IHydrological Summary for Great Britain

MAY 1997

General

May was generally a mild and sunny month especially in southern Britain. It was also a relatively wet month in most regions, providing a timely respite from the drought (especially for farmers) and extending the reservoir refill season in the west and north. Overall stocks having varied erratically in 1997 are, again, very close to the average but are low for early summer in parts of eastern and southern England. The May rainfall was insufficient - and lowland soils too dry - for appreciable aquifer recharge to recommence in eastern and southern England. Hydrologically, May served to emphasise the current focus of the drought in the English lowlands - the South-East particularly - where the water resources and environmental outlooks are most fragile; most river flows and groundwater levels remain above those of the benchmark 1976 drought but an extension of the current drought into the autumn would produce extremely depressed runoff rates and groundwater levels.

Rainfall

1997 rainfall continued in its episodic vein with the unsettled conditions which became established in late April continuing until around May 20th. Thereafter, high pressure dominated and many central areas of England had virtually no rainfall over the remainder of the month. Despite this dry interlude rainfall totals for May were above average in most regions - notably so in parts of Scotland where the rainfall in a few eastern districts exceeded twice the 1961-90 average. Despite a very unsettled start to the month, rainfall totals for the English lowlands were typically in the $90-110 \%$ range although local variability was considerable and below average rainfall characterised some eastern and a few southern areas. A dampish spring following a notably wet February produced very high four-month rainfall totals in Scotland - the provisional February-May total is the third highest in a series from $1869(1989,1990$ and 1992 all rank in the wettest four). By contrast, the spring in the English lowlands, though substantially wetter than 1990, was the third driest in the last 40 years; less than 50% of average being reported for parts of the South-East. Rainfall deficiencies are also notable in the six-month timeframe especially in the Anglian, Thames and Southern regions; in the latter two regions the December-May rainfall was below 60% of average. The drought remains exceptional over its full compass; notwithstanding the May rainfall, the provisional England and Wales rainfall total for the period beginning in April 1995 is the lowest for any 26 -month accumulation in the 231-year England and Wales series. Accumulated rainfall deficiencies continue to be the equivalent of
around six months average rainfall throughout most of England away from the South-West.

River Flow

The early May rainfall satisfied the modest (but seasonally notable) soil moisture deficits in northern and western catchments. This allowed river flows to pick-up mostly from an exceptionally low base - and a few minor spates were reported in the first three weeks before recessions became re-established. Monthly runoff totals showed wide regional variations. In large parts of Scotland, northern England and Wales, May runoff totals were several times the April figure and above average in most catchments. By contrast, the parched soils in the east and south robbed the rainfall of much of its effectiveness and flow recoveries were short-lived and modest, especially in permeable catchments. Lowland runoff totals for May were very depressed in those, mostly Chalk, catchments which showed a continuing decline from April. Many lowland rivers reported May flows as the lowest on record with the exception of 1976; in Kent the Gt Stour which has a 30 -year record, eclipsed the May minimum established last year. 24month (ending in May) runoff totals are unprecedented throughout much of England and Wales, and the general contraction in the stream network is continuing. Many headwater reaches are now dry and the dilution available for sewage effluent is limited in many streams.

Groundwater

The wetting up of soils allowed some infiltration in northern and western areas - producing moderate but useful upturns in some limestone and Permo-Triassic sandstones index wells. Spatial variability in levels in the latter are significant but remain close to the lowest on record in the Midlands and the North. Some isolated instances of modest recharge to the Chalk (typically well fissured outcrops below desiccated soils) following heavy rainfall were reported but there was no appreciable recharge in the eastern Chalk where groundwater levels are depressed over wide areas - in the eastern Chilterns and the Lee catchment especially; levels in the deep Therfield Rectory well went dry for only the second time since the drought of 1921/22 (it was dry in 1992 also). In the rest of the Chalk conditions are less extreme with recessions remaining above those of 1976 and, in most areas, 1992 also. Nonetheless, the overall decline in ground water resources since early 1995 has few modern parallels although it appears less unusual in the context of the very wide departures from the seasonal average which has been a feature of the last decade.

(Th) Institute of | This document is copyright and may not be |
| :---: |
| reproduced without prior permission of the |
| Natural Environment Research Council |

This report was compiled jointly by the Institute of Hydrology (a component of the Centre for Ecology and Hydrology) and the British Geological Survey - both organisations form part of the Natural Environment Research Council (NERC).

