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Abstract We measured mercury concentrations ([Hg]) and nitrogen stable isotope 21 

ratios (δ15N) in the primary feathers of Short-tailed Shearwaters (Puffinus 22 

tenuirostris) that were tracked year-round. [Hg] were highest in 14 birds that used 23 

the Okhotsk and northern Japan Seas during the non-breeding period (2.5±1.4μ24 

g/g), lowest in 9 birds that used the eastern Bering Sea (0.8±0.2μg/g), and 25 

intermediate in 5 birds that used both regions (1.0±0.5μg/g), with no effects of 26 

δ15N. The results illustrate that samples from seabirds can provide a useful means 27 

of monitoring pollution at large spatial scale. 28 
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INTRODUCTION 32 

Mercury (Hg) is diffused globally through atmospheric and oceanic transport 33 

(Laurier et al. 2004), methylated and biomagnified in the marine ecosystem 34 

(Jaeger et al. 2009) and has adverse physiological effects on consumers. Although 35 

reliable approaches to monitoring spatial pattern of marine Hg pollution are 36 

needed, intensive and repeated sampling of seawater in offshore regions is 37 

financially and logistically challenging. As an alternative, seabird feathers may 38 

offer a viable method for monitoring Hg pollution including over large spatial 39 

scales (Bearhop et al. 2000).  40 

 41 

Studies of seabirds tracked using geolocators show that individuals from the same 42 

breeding colony may use various discrete regions in pelagic waters during the 43 

non-breeding period (Phillips et al. 2008). Recent study showed that individuals of 44 

Great Skuas (Catharacta skua) carried rather different levels of contaminants 45 

depending on their wintering area (Leat et al. 2013). If molt patterns are known or 46 

inferred, Hg concentrations of feathers grown at a specific time of the year may 47 

therefore provide valuable information on environmental exposure within 48 

particular regions (Ramos et al. 2009).  49 

 50 

Short-tailed Shearwaters (Puffinus tenuirostris) are trans-equatorial migrants that 51 

breed in southern Australia and spend the non-breeding period (May–Sep) in the 52 

northern North Pacific. To assess Hg exposure in these non-breeding grounds, we 53 

tracked Short-tailed Shearwaters using geolocators, and sampled outer most 54 

primary feathers (P10) when the birds returned to the colony for later analysis of 55 
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Hg concentrations ([Hg]) and δ15N (a proxy of trophic level; Jaeger et al. 2009). 56 

 57 

STUDY AREA AND METHODS 58 

Field work The study was conducted at Great Dog, Flinders Islands, Tasmania 59 

(40°15´S, 148°15´E). Geolocators (Mk15; British Antarctic Survey, Cambridge) 60 

were attached to 50 and 46 incubating birds in early December in 2009 and 2010, 61 

respectively. Geolocators weighed 2.5g (< 1% of mean body mass of study birds), 62 

and were attached to aluminum leg bands with plastic ties (Carey et al. 2014). 63 

Fifteen and 27 birds in the burrows were recaptured in early December 2010 and 64 

2011, respectively (including 3 birds recaptured 2 years after deployment), and 65 

one recovered from a beached bird in 2010. Tracking data were obtained from 40 66 

birds (3 loggers could not be downloaded). At recapture, 1 cm from the tip of P10 67 

was collected and stored at -20 °C. Based on body measurements (Carey 2011), 68 

the sample of tracked birds was male-biased (32 males, 4 females, and 7 69 

unknown) since males usually take the first incubation spell in early December 70 

when we conducted the fieldwork.  71 

 72 

Track analysis The geolocators measured light intensity, and immersion and 73 

temperature in seawater. We estimated sunset and sunrise times from light curves, 74 

then derived latitudes on the basis of day length, and longitudes from the time of 75 

local midday and midnight. Day and night locations were averaged to give a 76 

single location per day. During the period around the equinoxes, when latitude 77 

cannot be estimated from the day length, we used the water-temperature data and 78 

