Hydrological summary for the United Kingdom

 General

 General}

Following a very mild beginning to the new millennium, April brought a belated touch of winter with snowfalls extending to southern England. In contrast to March, it was a notably wet month, matching 1998 as the wettest April in the UK rainfall series (from 1900); many April rainfall records were rewritten. Frosts and saturated soils made it a difficult month for farmers but it was very productive in water resources terms. Overall reservoir stocks are similar to the record early May totals registered last year and most reservoirs remain close to capacity. A late surge of aquifer replenishment was especially welcome in eastern areas and the general resources outlook is very healthy. Many rivers remained in spate for protracted periods but, in southern Britain, the relatively even rainfall distribution through the month moderated the flood risk. Eastern Scotland was less fortunate, experiencing severe flooding late in the month.

Rainfall

Synoptic conditions in April were very variable but most rain-bearing systems followed a southerly track over the initial three weeks, thereafter a north-easterly airflow was particularly influential in eastern Scotland. Throughout large parts of southern Britain April rainfall totals exceeded 250% of average. Bristol, Birmingham and Southampton (in a record from 1856) each recorded new April maxima, and the Oxford total is unprecedented in a series from 1767. As notably, the Thames catchment registered its highest April rainfall in a series from 1883. In Grampian Region a few localities (e.g. Torwinny) exceeded four times the April average and the final week was very wet in much of eastern Scotland. Edinburgh registered its second wettest April since $1785 ; 112 \mathrm{~mm}$ fell in 48 hours on the $24^{\text {th }}-26^{\text {th }}$ (return period around 100 years). Such exceptional totals contributed to a marked reversal in the normal rainfall gradient across Scotland - a few localities in the western Highlands reported less than 50% of average. Northern Ireland was wet but rainfall for Silent Valley (where reservoir stocks are low) again failed to reach the monthly mean. Apart from the Clyde, all regions exceeded the April mean, most by a very wide margin. For England and Wales the provisional April rainfall total ranks as the wettest since 1818 (1998 was only a little drier). Accumulated regional rainfall totals mostly exceed the average; for Scotland the November - April total is the highest in a series from 1869.

River flows

Generally runoff rates recovered very briskly after the depressed flows of late March and spate conditions were widespread, especially in responsive rivers in southern Britain. With catchments saturated, the flood risk remained high throughout the month - flood warnings were common - but the persistence of near bankfull flows was more notable than the magnitude of most peak flows. Many Scottish rivers had modest flows in mid-month but, thereafter, runoff rates increased steeply in the east, culminating in severe flooding around the $27^{\text {th }}$; adding to a very notable cluster of Scottish floods over the last 15 years. The Lothians were worst affected but flooding was
reported in many areas (e.g.Inverness, Elgin and Ayr); transport disruption was severe - exacerbated by landslips (e.g. at Culloden Viaduct). Previous flow maxima were exceeded on the Water of Leith and Gogar Burn (Edinburgh), and on the Don and Ugie in the north-east; April maximum flows were widely eclipsed in many rivers. Rivers establishing new maximum April runoff totals showed a very wide distribution (including the Deveron, Leven, Blackwater, Exe and Teme-all with records of >30 years); the Thames registered its highest April flow since 1951. In contrast, runoff totals in a few western Scottish catchment fell below 50% of average. Below average April flows also characterised some slow-responding Chalk streams in eastern England. English lowland rivers aside, runoff accumulations over the last six months are mostly well above average - outstandingly so in parts of Scotland (e.g. the Spey and Clyde basins).

Groundwater

Dry late-March soils in eastern England appeared to signal the end of the 1999/2000 recharge season. However the sustained April rainfall - mostly with intensities of less than 3 mm an hour - provided ideal conditions for substantial further infiltration. In some eastern outcrops the April recharge was more than three times the monthly average. Due to the normal lagged water-table response this surge is yet to be fully reflected in most groundwater hydrographs. In many wells and boreholes the seasonal recession was reversed, markedly so in some outcrops (e.g at West Woodyates). Early May levels throughout most of the Chalk outcrop are rising and currently stand above average - this will help to sustain spring-fed streams through the summer. The late spring recovery has also left limestone levels above average - in the Magnesian Limestone especially. Levels in most Permo-Triassic sandstones outcrops are within the normal range, but regional and local variability is considerable - reflecting the very differing response time to surface infiltration. Overall groundwater stocks are healthy.