Data for this report have been provided principally by the regional divisions of the newly formed Environment Agency (England and Wales) and the Scottish Environment Protection Agency. For reasons of consistency and to provide greater spatial discrimination, the original regional divisions of the precursor organisations have been retained for use in the Hydrological Summaries. The majority of the areal rainfall figures have been provided by the Meteorological Office. The most recent areal rainfall figures are derived from a restricted network of raingauges and a proportion of the river flow data is of a provisional nature. Figure 3 is based on weather data collected by the Institute of Hydrology at Wallingford, Balquhidder (Central Region, Scotland) and Plynlimon. Reservoir contents information has been supplied by the Water Services Companies, the Environment Agency and, in Scotland, West of Scotland Water and East of Scotland Water. A map (Figure 4) is provided to assist in the location of the principal monitoring sites.

Financial support towards the production of the Hydrological Summaries is given by the Department of the Environment, the Environment Agency, the Scottish Environment Protection Agency and the Office of Water Services (OFWAT).

The Hydrological Summaries are available on annual subscription at a current cost of $£ 48$ per year enquiries should be directed to the National Water Archive Office at the address below. No charge is made to those organisations providing data for the Summaries. The text of the monthly report, together with details of other National Water Archive facilities, is available on the World Wide Web: http://www.nwl.ac.uk:80/ ~nrfadata/nwa.html

MORECS

Most of the recent monthly regional rainfall data featured in the Hydrological Summaries are MORECS assessments. MORECS is the generic name for The Meteorological Office services involving the calculation of evaporation and soil moisture routinely for Great Britain. Products include a weekly issue of maps and tables of potential and actual evaporation, soil moisture deficits, effective rainfall and the hydrometeorological variables used to calculate them. The data are used to provide values for 40 km squares - or larger areas - and various sets of maps and tables are available according to user requirements. Options include a day-by-day retrospective calculation of soil moisture at any of 4000 raingauge sites.

Further information about MORECS services may be obtained from: The Meteorological Office, Sutton House, London Road, Bracknell, RG12 2SY

Tel: 01344856858
Fax: 01344854024

> Institute of Hydrology/British Geological Survey Maclean Building Crowmarsh Gifford Wallingford
> Oxfordshire
> OX10 8BB

TABLE 1 1996/97 RAINFALL AS A PERCENTAGE OF THE 1961-90 AVERAGE
Note: \quad The monthly rainfall figures are the copyright of The Meteorological Office.
These data may not be published or passed on to any unauthorised person or organisation.

		$\begin{gathered} \text { May } \\ 1996 \end{gathered}$	Jun	Jul	Aug	Sep	Oct	Nov	Dec	$\begin{array}{r} \text { Jan } \\ 1997 \end{array}$	Feb	Mar	Apr	May
England and	mm	57	30	41	80	34	91	126	52	15	119	31	25	73
Wales	\%	89	46	66	105	44	107	140	55	17	189	43	42	113
North West	mm	62	49	65	88	61	149	133	64	14	213	73	39	107
	\%	83	60	76	82	53	116	108	52	12	273	77	55	142
Northumbrian	mm	53	22	53	67	31	69	108	84	19	127	36	20	72
	\%	85	37	82	83	42	91	126	104	23	215	51	36	116
Severn Trent	mm	48	30	33	68	20	72	95	53	13	85	22	29	77
	\%	81	51	62	101	31	113	134	69	19	157	36	53	130
Yorkshire	mm	52	35	41	74	31	57	112	93	13	105	28	22	69
	\%	87	58	69	100	46	78	140	112	16	181	41	37	115
Anglian	mm	23	18	40	76	16	46	91	42	14	44	12	18	49
	\%	48	35	82	138	33	90	157	76	28	119	26	39	103
Thames	mm	35	16	39	61	20	47	106	24	13	77	12	15	57
	\%	63	29	80	105	34	76	163	34	20	171	21	30	102
Southern	mm	51	16	34	80	33	57	147	31	19	94	18	11	48
	\%	94	30	71	140	48	71	173	38	24	174	29	21	89
Wessex	mm	60	29	27	86	33	84	145	31	14	116	29	23	68
	\%	98	51	52	130	46	106	175	33	16	178	41	43	112
South West	mm	100	34	31	98	50	135	201	52	25	162	40	32	81
	\%	139	49	45	117	54	116	161	37	18	160	40	46	112
Welsh	mm	106	47	47	103	58	180	171	52	12	211	50	42	117
	\%	129	59	61	102	50	131	120	34	8	218	47	52	142
Scotland	mm	78	65	78	67	64	227	188	95	58	267	136	60	102
	$\%$	91	76	83	57	45	146	125	63	38	262	109	78	118
Highland	mm	84	79	91	73	85	263	250	106	93	339	202	93	101
	\%	91	81	86	57	50	133	123	54	49	267	125	102	110
North East	mm	67	33	66	64	32	136	110	86	27	126	70	35	115
	\%	97	50	90	74	37	140	111	92	27	194	90	58	167
Tay	mm	67	44	53	64	52	194	142	70	39	247	103	27	106
	\%	81	60	69	68	46	149	117	55	27	260	94	44	128
Forth	mm	68	44	55	61	47	174	139	81	40	227	82	33	114
	\%	92	64	73	65	43	151	124	74	34	287	87	56	154
Tweed	mm	63	30	53	63	29	133	139	118	24	189	53	21	99
	\%	89	46	73	72	33	140	149	127	24	282	67	37	139
Solway	mm	80	78	69	66	58	261	155	99	32	252	87	44	109
	\%	94	93	77	55	41	166	108	67	21	250	74	57	128
Clyde	mm	90	88	99	66	78	284	215	93	64	308	161	72	84
	\%	99	95	91	49	44	147	119	52	34	261	110	86	92

