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Abstract

Patterns in crop development and yield are often directly related to lateral and vertical changes
in soil texture causing changes in available water and resource supply for plant growth,
especially under dry conditions. Relict geomorphologic features, such as old river channels
covered by shallow sediments can challenge assumptions of uniformity in precision agriculture,
subsurface hydrology, and crop modelling. Hence a better detection of these subsurface
structures is of great interest. In this study, the origins of narrow and undulating leaf area index
(LAI) patterns showing better crop performance in large scale multi-temporal satellite imagery
were for the first time interpreted by proximal soil sensor data. A multi-receiver electromagnetic
induction (EMI) sensor measuring soil apparent electrical conductivity (ECa) for six depths of
exploration (DOE) ranging from 0-0.25 to 0-1.9 m was used as reconnaissance soil survey tool
in combination with selected electrical resistivity tomography (ERT) transects, and ground truth
texture data to investigate lateral and vertical changes of soil properties at ten arable fields. The
moderate to excellent spatial consistency (R? 0.19-0.82) of ECa patterns and LAl crop marks
that indicate a higher water storage capacity as well as the increased correlations between large-
offset ECa data and the subsoil clay content and soil profile depth, implies that along this buried
paleo-river structure the subsoil is mainly responsible for better crop development in drought
periods. Furthermore, observed stagnant water in the subsoil indicates that this paleo-river
structure still plays an important role in subsurface hydrology. These insights should be

considered and implemented in local hydrological as well as crop models.
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1. Introduction

Spatial heterogeneity of subsurface properties such as soil texture, soil structure, as well as
biochemical properties (e.g., organic carbon, nutrient status, pH) in combination with
unfavorable climatic conditions are known to affect crop yield (De Benedetto et al., 2013). The
detection, delineation, and quantification of subsurface variability are therefore key challenges
for site-specific management and are essential for spatially resolved hydrological models and

crop models.

Using grid sampling as a conventional soil survey technique is tedious and costly because a
large set of soil samples is required to adequately describe field variability. To overcome these
limitations, remotely sensed data obtained by active and passive sensors mounted on air-or
spaceborne platforms have been used to extract information relevant for precision agriculture
by delineating soil-patterns or segmenting the landscape into smaller but more homogenous

regions.

In densely vegetated regions, spatial and temporal changes in spectral indices and biophysical
attributes such as the normalized vegetation index (NDVI), soil adjusted vegetation index
(SAVI), or the leaf area index (LAI) have been used to monitor crop growth and development,
to map and classify crop vitality and yield production, and to detect early crop stress (Govender
et al., 2009; Lelong et al., 1998; Lu, 2006; Zheng and Moskal, 2009). Additionally, soil
properties and states characterizing the vadose zone such as soil texture, soil moisture, and
water holding capacity were estimated successfully from spectral (Casa et al., 2013), thermal
(Eisele et al., 2012), as well as from active (Zribi et al., 2012) and passive (Jonard et al., 2011)
microwave remote sensing products. Unfortunately, spectral and thermal satellite remote
sensing products do not include the ability to provide time critical remotely sensed observation,

such as at night time or when cloud cover is present.

Although remote sensing appears to be an important and promising tool for precision
agriculture it is not yet routinely used in plot scale agricultural soil science (Ben-Dor et al.,
2009) due to low spatial and/or temporal resolution, the lack of real-time data (De Benedetto et
al., 2013), and its limited sensitivity to mainly the upper few centimeters of the soil (Vereecken
et al., 2008). Moreover, there are still many unsolved calibration and validation issues to relate
remote sensing products with crop and soil properties due to the physically complex microwave
interactions with soils at wavelengths of interest (Mohanty et al., 2013). Furthermore, remote
sensing products analyzing crop water stress are restricted to observation periods where the

crop stand shows substantial impact on the environmental conditions (Vereecken et al., 2012).
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Despite these facts remote sensing can deliver important information, which can be used to
improve and support the interpretation of existing soil data (McBratney et al., 2003) and help
to set up spatially distributed hydrological and crop models.

To match the requirements of high-resolution mapping of the subsurface systems, non-invasive
geo-referenced geophysical measurements with larger sensing depth are suggested that are
capable of obtaining soil proxies that influence crop development. Hereby, different techniques
are proposed such as electromagnetic induction (EMI) (Corwin, 2008; Corwin and Lesch,
2005), electrical resistivity tomography (ERT) (Besson et al., 2010; Samouelian et al., 2005),
ground penetrating radar (GPR) (Huisman et al., 2003; Weihermiiller et al., 2007), and gamma-
ray spectrometry (Dierke and Werban, 2013). By measuring soil apparent electrical
conductivity (ECa), soil electrical resistivity, soil dielectric permittivity, or concentration of
gamma-ray emitting nuclides in soils, each sensor can be used to help determining specific soil

properties, especially when used in combination.

