Return Period, years	
		293 60	100-150	568 88	5	861 94	<2	1479 85	20
NRA REGION	٩S								
North West	mm % LTA	453 68	30-40	836 97	2-5	1165 96	2-5	2096 90	5-10
Northumbria	mm % LTA	330 67	30-50	574 90	2-5	755 86	5-10	1308 78	60-90
Severn Trent	mm % LTA	249 57	100-150	466 83	5-10	735 95	2-5	1264 85	10-20
Yorkshire	mm % LTA	297 65	40-60	527 88	2-5	747 90	2-5	1294 81	30-40
Anglia	mm % LTA	195 56	150-200	322 73	20-30	497 81	10-15	920 79	40-60
Thames	mm % LTA	183 47	>200	388 77	10	631 90	2-5	1077 80	30-40
Southern	mm % LTA	200 49	>200	457 84	5	728 92	2-5	1175 78	40-50
Wessex	mm % LTA	251 55	100-120	531 89	2-5	855 98	<2	1396 84	10-20
South West	mm % LTA	385 65	30-40	818 101	<2	1262 106	<u>2-5</u>	2053 90	5-10
Welsh	mm % LTA	401 59	100-120	854 93	2-5	1342 101	<u><2</u>	2278 90	5-10
Scotland	mm % LTA	852 115	<u>5-10</u>	1393 142	<u>>>200</u>	1736 121	<u>40-60</u>	3140 116	<u>40-60</u>
RIVER PURI	FICATION BOA	RDS							
Highland	mm % LTA	1185 136	90-110	1843 157	>>200	2289 133	>>200	4164 128	<u>>>200</u>
North-East	mm % LTA	501 90	2-5	749 104	<u>2-5</u>	919 90	2-5	1618 83	40-50
Гау	mm % LTA	607 91	2-5	1091 124	10-20	1364 <u>109</u>	<u>2-5</u>	2466 103	<u>2-5</u>
Forth	mm % LTA	537 87	5	977 123	15-20	1207 108	<u>2-5</u>	2191 103	<u>2-5</u>
ſweed	mm % LTA	404 72	20-30	750 104	2-5	926 92	2-5	1650 86	10-20
Solway	mm % LTA	633 84	5-10	1165 118	<u>5-10</u>	1488 104	<u>2-5</u>	2589 99	2
Clyde	mm % LTA	973 114	5	1632 145	>>200	2056 123	<u>30-40</u>	3738 119	40-50


TABLE 2 RAINFALL RETURN PERIOD ESTIMATES

Return period assessments are based on tables provided by the Meteorological Office*. These assume a start in a specified month; return periods for a start in any month may be expected to be an order of magnitude less. "Wet" return periods underlined. The tables reflect rainfall totals over the period 1911-70 only and the estimate assumes a sensibly stable climate.


The September 1990 RPB values are estimated from the isopleth map within the September summary published in the Met. Office's MORECS bulletin.


* Tabony, R C, 1977, The Variability of long duration rainfall over Great Britain, Scientific Paper No. 37, Meteorological Office (HMSO).