Note: The monthly regional rainfall figures for England and Wales for April \& May 1997 correspond to the MORECS areal assessments derived by the Meteorological Office. In northern England these initial assessments may have a particularly wide error band associated with them, especially when snow is a significant component in the precipitation total. The figures for the Scottish regions (and also for Scotland) for April \& May 1997 were derived by IH in collaboration with the SEPA regions.
The provisional figures for England and Wales and for Scotland are derived using a different raingauge network. Regional areal rainfall figures are regularly updated (normally one or two months in arrears) using figures derived from a far denser raingauge network.

TABLE 2 RAINFALL ACCUMULATIONS AND RETURN PERIOD ESTIMATES

		Mar 97-May 97 Est Return Period, years		Dec 96-May 97 Est Return Period, years		$\text { Jun 96-May } 97$ Est Return Period, years		Apr 95-May 97 Est Return Period, years	
England and Wales	mm \% LTA	$\begin{array}{r} 129 \\ 66 \end{array}$	10-15	$\begin{array}{r} 315 \\ 71 \end{array}$	15-25	$\begin{array}{r} 717 \\ 80 \end{array}$	10-20	$\begin{array}{r} 1501 \\ 78 \end{array}$	110-150
North West	mm \% LTA	$\begin{array}{r} 219 \\ 91 \end{array}$	$2-5$	$\begin{array}{r} 510 \\ 90 \end{array}$	$2-5$	$\begin{array}{r} 1055 \\ 88 \end{array}$	5-10	$\begin{array}{r} 1923 \\ 75 \end{array}$	>200
Northumbria	$\begin{aligned} & \mathrm{mm} \\ & \% \text { LTA } \end{aligned}$	$\begin{array}{r} 128 \\ 68 \end{array}$	5-15	$\begin{array}{r} 358 \\ 87 \end{array}$	2-5	$\begin{array}{r} 708 \\ 83 \end{array}$	5-15	$\begin{array}{r} 1517 \\ 83 \end{array}$	25-40
Severn Trent	mm \% LTA	$\begin{array}{r} 128 \\ 73 \end{array}$	5-10	$\begin{array}{r} 279 \\ 74 \end{array}$	5-15	$\begin{array}{r} 597 \\ 79 \end{array}$	10-20	$\begin{array}{r} 1252 \\ 77 \end{array}$	70-100
Yorkshire	$\begin{aligned} & \text { mm } \\ & \% \text { LTA } \end{aligned}$	$\begin{array}{r} 119 \\ 64 \end{array}$	10-15	$\begin{array}{r} 330 \\ 81 \end{array}$	5-10	$\begin{array}{r} 680 \\ 83 \end{array}$	5-15	$\begin{array}{r} 1320 \\ 75 \end{array}$	>200
Anglian	mm \% LTA	$\begin{aligned} & 79 \\ & 56 \end{aligned}$	15-25	$\begin{array}{r} 179 \\ 63 \end{array}$	30-50	$\begin{array}{r} 466 \\ 78 \end{array}$	10-20	$\begin{array}{r} 938 \\ 73 \end{array}$	>200
Thames	mm \% LTA	$\begin{aligned} & 84 \\ & 52 \end{aligned}$	15-25	$\begin{array}{r} 198 \\ 58 \end{array}$	35-50	$\begin{array}{r} 487 \\ 71 \end{array}$	30-50	$\begin{array}{r} 1124 \\ 76 \end{array}$	70-100