Due to the easy handling and non-invasive measurements, EMI systems are the most frequently
used proximal sensors in precision agriculture. The EMI system generates a time varying
primary electromagnetic field in the transmitter coil, which induces a current into the subsurface
(Hendrickx and Kachanoski, 2002; McNeill, 1980). A secondary magnetic field is generated
by these currents and measured together with the primary magnetic field at the receiver coil.
The ratio between the secondary and primary magnetic field is used to derive the soil apparent
electrical conductivity, which depends on coil separation, coil orientation, operating frequency,
and subsurface electrical conductivity. Due to the different soil properties influencing the
subsurface electrical conductivity, a calibration of the measured geophysical signal is needed.
In this way, EMI sensors can be used in various applications ranging from estimating the spatial
variability of soil water content (Kachanoski et al., 1988; Robinson et al., 2012), clay content
(Jung et al., 2005; Triantafilis and Lesch, 2005), and soil profile depth (Akbar et al., 2004; Saey
etal., 2009). Recent developments of multi-receiver EMI systems enable the simultaneous ECa
measurement for different depth ranges (Abdu et al., 2007; De Smedt et al., 2013; Saey et al.,
2009). Additionally, inversion of these EMI data nowadays allows the 2D (Mester et al., 2011;
Triantafilis et al., 2011) or quasi-3D (Saey et al., 2012; von Hebel et al., 2014) characterization
of the subsurface, which will improve the applicability of EMI for detailed large-scale

subsurface studies.

With respect to the soil/vegetation continuum, geophysical and remote sensing techniques have

different sensitivities and therefore, a combination of different proximal sensors and/or remote
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sensing data will enhance the data analysis and the understanding of the interactions between
the subsurface and the vegetation as found by Robinson et al. (2010) for rangeland systems.
This background also motivated Vereecken et al. (2008) in their review to recommend a

combined use of geophysical measurements with remote sensing to estimate soil properties.

For example, several studies used a combination of EMI and GPR measurements to successfully
estimate the spatial variability of soil properties (e.g. water content) and soil depth (De
Benedetto et al., 2012; Jonard et al., 2013; Kruger et al., 2013). The effect of texture and
fertilization on soil electrical conductivity was investigated by Liick et al. (2011), where EMI
measurements were compared with inverted £RT transects. The study demonstrated that due to
comparable sensitivities towards texture and soil water content, resistivity measurements could
be used to explore the vertical variability of ECa with high resolution. The potential and
limitations of a combined EMI and gamma-spectroscopy survey was demonstrated by Altdorff
and Dietrich (2012) as well as Castrignano et al. (2012) who showed that multivariate
geostatistical techniques are essential to fuse data from the different sensors to delineate

management or soil zones.

André¢ et al. (2012) explored the potential of EMI, GPR, and ERT to delineate soil properties
within a vineyard in France and to produce high-resolution soil stratigraphy maps. A
comparison of these maps with NDVI data indicated anthropogenic soil compaction as a key
factor controlling vine vigor problems. Similarly, De Benedetto et al. (2013) demonstrated that
a combination of proximal and remote sensing is important for adequately describing soil
properties and crop response. In addition, the capability of remotely derived vegetation indices
to predict soil apparent electrical conductivity at large scales using multiple regression was
investigated by Lausch et al. (2013). Their study demonstrated that vegetation indices derived
from a reflectance spectrum between 420-800 nm in combination with terrain attributes could

be used to characterize the crop stand and shallow ECa variability.

Most of the combined geophysical and remote sensing approaches use single-offset EMI
systems that are not able to characterize subsurface property changes with depth. Here, we use
multi-receiver EMI data, and large-scale multi-temporal and multispectral satellite imagery in
conjunction with selected ERT transects and conventional soil sampling to investigate the
influence of lateral and vertical changes in soil properties on the spatial and temporal variability

of the crop performance of arable fields.
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2. Materials and methods

2.1 Site description

The studied site comprises ten agricultural fields (in total 20 ha) at the TERENO (TERrestrial
ENvironmental Observatories) site Selhausen (50°52°09°°N 6°27°00°’E), approximately 40 km
west of Cologne, Germany. The climate is characterized by an average annual precipitation of

715 mm and a mean annual temperature of 10.2 °C.

The fields are cultivated in rotation with winter wheat, barley, and sugar beet but also potato,
maize, oilseed rape and oat are grown occasionally. Additionally, one field (F10) is managed
as bare soil (Weihermiiller et al., 2007). All soils are developed in Quaternary sediments. The
eastern part of the investigated area overlies the Upper Terrace (UT) that consists of Pleistocene
sand and gravel sediments of the Rhine/Meuse river system and is characterized by a variety of
shallow, narrow, and undulating subsurface channels, filled and buried by aeolian sediments
with variable thickness (Klostermann, 1992; Pétzold et al., 2008; Vandenberghe and van
Overmeeren, 1999). The fields in the western part overly the Lower Terrace (LT) that consists
of Holocene fluvial deposits of the Rur river covered by floodplain deposits (>1.5 m) and loess
(Rohrig, 1996). Translocation of soil material by soilfluction and soil erosion along a weakly
declined slope has increased the soil profile depth and the amount of fine textured soils towards
the lower parts. According to the world reference data base for soil resources (WRB) the soils

refer to Cambisols, Luvisols, Planosols, and Stagnosols (IUSS Working Group WRB, 2007).

2.2 Leaf area index measurements

Thirty multispectral RapidEye images (Krischke et al., 2000) covering the years 2011 and 2012
were provided as geo- and atmospheric corrected level 3A products for the field site. Every
image was locally geo-referenced on aerial images with a ground resolution of 0.4 m and
subsequently converted into a raster of LA/ (Ali et al., 2014). Therefore, the soil-adjusted
vegetation index (SA4 V1) was calculated from the red-edge band (RED, 690-730 nm) and near
infrared spectral band (NIR, 690-730 nm) according to Huete (1988):

SAVI:1+L{ NIR - RED } 0

(NIR+RED)+L

where the soil brightness correction factor L was set to 0.5 (Aubin et al., 2000). The fractional

vegetation cover (FV'C) was computed according to Zeng et al. (2000):
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where SAVIsoirand SAVIvegetation are the SAVI values calculated for bare soil and full vegetation

cover, respectively. The final L4/ was calculated using the formulation of Norman et al. (1995):

~In(1-FVC)

LAI =
k(@) ’ 3)

where the light extinction coefficient k() was set to 0.54. LAl data from RapidEye images were
validated for the year 2012 by Ali et al. (2014) using on-ground LA/ measurements of Stadler
etal. (2014).