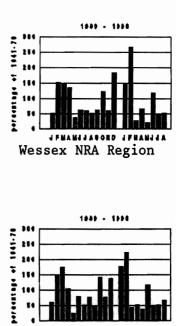
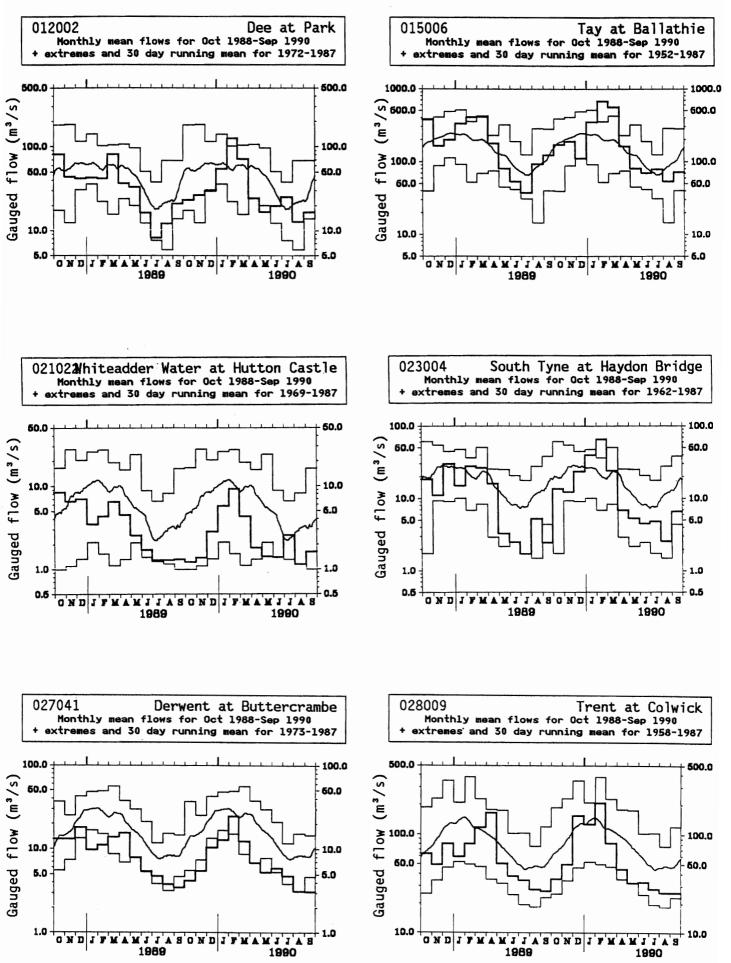