Southern	mm \% LTA	$\begin{aligned} & 77 \\ & 45 \end{aligned}$	30-45	$\begin{array}{r} 221 \\ 57 \end{array}$	35-50	$\begin{array}{r} 588 \\ 76 \end{array}$	15-25	$\begin{array}{r} 1267 \\ 76 \end{array}$	70-100
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \text { LTA } \end{aligned}$	$\begin{array}{r} 120 \\ 65 \end{array}$	5-10	$\begin{array}{r} 281 \\ 66 \end{array}$	15-25	$\begin{array}{r} 685 \\ 82 \end{array}$	5-10	$\begin{array}{r} 1610 \\ 90 \end{array}$	5-10
South West	mm \% LTA	$\begin{array}{r} 153 \\ 64 \end{array}$	5-15	$\begin{array}{r} 392 \\ 63 \end{array}$	30-40	$\begin{array}{r} 941 \\ 80 \end{array}$	10-15	$\begin{array}{r} 2154 \\ 87 \end{array}$	5-15
Welsh	$\begin{aligned} & \mathrm{mm} \\ & \% \text { LTA } \end{aligned}$	$\begin{array}{r} 208 \\ 77 \end{array}$	$2-5$	$\begin{array}{r} 483 \\ 73 \end{array}$	10-20	$\begin{array}{r} 1089 \\ 83 \end{array}$	5-10	$\begin{array}{r} 2284 \\ 82 \end{array}$	30-45
Scotland	mm \% LTA	$\begin{aligned} & 297 \\ & 104 \end{aligned}$	2-5	$\begin{aligned} & 717 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 1406 \\ 98 \end{array}$	2-5	$\begin{array}{r} 2803 \\ 92 \end{array}$	5-10
Highland	mm \% LTA	$\begin{aligned} & 396 \\ & 115 \end{aligned}$	2-5	$\begin{aligned} & 934 \\ & 109 \end{aligned}$	2-5	$\begin{array}{r} 1775 \\ 101 \end{array}$	2-5	$\begin{array}{r} 3319 \\ 90 \end{array}$	5-15
North East	$\begin{aligned} & \mathrm{mm} \\ & \% \mathrm{LTA} \end{aligned}$	$\begin{aligned} & 220 \\ & 106 \end{aligned}$	2-5	$\begin{array}{r} 459 \\ 99 \end{array}$	2-5	$\begin{array}{r} 900 \\ 92 \end{array}$	$2-5$	$\begin{array}{r} 2115 \\ 102 \end{array}$	2-5
Tay	mm \% LTA	$\begin{array}{r} 236 \\ 93 \end{array}$	2-5	$\begin{array}{r} 592 \\ 95 \end{array}$	2-5	$\begin{array}{r} 1141 \\ 93 \end{array}$	2-5	$\begin{array}{r} 2479 \\ 95 \end{array}$	2-5
Forth	mm \% LTA	$\begin{aligned} & 229 \\ & 101 \end{aligned}$	2-5	$\begin{aligned} & 577 \\ & 108 \end{aligned}$	2-5	$\begin{array}{r} 1097 \\ 99 \end{array}$	2-5	$\begin{array}{r} 2169 \\ 92 \end{array}$	5-10
Tweed	mm \% LTA	$\begin{array}{r} 173 \\ 84 \end{array}$	2-5	$\begin{aligned} & 504 \\ & 108 \end{aligned}$	2-5	$\begin{array}{r} 951 \\ 98 \end{array}$	$2-5$	$\begin{array}{r} 1914 \\ 93 \end{array}$	2-5
Solway	mm \% LTA	$\begin{array}{r} 240 \\ 86 \end{array}$	2-5	$\begin{array}{r} 623 \\ 91 \end{array}$	2-5	$\begin{array}{r} 1310 \\ 92 \end{array}$	2-5	$\begin{array}{r} 2678 \\ 89 \end{array}$	5-10
Clyde	mm \% LTA	$\begin{array}{r} 317 \\ 98 \end{array}$	2-5	$\begin{array}{r} 782 \\ 97 \end{array}$	2-5	$\begin{array}{r} 1612 \\ 95 \end{array}$	2-5		5-15