2.3 EMI measurements

Measurements of ECa were performed using the CMD-MiniExplorer (GFinstruments, Brno,
Czech Republic). The sensor consists of three receiver coils separated by 0.32, 0.71, and 1.18
m from the transmitter coil resulting in a theoretical depth of exploration (DOE) of 0.25, 0.5,
and 0.9 m in the vertical coplanar (VCP) and 0.5, 1.1, and 1.9 m for the horizontal coplanar
(HCP) mode, respectively. To characterize the shallow subsurface, the ’CP mode was used at
all fields, whereas additional HCP measurements were taken at four selected fields (FO1, FO2,
F07, and F10). The multi-receiver EMI sensor was mounted on a wooden sledge, connected to
a LEA-5T GPS module (u-blox, Thalwil, Swiss), and pulled by an all-terrain vehicle (ATV)
along parallel transects at approximately constant speed. Because of the presence of haystacks
at FOS5, a lysimeter facility at FO9, and an experimental setup consisting of a metal grid at F10,
ECa could not be mapped over the entire fields. Due to restrictions in field management and
crop rotation, EMI measurements were performed after harvest in summer 2012 and 2013 and

measurements at fields FO7, FO8, and F09 could be repeated.

Geo-referenced EMI-readings were post-processed and corrected to a reference temperature of
25 °C (Corwin and Lesch, 2005) using soil temperature at a soil depth of 0.1 m measured by a
weather station located at F10 by:

ECys = f,ECa f, =0.447+ 1.4034 /2615 , @

where f; is a temperature conversion factor and 7 the actual soil temperature [°C].

2.4 ERT measurements and EMI calibration
ERT measurements were performed along 30 m long transects perpendicular to prominent £Ca

patterns using the Syscal Pro (/RIS Instruments, Orleans, France) with a Dipole-Dipole array
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consisting of 120 electrodes with 0.25 m electrode spacing. The ERT measurements were post-
processed using the automatic filtering procedure of Prosys II (IRIS Instruments, Orleans,
France) and inverted by the robust inversion method of RES2DINV (Geotomo Software Sdn.

Bhd., Penang, Malaysia) resulting in a horizontal and vertical conductivity distribution.

Although the CMD-MiniExplorer has been factory calibrated, negative ECa values were
measured occasionally, and therefore, £Ca data were calibrated using electrical resistivity
tomography to obtain quantitative ECa values. At each position along the transect conductivity
variations over depth were used as input in an electromagnetic forward model that assumes a
horizontally layered medium, and ECa values were calculated using the pertaining offset,
frequency, and configuration of respective EMI measurements. Finally, measured EMI data
were calibrated using the linear regression approach as described by Lavoué¢ et al. (2010) and

von Hebel et al. (2014).

3. Results and discussion

3.1 LAl data

By the inspection of the 30 LA/ maps estimated by RapidEye images (2011 and 2012), only for
three dates at the end of a long lasting drought period (end of May 2011, see Fig. 1) distinctly
different LAl characteristics in the study area could be observed (see Fig. 2). Figure 2a shows
LAI patterns over an area of about 430 ha, which can be separated in roughly two zones due to
different underlying parent material. In the southwest and northeast, the floodplain deposits of
the Lower Terrace contains fields with relatively homogeneous and high LA values (4-8 m> m"
2), whereas the sand and gravel dominated Upper Terrace contains generally lower LAI (0-4 m?
m™2) and crosses the study area from south-east to north-west as a prominent narrow band
(length of 5.5 km and width up to 0.8 km). The boundary between the LT and UT is indicated

by a dotted lines and is similar to the work of (Klostermann, 1992).

Figure 2b shows the area within the rectangle in Fig. 2a in more detail and a high number of
slight to moderate undulating small-scale patterns of increased LA/ values can be identified in
the Upper Terrace deposits. Further analysis showed that the extent and appearance of the
irregular LAI patterns was more pronounced in fields with cereal crops, which suggests a larger
impact of water stress on these crops for the corresponding growing stage. A large variety of
crop species grown in relatively small sized fields (< 2 ha) complicated the detection of further

LAI anomalies.
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Table 1 summarizes the mean LA/ and corresponding standard deviation for fields FO1-F10. In
general, low LA/ values with low standard deviations were found at the Upper Terrace (FO1-
F06). Higher LAl values that indicate better growth performance were measured along the
weakly declined slope at the western part of the study area, especially at the Lower Terrace part
of FO7 (3.69+£0.99) and FO8 (2.534+1.26). An abrupt decrease in LAI values in the eastern part
of fields FO7, FO8, and F09 and in the western part of field FO2 indicate the transition of LT
deposits towards coarse UT deposits (see Fig. 2b). Consequently, these fields are characterized
by a higher standard deviation. The comparable low LA values at FO9 (1.52+0.77) are the result
of a late sowing date accompanied by delayed plant emergence. In the following, the LAI values

of F10 are withdrawn from the statistical analysis because this field was managed as bare soil.