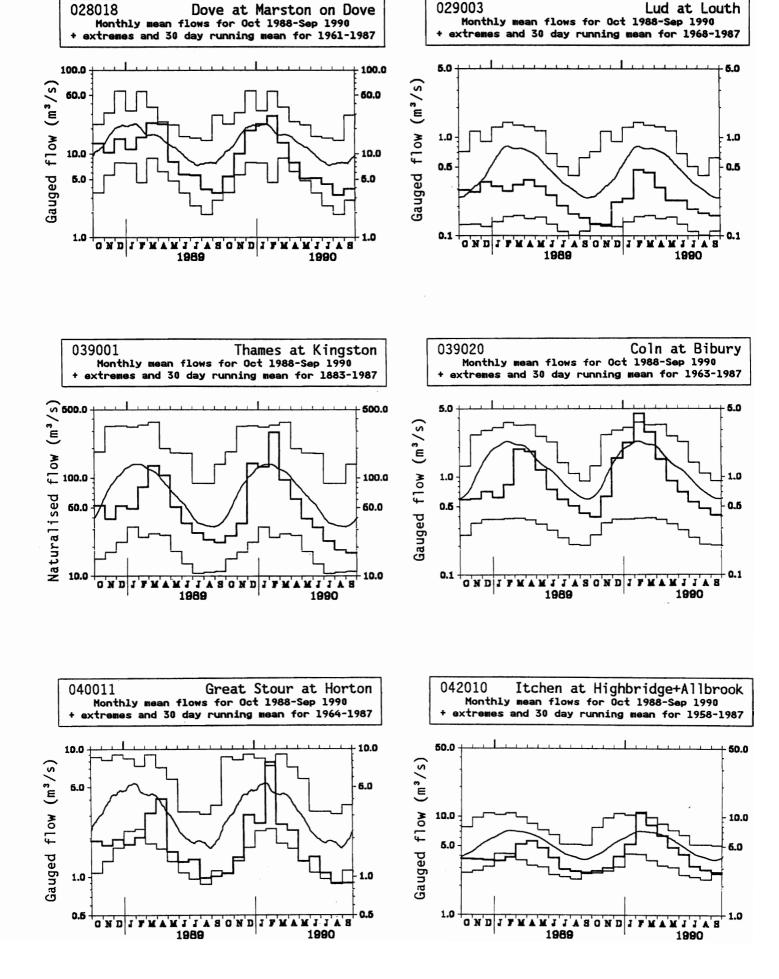
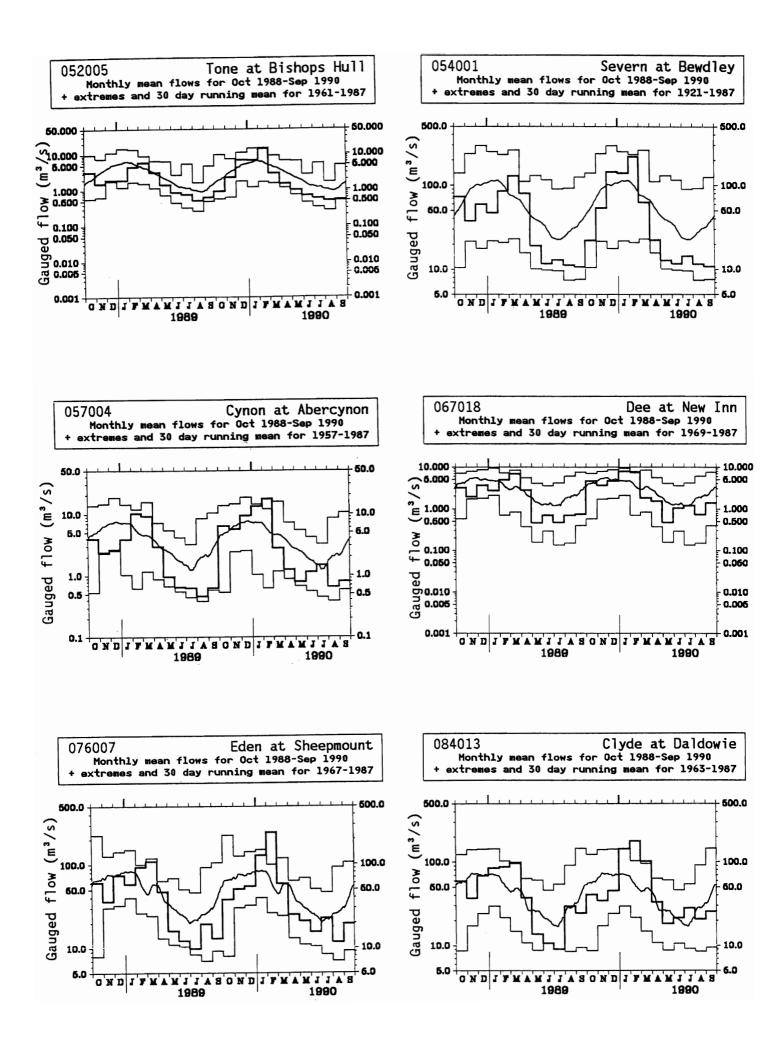