LTA refers to the period 1961-90.
Return period assessments are based on tables provided by the Meteorological Office*. The tables reflect rainfall totals over the period 1911-70 only and the estimate assumes a sensibly stable climate. They assume a start in a specified month; return periods for a start in any month may be expected to be an order of magnitude less - for the longest durations the return period estimates converge. "Wet" return periods underlined. The ranking of accumulated rainfall totals for England \& Wales and for Scotland can be affected by artifacts in the historical series - on balance these tend to exaggerate the relative wetness of the recent past.

* Tabony, R.C., 1977, The Variability of long duration rainfall over Great Britain, Scientific Paper No. 37, Meteorological Office.

Itchen at Highbridge+Allbrook

Severn at Bewdley

Eden at Sheepmount

Cynon at Abercynon

Clyde at Daldowie

TABLE 3 RUNOFF AS MM. AND AS A PERCENTAGE OF THE PERIOD OF RECORD AVERAGE WITH SELECTED PERIODS RANKED IN THE RECORD

River/ Station name	$\begin{aligned} & \text { Jan } \\ & 1997 \end{aligned}$	Feb	Mar	Apr	$\begin{aligned} & \text { May } \\ & 1997 \end{aligned}$		$\begin{gathered} 3 / 97 \\ \text { to } \\ 5 / 97 \end{gathered}$		$\begin{gathered} 12 / 96 \\ \text { to } \\ 5 / 97 \end{gathered}$		$\begin{gathered} \text { 6/96 } \\ 10 \\ 5 / 97 \end{gathered}$		$\begin{gathered} 6 / 95 \\ \text { to } \\ 5 / 97 \end{gathered}$	
	$\begin{array}{r} \mathrm{mm} \\ \% \mathrm{LT} \end{array}$	$\begin{array}{r} \mathrm{mm} \\ \text { \%LT } \end{array}$	$\begin{array}{r} \mathrm{mm} \\ \text { \%LT } \end{array}$	$\begin{array}{r} \mathrm{mm} \\ \% \mathrm{LT} \end{array}$	$\begin{array}{r} \mathrm{mm} \\ \% \mathrm{LT} \end{array}$	rank lyrs	$\begin{array}{r} \mathrm{mm} \\ \% \mathrm{LT} \end{array}$	rank /yrs	$\begin{array}{r} \mathrm{mm} \\ \% \mathrm{LT} \end{array}$	$\begin{gathered} \text { rank } \\ \text { /yrs } \end{gathered}$	$\begin{array}{r} \mathrm{mm} \\ \% \mathrm{LT} \end{array}$	rank /yrs	$\underset{\% \mathrm{LT}}{\mathrm{~mm}}$	$\begin{gathered} \text { rank } \\ / \text { /yrs } \end{gathered}$
Dee at	39	97	90	32	73	19	195	8	408	5	602	3	1574	10
Park	41	130	95	40	118	125	83	125	83	125	76	124	99	123
Tay at	54	202	187	73	66	24	326	30	686	23	1054	15	2094	13
Ballathie	36	173	143	80	95	145	112	145	98	145	92	144	92	143
Tweed at	42	183	88	24	60	30	172	21	523	28	758	15	1375	10
Boleside	39	230	108	45	140	137	96	137	112	136	99	136	90	135
Whiteadder Water at	47	48	27	11	17	15	56	4	252	12	319	8	654	8
Hutton Castle	79	100	58	30	64	128	51	128	95	128	83	127	85	126
South Tyne at	32	166	70	26	51	28	147	12	420	11	575	4	1042	1
Haydon Bridge	31	216	81	45	141	135	82	135	91	135	75	133	67	131
Wharfe at	28	138	54	21	41	29	117	12	360	11	542	4	812	1
Flint Mill Weir	28	182	72	40	114	142	71	142	82	142	76	141	57	140
Derwent at	21	23	18	8	12	2	38	1	112	3	161	2	383	1