3.2 EMI data

The quantitative £Ca measurements (expressed as ECa hereafter) showed a distinct skewness
and had to be log-transformed (Webster et al., 1994) to estimate experimental variograms. ECa
measurements were field wise interpolated on a 0.25 x 0.25 m raster by ordinary kriging using
the geostatistical library GSLIB (Deutsch and Journel, 1992). Figure 3a shows the quantitative
VCP2 data for all fields, where generally low ECa values were measured at fields (FO1-F06)
located above the gravel and sand dominated deposits, whereas more conductive soils with a
higher ECa variability (see Tab. 1) were mapped in the western part. Despite the fact that fields
were surveyed within two consecutive years (2012 and 2013), and therefore, under contrasting
environmental conditions the £Ca data are in reasonable agreement with the pedological map
of Rohrig (1996). Deviations for the L7/UT boundary were visible at field FO7. In addition, the
EMI survey revealed different vertical ECa characteristics between both quaternary units. For
the UT deposits a decrease of ECa measurements with depth implies shallow loamy soils over
a thick terrace body of low conductive gravel material and, in consequence, a lower water
holding capacity. In contrast, higher ECa values of the LT deposits were interpreted as increase
of clay and related water content with depth. These assumptions were validated by drilling two
geological boreholes at both ends of FO9 which revealed shallow soils (< 0.5 m) above UT
deposits reaching depths of > 4 m whereas at the higher conductive parts up to 3 m of fine
textured soil were accumulated above the LT sediments. Repeated ECa measurements at FO7,
FO08, and F09 (data shown in Stadler et al. (2014)) indicated time consistent ECa patterns with
constant variability which emphasize the existence of a texture-driven systems according to

Sudduth et al. (2001).
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To investigate the within-field variability and remove the influence of any contrasting
environmental condition and/or different agricultural management, the interpolated ECa field

data were transformed to a standard Z-scale with zero mean and unit variance using:

_ ECa-pgca
ECa, = Ea— )

where ECaz is the Z-score of ECa, and peca and orca are the mean and standard deviation of
ECa, respectively. Figure 3b shows the obtained normalized electrical conductivity data that
clearly illustrate the within-field variability of FO1-F06. Especially at F02 the boundary

between the UT and LT sediments became more visible.

3.3 ECa versus LAI data

The comparison between Z-transformed £Ca measurements in Figure 3b with LA/ observations
in Figure 2b of May 2011 showed almost identical patterns at F02, FO7, FO8, and FO9 caused
by the transition in parent material but also the narrow and curved patterns of better crop
performance as indicated by the higher LAI values at FO1, F02, and FO5 were in coincidence

with higher ECa values.

To enable a regression analysis between ECa and LAl the interpolated ECa data were
resampled to the coarser LAl image using the bilinear interpolation method in R (R
Development Core Team, 2013). The higher conductive field borders at F02, FO3, F04, and FO6
showed no relation to LAl and were interpreted as zones affected by agricultural management.
It is likely that these higher ECa values are a combined effect of soil compaction (Brevik and
Fenton, 2004) and higher fertilization rates (Allred et al., 2003).To exclude those border effects,

only the areas with 10 m distance from the field borders were considered for further analysis.

Figure 4 shows representative cross plots between the LA/ and ECa measurements of summer
2012 for fields FO1, FO3 and FO8 which obviously indicate differences between fields and
pedological units. The highest relationship was found at FO8 in March 2012 (R? = 0.82) using
an exponential model. The exponential relationship can be related to the existence of two zones
of crop development, whereby the area within the coarser and highly permeable UT deposits
(0.3 ha in the eastern part of the field) are characterized by low ECa values and low water
holding capacities resulting in a reduced crop development under water stress conditions. The
other zone is characterized by LT deposits with deeper soil, which are more favorable for crop
growth even during longer dry conditions. Although the L7/UT transition is also present at FO2,
F07, and F09 the contrast or the affected area was too small to result in an exponential tendency.

A moderate to good linear relation between both parameters was found at FO1 (R?= 0.23-0.46),
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F02 (R*=0.32-0.47), FO3 (R?=0.50-0.56), FO5 (R*=0.28-0.36), F06 (R*=0.32-0.41), FO7 (R?
= 0.48-0.66), and F09 (R? = 0.40-0.49) whereas the weakest correlation was obtained at FO4
(R?=0.19-0.21).A summary of the regression analysis for every field and EMI mode is given
in Table 2.

3.4 Interpretation of ECa and LAI patterns using soil analysis

To quantify EMI and LAl patterns on soil texture and soil profile depth a soil survey was carried
out in January 2013 at fields FO1 and FO2 showing narrow and undulating patterns as well as a
transition in soil parent material. Soil texture (sand, silt, and clay) was analyzed in the lab
according to ISO 11277:2009 for each delineated horizon, whereby the material was taken from
the augers. To regress soil properties on ECa and LA respective measurements where extracted
within a radius of 1 m around the sampling location (see Tab. 3). The spatial variability of soil
profile depth in respect to Z-transformed £Ca measurements is depicted in Figure 5, whereas a
comparison of gravel content (fraction > 2 mm) as well topsoil and subsoil texture with ECa

and LAI for FO1 is given in Figure 6.