the light-based longitudes to estimate the daily latitude from maps of 79 
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remotely-sensed sea surface temperature (8-day composite, resolution 9 km, 80 

measured by Aqua-MODIS). Location data that were unreliable because of 81 

obvious interruptions around sunset and sunrise, or unrealistic flight speeds (>70 82 

km/h) were replaced with those estimated by linear interpolation.  83 

 84 

Chemical analysis Each feather was split into two at the rachis for Hg and stable 85 

isotope analyses. For Hg analysis, the feathers were washed using 99.5% acetone 86 

and Milli-Q water and dried in an oven at 50°C for 24 hrs. We measured [Hg] 87 

using CV-AAS (Cold Vapor-Atomic Absorption Spectroscopy) and a Mercury 88 

Analyzer MA-3000 (Nippon Instruments Corporation, Japan). Hg recoveries were 89 

between 90% and 105% for the laboratory standards (fish; DORM-3 and 90 

DOLT-4), and the detection limit was 0.2 ng/g (dry weight). For δ15N analysis, 91 

feathers were cleaned using 0.25M sodium hydroxide, rinsed in Milli-Q water and 92 

dried at 60°C for 24 hrs. Dried samples were ground in an auto-mill after freezing 93 

using liquid nitrogen. The nitrogen stable isotope ratio (in ‰) was measured 94 

using a gas-source isotope ratio mass spectrometer (ANCA-GSL and Hydra 95 

20-20, Sercon Ltd, UK), and is presented as deviations from atmospheric N2, 96 

where δ15N = [(15N/14N sample /15N/14N standard ) - 1] × 1,000. All samples were 97 

measured in triplicate and average values used in all statistical tests. If the 98 

coefficient of variation on triplicate measurements was over 0.3, the value with 99 

the largest deviation was excluded from calculation of the mean.  100 

 101 

Statistical analyses The effect of year and non-breeding grounds (fixed effects) 102 

and δ15N (covariate) on [Hg], and the effects of year and non-breeding grounds 103 
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(fixed) on δ15N were examined by GLMs using SPSS statistics ver. 22. Sex was 104 

not included as a factor because of the male bias. No interaction terms were 105 

included. Means are presented ± SD. 106 

 107 

RESULTS 108 

Non-breeding grounds Feather samples of Short-tailed Shearwaters were not 109 

collected in every case, or too small for analysis, so [Hg] and δ15N data were 110 

available for 28 tracked birds in this study. During the non-breeding period, 14 111 

birds stayed in the southern Okhotsk and northern Japan Seas (WEST), 9 birds 112 

(including three tracked for two years) migrated to the eastern Bering Sea and 113 

around the Aleutian Islands (EAST), and 5 birds initially used the western region 114 

but later moved to the eastern region (MIX) (Fig. 1).   115 

 116 

Mercury and δ15N There was no significant effect of year (F(1,23)=1.863, 117 

P=0.185) or δ15N (F(1,23)=0.053, P=0.820) on [Hg], but the effect of non-breeding 118 

grounds was significant (F(2,23)=6.789, P=0.002). Mean [Hg] was higher in WEST 119 

than EAST birds (Fig. 2; P<0.05, Bonferroni post-hoc test), and did not differ 120 

significantly between MIX and WEST or EAST birds (P>0.05). The effect of 121 

non-breeding grounds on δ15N was marginally significant (F(2,24)=3.336, P=0.053) 122 

with δ15N tended to be higher in EAST (15.2±2.9‰) than WEST (13.4±0.8‰) 123 

and MIX birds (13.0±1.7‰). Year effect was not significant (F(1,24)=0.229, 124 

P=0.637). 125 

 126 

DISCUSSION 127 
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Primary molt of Short-tailed Shearwaters has been recorded during late June and 128 

July (non-breeding period) and is completed before return to the breeding site 129 

(Marchant and Higgins 1990). Based on stable isotope and other data, the Sooty 130 