Buttercrambe	47	59	46	28	51	136	42	136	52	136	51	135	60	134
Trent at	15	27	20	12	20	18	53	3	126	3	197	3	390	1
Colwick	29	65	51	40	85	139	57	139	55	139	57	138	55	137
Lud at	16	13	12	10	9	2	30	3	76	6	110	3	223	2
Louth	54	39	37	32	35	129	35	129	45	129	46	128	46	127
Witham at	9	11	11	6	7	6	24	3	52	3	75	3	175	1
Claypole Mill	35	41	43	29	49	139	40	138	40	138	41	138	48	137
Little Ouse at	8	10	,	7	6	2	21	1	49	4	77	2	160	2
Abbey Heath	35	46	41	37	40	130	40	129	44	129	47	129	49	128
Colne at	5	5	6	3	3	4	13	2	30	2	50	2	125	3
Lexden	23	28	34	27	42	138	34	138	32	137	38	136	47	134
Mimram at	5	5	6	5	4	2	15	2	31	2	64	3	176	4
Panshanger Park	42	46	44	37	36	145	40	145	43	145	51	144	70	143
Lee at	5	8	7	5	5	4	16	4	35	4	65	4	172	9
Feildes Weir (natr.)	23	40	34	30	38	1112	34	1111	33	/111	40	1110	53	1108
Thames at	8	18	16	,	8	10	33	9	69	5	114	6	320	11
Kingston (natr.)	22	55	51	39	48	1115	47	1115	41	1114	47	1114	65	1113
Coln at	14	18	36	20	17	2	73	3	119	2	191	2	515	2
Bibury	26	34	68	46	53	134	58	134	44	134	49	133	65	132
Great Stour at	16	24	17	10	9	1	36	2	94	1	155	1	315	1
Horton	40	74	54	39	45	133	48	132	51	131	54	131	55	129
Itchen at	32	33	42	32	30	5	104	5	204	6	357	4	794	6
Highbridge+ Allbrook	66	67	81	69	71	139	75	139	73	139	78	138	86	137
Stour at	18	49	40	16	12	2	68	4	164	3	240	3	608	2
Throop Mill	27	80	79	46	53	125	64	125	56	124	61	124	76	123
Exe at	18	135	46	15	28	19	89	3	313	3	550	2	1180	1
Thorverton	13	130	55	26	76	142	51	141	57	141	67	141	71	140
Taw at	14	118	40	9	16	14	65	3	261	4	449	3	913	1
Umberleigh	12	138	59	21	57	139	47	139	57	139	65	138	66	137
Tone at	19	73	43	18	16	4	76	6	207	4	314	4	759	6
Bishops Hull	23	100	76	46	59	137	63	137	60	136	66	136	80	135
Severn at	12	61	31	9	26	54	66	15	178	6	277	5	544	1
Bewdley	17	107	67	28	111	177	65	176 *	61	176	62	176	61	175
Teme at	11	48	29	10	15	16	54	5	141	3	188	3	483	3
Knightsford Bridge	16	91	62	29	79	128	55	127	52	127	52	127	67	126
Cynon at	25	340	85	23	79	29	187	11	641	10	1154	11	2229	8
Abercynon	13	244	72	29	134	139	74	139	82	139	91	137	88	135
Dee at	25	364	141	38	110	21	288	9	771	4	1488	4	2506	1
New Inn	10	216	80	35	159	128	82	128	76	128	84	127	70	126
Eden at	24	181	77	23	47	24	147	13	408	13	579	6	982	1
Sheepmount	23	238	104	48	148	130	96	130	95	130	83	129	70	128
Clyde at	33	171	95	32	58	30	186	22	502	21	756	14	1337	8
Daldowie	30	218	118	68	164	134	114	134	109	134	96	133	85	132
Carron at	164	373	286	182	122	15	590	14	1288	8	2404	7	3787	1
New Kelso	53	170	101	122	132	119	112	119	93	118	96	118	75	117
Ewe at	127	335	325	178	143	21	647	24	1276	17	2218	15	3580	3
Poolewe	48	177	159	124	147	127	143	127	108	127	104	126	84	125

Notes:
(i) Values based on gauged flow data unless flagged (natr.), when naturalised data have been used.
(ii) Values are ranked so that lowest runoff is rank 1.
(iii) \%LT means percentage of long term average from the start of the record to 1995. For the long periods (at the right of this table), the end date for the long term is 1997.