At both fields a high range in soil profile depth (0.3-2.0 m) was detected. For the 10 auger
measurements at FO2, a good statistical relationship between ECa and soil profile depth was
found (R? 0.56-0.69), indicating deeper soils in higher conductivity areas (see Tab. 4). The
abrupt transition in soil parent material as suggested by LA/ and ECa measurements could be
confirmed by soil description along the points P66-P65-P64 which showed an increase of soil
depth from 0.5 to 1.7 m within 25 m. In contrast, for the 16 auger measurements at FO1 only a
low statistical relations (R* 0.11-0.25) were found due to the presence of exceptionally deep
soils (P09 and P16) in low conductivity areas. A similar tendency was found between soil
profile depth and LAl showing an excellent relation (R* = 0.82) at FO2 but only R? = 0.21 at
FO1.

Topsoil texture regressed on ECa showed at FO1 a moderate relation for sand (R* < 0.33) but
no relation for silt and clay, whereas at FO2 the relationship between clay and ECa ranged
between R? 0.32-0.41. Due to the high variability of topsoil gravel content at FO1 (8-23 %), the
fine fraction (< 2 mm) was corrected on the coarse material taken from a sample volume of 10
| at each auger location. Accordingly, the statistical relation improved between ECa and silt
content (R?> = 0.42), ECa and clay content (R* = 0.34) as well as LA and silt content (R* = 0.37)
and LAI and clay content (R* = 0.41).

Because clay content increased at both fields towards deeper horizons by a factor of 2.3 and 3.4

the regression analysis was repeated using subsoil texture. Especially for deeper ECa
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measurements the relationship improved to R? 0.68 at FO1 and R? 0.60 at FO2 whereas the
relation between LAI and clay content showed better results only in FO1 (R? = 0.58). Subsoil
sand as well as silt content showed almost no statistical relationship with ECa or LAl

measurements (R? < 0.2).

In August 2013 another severe drought period affected sugar beet in the region and water
stressed and unstressed areas could be clearly observed (see Fig. 6d). Drought unstressed
regions of the western part of FO1 were mapped by walking through the field and mapping the
position with a DGPS system. A comparison of these stress resistant zones with the LA/ data of
2011 and 2013 as well as the EMI survey of 2012 indicates spatial and temporal consistency of
subsoil properties influencing plant performance especially under drought conditions (Fig. 6a-
c¢). Note that the unstressed crop patterns are most consistent with the HCP3 data that has a
DOE of 1.9 m. Together with the increased correlations between large-offset £Ca data and the
subsoil clay content; this indicates that the subsoil texture is mainly responsible for the crop

performance in drought periods.

3.5 Analysis of selected LAI patterns using a combined sensor approach

To investigate the depth origin of the LA/ patterns in more detail and to make use of the large
number of data gathered at FO1 we focused our analysis along a 145 m long north-south transect
crossing two prominent structures (see Fig. 6a-c). The shallow VCPI mode (DOE 0.2 m)
revealed a relatively high conductivity and homogeneous topsoil (CV = 0.04, Tab. 3, Fig. 7a),
which was confirmed by ERT (Fig. 7c), a constant topsoil depth (0-0.3 m), and a small range
of topsoil sand (12-18 %), silt (52-63 %), and clay content (13-17 %). The ECa measurements
with large DOE showed more heterogeneity with a similar shape as the LAI data. The low LAl
and ECa values at P05 and P06 can be explained by the presence of a very shallow soil (< 0.36
m) with the highest gravel content (> 17 %) along the profile.

Above the first structure located between 15 and 40 m, ECa measurements revealed a higher
conductivity subsoil, which was confirmed by ERT measurements that indicated an oval-shaped
zone at the central part of the 30 m long transect below 0.6 m depth. Consistent with the higher
ECa and LAI values, the soil profile depth increased to 1.5 m towards the center of the structure
whereas a clay content of up to 35 % was measured in the deeper soil horizon. Redoximorphic
patterns at P07 below 0.6 m further imply that the soil is periodically influenced by water. P08
was located in a low conductivity area and a compact horizon with 55 % sand and 26 % clay
content at a depth of < 0.6 m limited soil analysis to 0.9 m. P09 represents with 1.8 m the second

deepest soil along the transect and showed similar soil properties as P07 as well as indications



345
346
347
348
349
350
351
352
353
354
355
356
357

358
359
360
361
362
363
364

365
366
367

368
369
370
371
372
373
374
375

of stagnant water below 0.6 m. At this location, the increase of clay content towards deeper
horizons was less pronounced (< 26 %), which explains the smaller LA/ and ECa values. From
the interpolated £Ca measurements, we interpreted P09 as part of a narrow structure, such as a
filled gully, which did not affect plant growth significantly. Intermediate soil profile depths
were found at P15 (0.8 m) and P14 (1 m). While clay content at P15 was homogeneous with
depth (16 %) a dense sandy horizon (> 50 %), similar to P08, appeared below 0.6 m and could
be traced towards P14 until 1 m depth where clay content increased up to 24 % in the subsoil.
LAI and ECa measurements showed a similar positive response to the higher subsoil clay
content. At P16 the soil was comparable to P09 but no indications of stagnant water could be
found in deeper layers. These results indicate that an increased clay content and hence increased
water storage capacity are responsible for the improved crop performance and higher £Ca and
higher LAI values are obtained. Based on these findings the structures were confirmed as

segments of a buried paleo-river.