Shearwaters Puffinus griseus also start to molt primaries on arrival at the 131 

non-breeding grounds in the north-western Atlantic (Hedd et al. 2012). Although 132 

there was substantial variation in molting patterns among populations and 133 

individuals in Yelkouan Shearwaters Puffinus yelkouan, they rarely molted wing 134 

feathers during breeding (Bourgeois and Dromzee 2014). Thus, the Hg 135 

concentrations in P10 of the short-tailed shearwaters in our study presumably 136 

reflect exposure to pollutants in the non-breeding grounds. Further information on 137 

molt sequence in this species, including birds of different status and from different 138 

colonies, would be valuable, however, as chemical analysis of different feather 139 

types may provide details on pollutant exposure during the non-breeding period at 140 

a finer temporal and spatial scale (González-Solís et al. 2011).  141 

 142 

[Hg] in P10 of our Short-tailed Shearwaters (0.8 – 2.5 μg/g, Fig. 2) were lower 143 

than those in the flight feathers that were replaced during the non-breeding period 144 

by other species (1.2 – 3.9 μg/g in Cory’s Shearwater Calonectris diomedea, Ramos 145 

et al. 2009; 4.3 – 6.0 μg/g in Great Skua, Bearhop et al. 2000), and lower than the 146 

levels sometimes associated with impaired reproduction (>5.0μg/g, Burger and 147 

Gochfeld 1997). We further found that feather [Hg] were higher for the 148 

Short-tailed Shearwaters that spent the non-breeding period in the southern 149 

Okhotsk and northern Japan Seas (WEST), than those in the eastern Bering Sea 150 

and around the Aleutian Islands (EAST). The influence of δ15N on [Hg] in 151 



 
 

8 

feathers was not significant in our study birds, in comparison with results from 152 

other seabird species (Bond 2010). In addition, the δ15N of WEST birds tended to 153 

be lower than that of EAST birds, and so the differences in trophic level would not 154 

explain the higher [Hg] in the WEST birds unless we postulate a substantial 155 

disparity in isotopic baselines in the two regions. 156 

 157 

The spatial pattern of Hg pollution in offshore waters of the northern North 158 

Pacific Ocean has been examined by sampling seabird tissues and seawater during 159 

research cruises. [Hg] in the liver of Glaucous-winged Gulls (Larus glaucescens) 160 

increased towards the west along the Aleutian Island chain (Ricca et al. 2008). 161 

[Hg] in seawater was higher in the western North Pacific shelf area off Japan than 162 

in the basin and central North Pacific (Laurier et al. 2004). These findings provide 163 

general support for the spatial pattern in Hg exposure found in the Short-tailed 164 

Shearwaters tracked in our study.  165 

 166 

Although the method we applied provided information on pollutant levels only in 167 

the areas visited by the tracked birds, our study nevertheless demonstrates the 168 

utility of this technique for monitoring the spatial pattern of Hg pollution in large 169 

offshore regions, which are beyond the ranges of breeding birds and where 170 

ship-based sampling is expensive and logistically challenging.  171 

 172 
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 229 

FIGURE CAPTIONS 230 

 231 

Fig. 1 Kernel density map of Short-tailed Shearwaters with different distributions 232 

during the non-breeding period: (a) WEST (14 birds), (b) MIX (5 birds), and 233 

(c) EAST (9 birds). The kernel density contours represent the proportions of 234 

the overall kernel density surface from the highly utilized, core area (black: 235 

25%) to the periphery of the winter distribution (light grey: 95%). 236 

 237 

Fig. 2 Mercury (Hg) concentration (in μg/g dry weight) of the outermost primary 238 

feather of Short-tailed Shearwaters that spent the non-breeding period in the 239 

southern Okhotsk Sea and northern Japan Sea (WEST, 14 birds), in the 240 

eastern Bering Sea and around the Aleutian Islands (EAST, 9 birds), or that 241 

moved from WEST to EAST (MIX, 5 birds).  242 

 243 
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