FIGURE 1. MONTHLY RAINFALL FOR 1989 – 1990 AS A PERCENTAGE OF THE 1941 – 1970 AVERAGE FOR ENGLAND AND WALES, SCOTLAND, AND THE NRA REGIONS

FIGURE 1 (continued)







Welsh NRA Region

FIGURE 2 MONTHLY RIVER FLOW HYDROGRAPHS

TABLE 3RUNOFF AS MM. AND AS A PERCENTAGE OF THE PERIOD OF RECORDAVERAGE WITH SELECTED PERIODS RANKED IN THE RECORD

River/ Station name	Apr 1990	Мау	Jun	ງຖ	Aug	Sep 1990	4/90 to 9/90	1/90 to 9/90	10/89 to 9/90	11/88 to 9/90
	mm	mm	mm	mm	mm	mm rank	mm rank	mm rank	mm rank	mm rank
	%LT	%LT	%LT	%L⊤	%LT	%LT /yrs	%LT /yrs	%LT /yrs	%LT /yrs	%LT /yrs
Dee at	34	24	28	37	18	23 4	164 1	511 7	626 2	1164 2
Park	43	37	75	134	55	54 /18	59 /18	96 /18	78 /17	77 /17
Tay at	91	47	40	46	31	41 10	295 8	1176 38	1446 37	2620 37
Ballathie	110	67	89	116	60	58 /38	82 /38	158 /38	129 /38	123 /37
South Tyne at	24	19	16	17	9	23 5	107 1	540 18	714 10	1201 4
Haydon Bridge	44	52	58	58	22	44 /27	45 /27	110 /27	95 /27	83 /25
Whiteadder Water at	20	17	11	34	6	86	52 1	1 49 3	178 2	388 1
Hutton Castle	36	44	44	127	37	50/22	41 /21	53 /21	45 /20	48 /18
Derwent at	11	9	10	8	5	5 1	48 1	128 2	161 1	336 1
Buttercrambe	33	35	59	60	36	38 /17	43 /17	52 /17	48 /17	51 /16
Trent at	15	11	11	10	9	9 2	66 2	207 3	292 6	546 2
Colwick	45	43	57	62	53	53 /32	53 /32	80 /32	81 /32	78 /31
Dove at	23	15	15	13	10	11 5	88 2	275 3	378 2	749 3
Marston on Dove	53	42	57	57	43	45 /28	51 /28	78 /28	75 /28	77 /26
Lud at	15	11	11	9	8	8 4	61 4	115 4	138 3	282 2
Louth	45	39	53	54	58	70 /23	51 /22	52 /22	51 /22	54 /21
Bedford Ouse at Bedford	10	6	5	4	3	3 20	30 12	156 29	221 30	408 25
	49	45	61	67	58	60 /58	53 /58	98 /58	102 /57	95 /56
Mimram at	12	10	8	7	6	5 4	48 6	88 12	109 10	210 7
Panshanger Park	94	81	73	72	67	62 /38	77 /38	89 /38	87 /37	86 /36
Thames at	16	10	8	6	5	5 11	50 19	182 53	236 47	398 28
Kingston (natr.)	71	57	63	63	57	56 /108	63 /108	100 /108	96 /107	83 /106
Coln at	36	23	17	14	12	10 2	111 4	338 15	402 10	646 6
Bibury	83	69	63	66	71	70 /27	72 /27	107 /27	102 /27	83 /26
Mole at	22	14	18	18	12	12 12	89 4	352 12	462 10	779 2
Kinnersley Manor	63	52	100	141	79	68 /17	72 /17	115 /16	100 /15	88 /13
Great Stour at	17	10	11	8	7	7 1	60 2	155 4	197 4	356 1
Horton	62	46	70	56	51	50 /26	57 /24	72 /24	66 /23	61 /21
Ouse at	20	10	9	9	8	9 13	65 2	281 15	335 9	537 2
Gold Bridge	58	40	58	89	72	61 /31	60 /30	104 /29	85 /29	71 /27
Itchen at	46	36	30	23	21	20 3	177 5	351 14	423 7	732 2
Highbridge+Allbrook	98	84	86	75	74	76 /32	85 /32	98 /32	91 /32	81 /31
Stour at	22	15	10	6	5	4 1	63 3	332 15	430 11	669 4
Throop Mill	63	63	63	53	47	33 /18	59 /18	119 /18	108 /17	87 /16
Tone at	19	13	9	8	6	72	61 2	357 16	490 15	789 4
Bishops Hull	48	46	50	51	48	45/30	48 /30	105 /29	103 /29	85 /28
Brue at	12	8	7	5	5	4 1	42 2	270 8	390 6	676 2
Lovington	39	34	46	30	32	26 /26	37 /26	91 /26	90 /26	80 /25
Severn at	13	8	7	9	7	6 6	51 1	297 31	432 30	736 11
Bewdley	41	33	40	63	40	27 /70	40 /70	98 /69	96 /69	85 /68
Teme at	16	12	10	9	7	7 10	62 4	307 15	427 17	631 5
Knightsford Bridge	45	56	70	109	80	83 /21	65 /21	115 /20	114 /20	87 /19
Cynon at	30	20	28	37	16	19 5	150 2	944 27	1480 28	2320 14
Abercynon	39	33	69	109	32	28 /32	46 /32	122 /32	119 /32	98 /30
Dee at	73	23	50	59	36	66 6	308 4	1130 11	1755 9	2997 4
New Inn	70	33	85	87	38	48 /22	58 /21	101 /21	97 /21	87 /20
Lune at	43	28	15	68	12	36 6	202 4	843 22	1149 14	2015 9
Caton	58	56	37	132	17	41 /28	55 /28	118 /28	102 /26	94 /24
Eden at	28	24	17	26	14	22 6	132 2	603 20	768 13	1322 9
Sheepmount	60	73	66	95	45	50 /20	64 /20	134 /20	111 /19	103 /17
Clyde at	45	26	29	39	29	35 10	203 11	770 27	937 25	1622 22
Daldowie	109	74	110	146	71	60 /27	89 /27	159 /27	124 /27	113 /26

Notes (i) Values based on gauged flow data unless flagged (natr.), when naturalised data have been used.

(ii) Values are ranked so that lowest runoff as rank 1;

(iii) %LT means percentage of long term average from the start of the record to 1989. For the long periods (at the right of this table), the end date for the long term is 1990.