4. Conclusion

In this study, the origin of crop patterns in large scale multi-temporal satellite imagery were
investigated using multi-receiver EMI data, selected ERT transects, and ground truth texture
data. LAI estimations by RapidEye images, taken under severe drought conditions, revealed a
distinct LAI variability at regional scale separating the study area in two distinct zones. Regular
high amplitude LA/ patterns could be observed above the Lower Terrace, whereas lower LA/

values with undulating patterns of increased LA/ values appeared above the Upper Terrace.

Generally, low ECa values were measured at UT fields (FO1-F06) with shallow soils over gravel
and sand dominated deposits, whereby deeper and more conductive soils with a higher ECa

variability were mapped at the LT fields (FO7-F10).

High resolution multi-receiver EMI measurements were able to reconstruct the lateral and
vertical changes in soil apparent electrical conductivity which was confirmed by the ERT
measurements and soil probes. The small-offset EMI data with a DOI of about 0.2 m indicated
arelatively homogeneous top soil while measurements with intermediate and large DOI showed
higher conductivity areas at local scale that correspond with higher LAI patterns irrespectively
of the fact that the EMI surveys were not performed under drought conditions. Regression
analysis revealed a moderate to excellent relationship (R? 0.19-0.82) between LAl and ECa by

fitting linear or exponential models.
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At two selected fields, narrow zones with better plant performance, large LAl vales and
increased ECa were analyzed in detail by ERT transects and auger samples. ERT results showed
that the increased EMI data with larger DOI were due to the presence of an increased
conductivity zone below 0.6 m depth and soil cores confirmed deeper soil with a significantly
higher amount of clay in the subsoil. The fine textured sediments within coarser terrace deposits
were interpreted as remnants of a buried paleo-channel system. The fine textured soil and the
related higher water holding capacity along the buried river segments implied an increased
amount of plant available water and hence better crop performance, especially under severe
drought conditions. The obtained results show that crop-subsoil interaction of arable fields is
responsible for the spatial and temporal variation of the crop performance, whereas the deeper
subsoil up to 1.9 m depth has the main influence on the crop performance in drought periods as

indicated by the large correlation between the LAl and EMI measurements with larger DOI.

Furthermore, auger samples confirmed that stagnant water occurs within these paleo-channels
which indicate that these structures still play an important role in subsurface hydrology. Lateral
water transport through these paleo-channels from the fields located at the UT to the areas
located at the LT is indicated by the fact that an experimental trench (Weihermiiller et al., 2013)
located at the eastern part of field FO9 was heavily flooded by infiltrating water from the side
walls during winter 2011/2012, whereby up to 12,000 litres of drainage water were pumped out
daily. More research is needed to investigate how the water is laterally and vertically
translocated in the area and what this means for the water availability for crop growth at
surrounding fields or locations including the risk assessment with respect to nitrogen and

pesticide transport.
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Figure 1: Walter & Lieth climatic diagram of the study area showing climatic records of the year 2011
which was characterized by a remarkable deficit of precipitation in spring. In addition the date of

RapidEye image acquisition is illustrated.

Figure 2: LAl converted RapidEye image taken at the end of a long lasting drought period in May
2011 (see also Fig. 1). a) LAl patterns at regional scale (430 ha) showing fields with relatively
homogeneous high LAI values above the floodplain deposits of the lower terrace (LT) in the southwest
and northeast, whereas the sand and gravel dominated Upper Terrace (UT) contains lower LAI values.
b) LAI pattern at the field scale that show a high number of slight to moderate undulating small-scale
patterns of increased LAl values above the Upper Terrace deposits indicating a network of buried

paleo-channels. Fields FO1-F10 were surveyed with EMI in 2012 and 2013 (see also Fig. 3).

Figure 3: a) Pedological map and overlying ECa (G) measurements for the VCP2 mode indicating
gravel and sand dominated soils in the east by low conductivities whereas deeper soils with higher
clay content in the west where characterized by higher conductivities. b) Z-transformed ECa
measurements (VCP2 mode) illustrating within-field heterogeneities of the subsurface. Zones with

positive (0z) values indicating areas with ECa values above the field average and vice versa.

Figure 4: Regression between LA/ (Mai 2011) and ECa (Summer 2012) measured in VCP2 mode at a)
a field crossed by meander like patterns of LA/ and ECa (FO1), b) a field with higher ECa variability
(FO3), and c) a field with a dominant transition in the underlying parent material from coarse to fine

textured soils (FO8) as indicated by the dashed line separating UT from LT deposits.

Figure 5: Z-transformed VCP2 measurements (Gz) at fields a) FO1 and b) FO2 were used to identify
regions with strong lateral variation in ECa which were investigated in detail by a soil sampling
survey in January 2013. Soil profile depth and soil texture information were field wise regressed on

ECa and LAI on respective sampling points (see also Tab. 4).

Figure 6: Comparison of a) satellite derived LA/ data of Mai 2011, b) VCP2 and c) HCP3
measurements from June 2012 at field FO1. d) Shows water stressed (A and C) and unstressed sugar
beet (B) in August 2013 visible from the west (see also camera footprint in a) - c)). Unfortunately, no

RapidEye images were available at this time period. Unstressed regions of the western part were
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mapped using a DGPS and overlain in a) - ¢). In addition, a) includes the topsoil gravel content, b)
shows the topsoil texture corrected on gravel content (0-40 cm), and c¢) summarizes the texture of
the deepest horizon at the soil survey location (January 2013). LAl and ECa were compared with

information of the soil survey along a 145 m long transect as indicated by the solid line (see Fig. 7).