TABLE 4 START-MONTH RESERVOIR STORAGES UP TO JUNE 1997

Area	$\begin{gathered} \text { Reservoir (R)/ } \\ \text { Group (G) } \end{gathered}$		Capacity (Ml)	$\begin{array}{r} 1997 \\ \text { Jan } \end{array}$	Feb	Mar	Apr	May	Jun	$\begin{array}{r} 1996 \\ \text { Jun } \end{array}$
North West	N.Command Zone ${ }^{1}$	(G)	133375	77	66	100	97	87	88	80
	Vyrnwy	(R)	55146	81	71	100	95	86	87	74
Northumbria	Teesdale ${ }^{2}$	(G)	87936	78	80	95	97	89	85	81
	Kielder	(R)	199175*	88	89	100	93	90	92	96
Severn-Trent	Clywedog	(R)	44922	81	76	93	97	98	98	100
	Derwent Valley ${ }^{3}$	(G)	39525	98	94	100	100	95	98	56
Yorkshire	Washburn ${ }^{4}$	(G)	22035	97	86	98	93	86	89	87
	Bradford supply ${ }^{5}$	(G)	41407	90	88	100	98	90	95	70
Anglian	Grafham	(R)	58707	69	68	72	77	73	72	95
	Rutland	(R)	130061	71	68	73	76	72	75	93
Thames	London ${ }^{6}$	(G)	206399	70	70	85	94	93	88	95
	Farmoor ${ }^{7}$	(G)	13843	99	93	96	98	98	98	99
Southern	Bewl	(R)	28170	60	65	85	98	91	84	88
	Ardingly	(R)	4685	64	68	100	100	100	98	100
Wessex		(R)	5364	96	81	100	99	89	79	97
	Bristol W ${ }^{8}$	(G)	38666*	80	74	96	95	92	88	95
South West		(R)	28540	53	52	57	58	56	52 59	69
	Roadford ${ }^{9}$	(R)	34500	54	52	61	62	60	59	48
	Wimblebal1 ${ }^{10}$	(R)	21320	64	59	81	91	84	79	86
	Stithians	(R)	5205	88	90	96	97	89	79	98
Welsh	Celyn + Brenig	(G)	131155	82	78	97	98	94	97	82
	Brianne	(R)	62140	93	84	99	97	86	96	100
	Big Five ${ }^{11}$	(G)	69762	75	67	96	95	85	88	97
	Elan Valley ${ }^{12}$	(G)	99106	92	85	100	99	91	97	97
East of Scotland	Edin./Mid Lothian ${ }^{13}$	(G)	97639	93	91	100	100	94	94	98
	East Lothian ${ }^{14}$	(G)	10206	100	100	100	99	98	100	99
West of Scotland	Loch Katrine	(G)	111363	89	85	100	100	96	90	99
	Daer	(R)	22412	98	91	100	98	94	94	96
	Loch Thom	(G)	11840	99	96	100	100	94	95	94

- Live or usable capacity (unless indicated otherwise) * Gross storage/percentage of gross storage

Includes Haweswater, Thirlmere, Stocks and Barnacre.
Cow Green, Selset, Grassholme, Balderhead, Blackton and Hury.
Howden, Derwent and Ladybower.
Swinsty, Fewston, Thruscross and Eccup.
. The Nidd/Barden group (Scar House, Angram, Upper Barden,Lower Barden and Chelker) plus Grimwith
6. Lower Thames (includes Queen Mother, Wraysbury, Queen Mary, King George VI and Queen Elizabeth II) and Lee Valley (includes King George and William Girling) groups -pumped storages.
7. Farmoor 1 and 2 - pumped storages.
8. Blagdon, Chew Valley and others.
9. Roadford began filling in November 1989.
10. Shared between South West (river regulation for abstraction) and Wessex (direct supply).
11. Usk, Talybont, Llandegfedd (pumped stroage), Taf Fechan, Taf Fawr.
12. Claerwen, Caban Coch, Pen-y-garreg and Craig Goch.
13. Megget, Talla, Fruid, Gladhouse, Torduff, Clubbiedean, Glencorse, Loganlea and Morton (upper and lower).
14. Thorters, Donolly, Stobshiel, Lammerloch, Hopes and Whiteadder
a GUIDE TO THE VARIATION IN OVERALL RESERVOIR STOCKS FOR ENGLAND AND WALES