River	Station Name	First Year of Rec.	Mean September Flow	1990 September Flow	Return Period (in years)	Base b Flow Index
Dee	Park	1972	29.5	16.5	5-10	0.54
Coquet	Rothbury	1972	2.8	0.72	25	0.48
Wharfe	Flint Mill	1937	13.5	3.85	10-25	0.39
Derwent	Buttercrambe (Yorks)	1973	8.1	3.08	25	0.68
Trent	Colwick	1959	49.5	25.6	25	0.64
Dove	Marston on Dove	1961	8.3	3.84	5-10	0.60
Lud	Louth	1968	0.24	0.16	5-10	0.90
Witham	Claypole Mill	1959	0.71	0.39	5-10	0.67
Welland	Ashley	1970	0.29	0.11	50-100	0.41
Mimram	Panshanger Park	1952	0.42	0.27	10	0.94
Kennet	Theale	1961	5.3	3.31	25	0.87
Coln	Bibury	1963	0.59	0.41	10-25	0.94
Great Stour	Horton	1964	1.8	0.89	50	0.69
Itchen	Highbridge	1958	3.6	2.75	10-25	0.97
Brue	Lovington	1964	0.77	0.22	50-100	0.47
Taw	Umberleigh	1958	7.8	1.64	10	0.42
Severn	Bendley	1921	36.5	10.8	10-25	0.53
Yscir	Pontaryscir	1972	1.3	0.25	10-25	0.47
Eden	Sheepmount	1967	38.4	19.25	5	0.50

TABLE 4RIVER FLOW RETURN PERIODS

Note (i) The stations featured are drawn from those areas where the hydrological drought is currently most severe

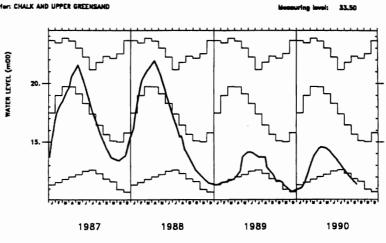
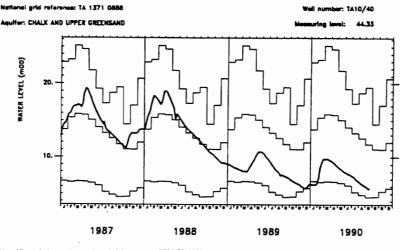
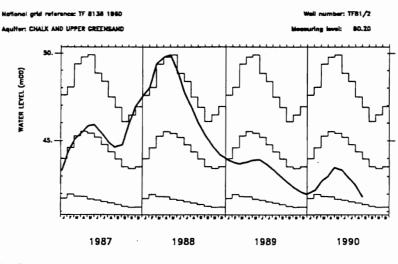

- Note (ii) The precision of low flow measurement may be affected by gauge sensitivity and, further, by uncertainties in summer stage discharge relations which are generally addressed retrospectively. The pattern of water utilisation in certain catchments, particularly regulation and/or augmentation at low flows, plus the the influence of abstractions and the discharge of sewage effluent, means some return periods need to be treated with especial care.
- **b** The base flow index is an indicator of what proportion of the the hydrograph is represented by base flow following a hydrograph separation exercise on the whole record. The lower the index, the lower the base flow contribution and the more responsive the catchment is to rainfall. See: Low Flow Studies, 1980 NERC

FIGURE 3 GROUNDWATER HYDROGRAPHS

Site name: DALTON HOLME

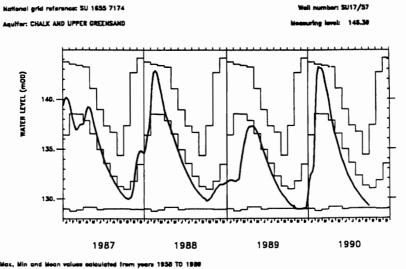

National grid reference: SE 9651 4530 Aquiter: CHALK AND UPPER GREENSAND


Max, Min and Mean values calculated from years 1889 TO 1989

Site name: LITTLE BROCKLESBY

Max, Min and Mean values calculated from years 1925 TO 1988

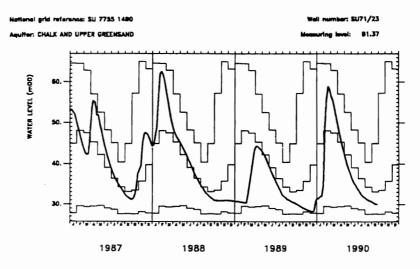
Site name: WASHPIT FARM



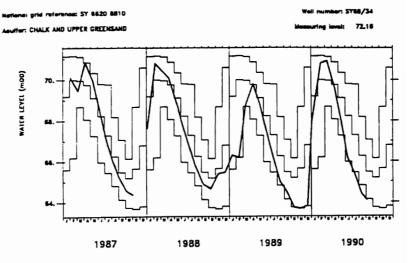
Max, Min and Mean values calculated from years 1850 TO 1989