Figure 7: a) Comparison of LAl and multi-receiver ECa measurements along the transect (shown in
Fig. 6) with fine texture corrected on the coarse material of the topsoil layer, b) description of soil

horizon, and c) inverted vertical cross section of EC between P6 and P8 measured by ERT.

Table 1: Summary table of satellite derived LA/ data (Mai 2011) and shallow ECa measurements
(vCP1, vCP2, vCP3) from respective fields. Note that the fields were mapped under contrasting
environmental conditions and therefore only the coefficient of variation (CV) should be used to

compare the variability of ECa and LAl between fields.

Table 2: Results of the regression analysis between ECa and LA/ showing the coefficient of
determination (R?) for respective EMI mode and field. ECa and LAl values where derived from
interpolated raster and only the measurements with 10 m distance from the field borders were

considered. Except of field FO8 a linear model was used.

Table 3: Summary table of parameters obtained at the soil sampling locations at fields FO1 and F02
(see also Fig. 5). ECa and LAl values where extracted from interpolated raster within a radius of 1 m

around the sampling location.

Table 4: Results of the regression analysis showing the coefficient of determination (R?) between

ECa, LAl, and soil parameter taken at FO1 and F02.



Field LAI" ECa VCP1 ECa VCP2 ECa VCP3 Date of EMI
ID Area Terrace Mean * SD oV Mean * SD v Mean + SD cv Mean + SD cv survey
Fo1 2.77 uT 1.19 (£0.44)  0.37 10.96 (£ 0.65)  0.06 7.30(+0.98)  0.13 7.24(£1.09) 0.15 24/07/2012>°
FO2 3.04 LT/UT 1.35(+0.78)  0.58 12.28 (+1.40) 0.11 9.64 (£2.41) 025 9.96 (£ 2.65) 0.27 25/07/2012°
FO3 2.37 uT 0.98 (+0.45)  0.46 9.24 (+1.19) 0.13 7.06 (£1.54)  0.22 9.08 (+1.53) 0.17 03/08/2012%"
FO4 2.91 uT 1.14 (£ 0.41)  0.36 11.65 (+ 1.03)  0.09 7.76 (£1.54)  0.20 8.95(+1.57) 0.18 03/08/20122
FOS 1.92 uT 1.24(+0.58)  0.47 7.20(£0.73) 0.10 3.09(+0.80) 0.26 5.15(+0.88) 0.17 08/08/20132
FO6 1.04 ut 1.26 (+0.63)  0.50 9.21(+1.00) 0.11 6.87 (+1.83) 027 8.21(+2.20) 0.27 08/08/2012°
Fo7 18.97 (+3.34) 0.18 22.22(+5.74)  0.26 27.66 (£ 6.51) 0.24 15/03/2012°
Fo07 159 LT/uT 3.69(x0.99) 027 7.83(+1.18) 0.15 8.07 (£2.14) 027 12.09 (+ 2.62) 0.22 13/09/2012°
Fo7 7.45(+1.09) 0.15 7.82(£237) 030 11.94 (+3.08) 0.26 08/08/2013
8 T/UT 253(£126) 0.0 2024 (£3.47) 0.7 21.94(£6.10)  0.28 25.67 (+7.27) 0.28 15/03/2012?
Fo8 6.85 (+1.40) 0.20 7.09 (£2.75)  0.39 11.53 (£3.61) 0.31 13/09/2012
FO9 18.12 (£3.95) 0.22 20.21(£8.12)  0.40 23.95(+8.80) 0.37 15/03/2012°
Foo 078 LT 152(£077) 051 16.04 (£3.96) 0.25 17.91(£7.09)  0.40 20.79 (+7.62) 0.37 03/08/2012°
FO9 10.47 (+2.61) 0.25 13.23(5.37)  0.41 17.47 (+ 6.43) 0.37 08/08/2013
F10 1.14 LT/UT 12.95 (£ 2.07) 0.16 12.75 (£ 4.44)  0.35 14.52 (+ 5.56) 0.38 29/06/2012°

2 EMI measurements illustrated in Fig. 3

UT: Upper Terrace

LT: Lower Terrace

® EMI measurements illustrated in Fig. 4

* RapidEye acquisition from 30.05.2011



, R? between LAI and respective EMI mode Date of EMI
Field Terrace
VCP1 VCP2 VCP3 HCP1 HCP2 HCP3 survey

FO1 uT 0.23 0.37 0.39 0.36 0.43 0.46 24/07/2012
FO2 LT/UT 0.32 0.37 0.39 0.38 0.42 0.47 25/07/2012
FO3 uT 0.56 0.54 0.50 03/08/2012
FO4 uT 0.19 0.19 0.21 03/08/2012
FO5 uT 0.34 0.36 0.28 08/08/2013
FO6 uT 0.41 0.37 0.32 08/08/2012
FO7 0.48 0.63 0.64 15/03/2012
FO7 LT/UT 0.21 0.54 0.63 0.61 0.66 0.63 13/09/2012
FO7 0.48 0.64 0.64 08/08/2013
FO8 LT/UT 0.72* 0.78* 0.82* 15/03/2012
FO8 0.59 0.69* 0.53* 13/09/2012
FO9 0.40 0.40 0.44 15/03/2012
FO9 LT/UT 0.42 0.41 0.43 03/08/2012
FO9 0.49 0.44 0.45 08/08/2013

* Exponential fit

UT: Upper Terrace

LT: Lower Terrace



ECa [mS m™] LAl Depth Gravel Clay content [%)]