A COMPARISON BETWEEN OVERALL RESERVOIR STOCKS FOR ENGLAND AND WALIES IN RECENT YEARS

Note: Variations in storage depend on the balance between inputs (from catchment rainfall and any purnping) and outputs (to supply, compensation flow, HEP, amenity). There will be additional losses due to evaporation, especially in the summer months. Operational strategies for making the most efficient use of water stocks will further affect reservoir storages. Table 4 is intended to providea link between the hydrological conditions described elsewhere in the report and the water resources situation. The reservoirs featured may not be representative of storage conditions across the individual regions; this can be particularly important during drought conditions (eg, ina the Severn-Trent region during 1995/96),

FIGURE 2 GROUNDWATER LEVEL HYDROGRAPHS

TABLE 5 MAY GROUNDWATER LEVELS 1997

Site	Aquifer	Records Commence	$\begin{aligned} & \text { Minimum } \\ & \text { May } \\ & <1997 \end{aligned}$	Average$\begin{gathered} \text { May } \\ <1997 \end{gathered}$	$\begin{gathered} \text { Maximum } \\ \text { May } \\ <1997 \end{gathered}$	No of years May/Jun level < 1997	$\begin{gathered} \text { May/Jun } \\ 1997 \end{gathered}$	
							day	level
Dalton Holme	Ck	1889	10.77	18.92	22.99	3	27/05	13.24
Wetwang	Ck	1971	19.14	23.27	30.02	2	27/05	19.79
Keelby Grange	Ck	1980	3.88	12.51	19.19	1	27/05	5.67
Washpit Farm	Ck	1950	40.87	45.27	49.90	5	02/06	42.83
The Holt	Ck	1964	84.26	88.24	92.18	1	19/05	84.92
Therfield Rectory	Ck	1883	70.69	81.56	97.72	4 (dry)	19/05	71.51
Redlands Hall	Ck	1963	33.34	44.65	53.89	1	20/05	33.91
Rockley	Ck	1933	129.16	136.03	142.36	3	19/05	131.59
Little Bucket Farm	Ck	1971	62.35	72.04	86.15	5	12/05	65.03
Compton House	Ck	1894	29.71	41.19	52.55	7	05/06	34.89
Chilgrove House	Ck	1836	37.49	48.88	66.54	>10	05/06	43.11
Westdean No. 3	Ck	1940	1.24	1.87	2.84	1	30/05	1.34
Lime Kiln Way	Ck	1969	124.02	125.46	126.18	8	15/05	125.31
Ashton Farm	Ck	1974	65.29	68.52	70.33	1	31/05	66.77
West Woodyates	Ck	1942	73.74	84.35	96.74	6	31/05	78.07
Killyglen (NI)	Ck	1985	113.53	114.55	116.30	10	28/05	115.18
New Red Lion	LLst	1964	4.80	15.80	22.00	1	21/05	9.89
Ampney Crucis	MidJ	1958	100.12	101.22	103.30	6	19/05	100.51
Redbank	PTS	1981	7.14	8.17	8.80	1	01/06	7.46
Yew Tree Farm	PTS	1972	13.07	13.56	13.84	5	02/06	13.46
Skirwith	PTS	1978	129.89	130.59	131.28	1	27/05	129.93
Llanfair D.C	PTS	1972	79.03	79.89	80.60	1	03/06	79.08
Morris Dancers	PTS	1969	31.85	32.46	33.50	3	21/05	32.00
Heathlanes	PTS	1971	60.67	62.12	63.38	0	08/05	60.67
Bussels No.7A	PTS	1971	23.11	23.98	24.62	3	20/05	23.51
Rusheyford NE	MgLst	1967	65.31	73.08	76.75	>10	20/05	76.03
Peggy Ellerton	MgLst	1968	31.45	34.45	37.24	3	19/05	32.06
Alstonfield	CLst	1974	176.53	185.86	203.79	10	15/05	183.72

groundwater levels are in metres above Ordnance Datum

Ck	Chalk	MidJ	Middle Jurassic Limestones
LLst	Linconshire Limestone	MgLst	Magnesian Limestone
PTS	Permo-Triassic sandstones	Clst	Carboniferous Limestones