Site name: ROCKLEY

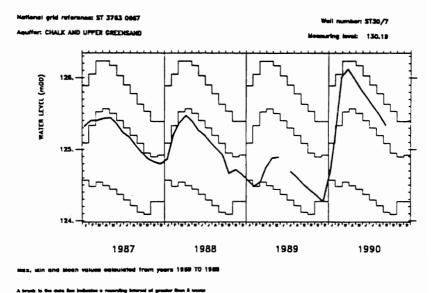
WATER LEVEL (mOD)


National grid reference: SU 1655 7174

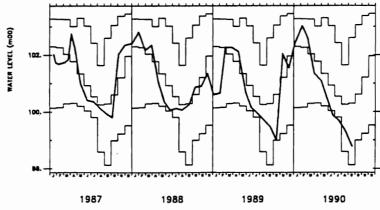
Site name: LITTLE BUCKET FARM, WALTHAM



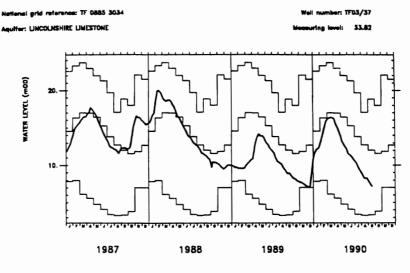
Site name: COMPTON HOUSE


Max, Min and Mean values aclouisted from yours 1894 TO 1985

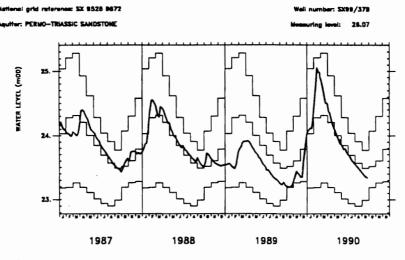
Site name: ASHTON FARM


Max, Min and Mean values easewisted from years 1977 TO 1988

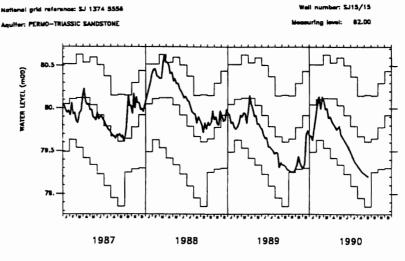
Site name: LIME KILN WAY


Site name: AMPNEY CRUCIS

National grid referenaa: SP 0385 0190 Weil number: SP00/82 Aquiter: MIDDLE JURASSIC Nexauring level: 108.70


Max, Min and Mean values associated from years 1856 TO 1989

Site name: NEW RED LION


Max, Min and Mean values calculated from years 1964 TO 1988

Site name: BUSSELS NO.7A

Max, Min and Mean values calculated from years 1972 TO 1988

Site name: LLANFAIR DC

Max, Min and Mean values calculated from years 1972 TO 1989

Borehole	Aquifer	First year of record	Av. Sept level	Sept 1976 Day level		Sept	1990	No. of years of record with Sept levels <1990	
		ICOIU				Day	level		
Dalton Holme	C & U.G.	1889	15.67	25	11.87	27	11.38	none	
Brocklesby	**	1926	11.72	24	4.56	20	5.69	1	
Washpit Farm	"	1950	43.98	1	41.70	3	41.85	2	
Rockley	"	1933	131.06	26	128.97	27	129.30	5	
Compton House	"	1894	33.11	30	27.72	25	29.98	3	
. Bucket Farm	"	1971	65.56	30	57.64	20	58.96	1	
Limekiln Way	**	1969	125.09	15	124.12	12	125.34	16	
Fairfields	"	1974	23.04	24	22.37	10	22.24	1	
Ashton Farm		1977	65.28	24	63.23	6	4.10	1	
New Red Lion	L.L.	1964	12.03	28	3.68	19	7.21	1	
Llanfair D.C.	PTS	1972	79.61	1	78.85	17	79.20	1	
Bussels 7A	"	1972	23.49	28	23.09	25	23.34	3	
Ampney Crucis	M.J.	1958	100.29	15	98.12	19	98.78	1	

TABLE 5 A COMPARISON OF SEPTEMBER GROUNDWATER LEVELS: 1990 AND 1976

C & U.G.Chalk and Upper Greensand;L.L.Lincolnshire LimestonePTSPermo-Triassic SandstonesM.J.Middle Jurassic Limestone