ID Field VCP1  VCP2  VCP3 HCP1  HCP2  HCP3 [-] [m] [%] Topsoil  Subsoil
PO1  FO1 11.04 6.61 6.12 8.74 3.56 3.18 0.89 0.40 14.50 14.79  10.14
P02  FO1 11.51 9.01 9.50  10.05 6.84 7.87 2.38 1.00 7.92 15.30  27.59
PO3  FO1 10.35 6.53 6.38 6.93 3.57 3.96 1.18 1.00 15.19 16.23  26.07
P04  FO1 12.58 9.47 937  10.59 7.23 7.75 2.24 1.55 10.68 15.08  29.21
PO5*  FO1 10.17 5.85 5.61 5.66 1.82 1.46 0.50 0.30 22.72 13.19  16.93
PO6*  FO1 10.01 6.02 5.81 6.24 2.24 2.09 0.63 0.35 17.35 1520  16.00
PO7*  FO1 11.71 9.50 10.14  10.07 7.46 8.35 1.93 1.50 11.23 15.29  35.23
POS*  FO1 10.57 7.08 7.29 7.56 4.12 4.22 1.29 0.90 15.12 15.47  26.44
PO9*  FO1 10.34 6.59 6.41 7.16 3.86 4.11 1.11 1.80 12.03 13.40  25.54
P10 FO1 11.18 9.06 9.93 9.95 8.11 9.01 2.27 1.50 12.22 15.44  39.60
P11 FO1 11.61 8.46 8.45 8.62 5.77 6.11 1.17 1.00 10.59 15.10  22.70
P12 FO1 11.30 8.79 9.42 7.12 3.96 4.82 1.78 1.00 8.66 1436  29.53
P13 FO1 11.11 8.05 8.64 7.43 4.25 4.56 1.73 1.00 7.90 17.23  19.89
P14*  FO1 11.48 8.71 9.07 8.94 4.44 4.70 1.60 1.00 11.51 14.66  23.71
P15*  FO1 10.22 5.88 5.55 6.00 1.75 1.51 0.97 0.80 12.85 1468  16.16
P16*  FO1 10.50 6.67 6.52 6.38 3.05 3.08 0.96 2.00 14.79 1416  22.64
P56 FO2 11.80 8.42 8.33 9.62 4.46 5.29 0.48 0.55 1421  15.03
P57  FO2 12.29 9.30 957  10.16 5.18 6.37 0.70 0.60 15.00  16.05
P58  F02 13.86  12.16 1222  13.81  10.00  11.24 1.40 1.45 15.29  27.93
P61  FO2 13.83 1221 1259 1447 1171 1271 1.80 1.55 14.46  18.73
P62  FO2 14.87  12.82 1408 1447 1169  13.84 1.70 1.95 1493 3431
P64  FO2 13.99 1299  13.77 1349 1033  11.77 2.15 1.70 15.60  16.09
P65  FO2 12.71  10.12  10.64  11.02 7.22 8.40 1.20 1.00 15.81  18.92
P67  FO2 9.65 5.03 4.91 5.71 0.61 1.39 0.68 1.00 13.64  10.57

" Soil sampling location along the 145 long transect at FO1



Topsoil Subsoil
Field a2 sand st Clay
depth | Gravel Sand Silt Clay . . . Sand Silt Clay
adj. adj. adj.

VCP1 FO1 0.61 0.11 0.43 0.14 0.04 0.06 0.00 0.32 0.23 0.00 0.02 0.23
VCP2 FO1 0.82 0.17 0.53 0.26 0.05 0.10 0.01 0.40 0.31 0.04 0.00 0.53
VCP3 FO1 0.84 0.16 0.53 0.32 0.06 0.12 0.03 0.42 0.34 0.05 0.00 0.59
HCP1 FO1 0.67 0.11 0.32 0.07 0.00 0.08 0.01 0.14 0.21 0.04 0.00 0.33
HCP2 FO1 0.76 0.24 0.34 0.13 0.00 0.11 0.00 0.13 0.25 0.12 0.01 0.62
HCP3 FO1 0.81 0.25 0.39 0.16 0.00 0.11 0.00 0.16 0.27 0.13 0.01 0.68
LAI FO1 1.00 0.21 0.58 0.35 0.02 0.17 0.04 0.37 0.41 0.05 0.00 0.58
deth): FO1 0.21 1.00 0.18 0.29 0.03 0.00 0.11 0.16 0.02 0.20 0.08 0.41
VCP1 FO2 0.69 0.58 - 0.03 0.08 0.41 - - - 0.16 0.00 0.60
VCP2 FO2 0.76 0.57 - 0.04 0.07 0.46 - - - 0.14 0.00 0.47
VCP3 FO2 0.78 0.61 - 0.05 0.07 0.47 - - - 0.13 0.00 0.49
HCP1 FO2 0.71 0.56 - 0.02 0.11 0.34 - - - 0.18 0.00 0.52
HCP2 FO2 0.79 0.66 - 0.02 0.15 0.32 - - - 0.15 0.00 0.51
HCP3 FO2 0.79 0.69 - 0.01 0.15 0.33 - - - 0.14 0.00 0.56
LAI FO2 1.00 0.82 - 0.00 0.21 0.27 - - - 0.01 0.03 0.21
Soil FO2 0.82 1.00 - 0.09 0.46 0.09 - - - 0.00 0.16 0.43

depth
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