Rainfall accumulations and return period estimates
Area
Rainfall Apr 2000

England \& Wales	$\mathrm{mm}_{\%}$	$\begin{aligned} & 127 \\ & 212 \end{aligned}$
NorthWest	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 112 \\ & 158 \end{aligned}$
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 133 \\ & 238 \end{aligned}$
SevernTrent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 130 \\ & 236 \end{aligned}$
Yorkshire	$\begin{gathered} \text { mm } \\ \% \end{gathered}$	$\begin{array}{r} 152 \\ 258 \end{array}$
Anglian	$\begin{gathered} \mathrm{mm} \\ \% \end{gathered}$	$\begin{array}{r} 97 \\ 210 \end{array}$
Thames	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 131 \\ & 262 \end{aligned}$
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 138 \\ 260 \end{array}$
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 153 \\ 289 \end{array}$
South West	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 141 \\ & 204 \end{aligned}$
Welsh	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 147 \\ & 184 \end{aligned}$
Scotland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 101 \\ & 133 \end{aligned}$
Highland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 112 \\ 123 \end{array}$
North East	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 148 \\ & 247 \end{aligned}$
Tay	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 106 \\ & 171 \end{aligned}$
Forth	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 105 \\ & 178 \end{aligned}$
Tweed	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 122 \\ & 214 \end{aligned}$
Solway	mm $\%$	$\begin{array}{r} 91 \\ 118 \end{array}$
Clyde	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 79 \\ & 94 \end{aligned}$
Northern Ireland	$\begin{aligned} & \text { mm } \\ & \% \end{aligned}$	$\begin{array}{r} 99 \\ 154 \end{array}$

Feb 00-Apr 0 130
5-10
139

511	
109	$2-5$
717	
117	$5-10$
514	
118	$5-10$
	428

811		971	
115	$5-10$	108	$2-5$
1052		1274	
109	$5-10$	106	$2-5$
741		939	
111	$2-5$	110	$2-5$
712		860	
122	$5-15$	114	$5-10$
680		849	
106	$2-5$	103	$2-5$
520		657	
116	$5-10$	110	$2-5$
646		789	
122	$5-15$	114	$5-10$
725		840	
116	$5-10$	108	$2-5$

0
$2-5$

Rainfall . . . Rainfall . . . Rainfall

Key
$\begin{array}{ll}00 \% & \begin{array}{l}\text { Percentage of } \\ \text { 1961-90 average }\end{array} \\ \end{array}$

Below average

Substantially above average

Above average

Substantially below average

Exceptionally low rainfall

Rainfall accumulation maps

Most regional rainfall totals exceed the average over timespans of 3, 6, 9 and 12 months. Much of Scotland has been very wet since August 1999. In the English lowlands, rainfall over the last three months is well above the long term mean and in the November-April timeframe, the most important period for groundwater replenishment, rainfall has exceeded the average in each of the last three years.

River flows - April 2000

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station.

River flow . . . River flow

Monthly river flow hydrographs

The river flow hydrographs show the monthly mean flow (bold trace), the long term average monthly flow (dotted trace) and the maximum and minimum flow prior to 1997 (shown by the shaded areas). Monthly flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations February = Aprill 2000 (a); November 1999 - April 2000 (b)

(a) River	\%lta	Rank	(b)	River	\%lta	Rank	River	\%Ita	Rank
Blackwater	152	46/48		Brue	152	36/36	Spey	152	48/48
Lymington	151	39/40		Clyde	164	37/37	Ewe	136	30/30
Exe	145	43/44		Tweed	134	38/39	Naver	142	23/23
Brue	172	36/36		Tay	141	47/48	Bush	132	26/26
					6		lta $=$ long term average Rank $1=$ lowest on record		

What is groundwater?

Groundwater is stored in the natural water bearing rock strata (or aquifers) which are found mostly in southern and eastern England (see page 11) where groundwater is the major water supply source. Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly max., min. and mean levels are displayed in a similar style to the river flow hydrographs, note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater

Groundwater

Groundwater levels April/May 2000

Borehole	Level	Date	Aprav.	Borehole
Dalton Holme	17.86	$26 / 04$	19.50	Chilgrove
Washpit Farm	44.93	$04 / 05$	45.15	Killyglen
The Holt	86.55	$06 / 04$	88.06	New Red Lion
Dial Farm	25.99	$12 / 04$	25.64	Ampney Crucis
Rockley	140.20	$25 / 03$	137.45	Redbank
Little Bucket	76.06	$30 / 04$	71.72	Skirwith
West Woodyates	100.15	$30 / 04$	88.28	Yew Tree Farm

| Level | Date | Aprav. | | Borehole | Level | Date |
| :---: | :---: | ---: | :--- | ---: | ---: | ---: | Apr av.

Groundwater . . . Groundwater

Groundwater levels - April 2000

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs

Area	Reservoir	Capacity (MI)	1999 Dec	$\begin{aligned} & 2000 \\ & \text { Jan } \end{aligned}$	Feb	Mar	Apr	May	$\begin{aligned} & \text { Min. } \\ & \text { May } \end{aligned}$	Year* of min
NorthWest	N Command Zone	-133375	67	93	98	100	92	88	80	1996
	Vyrnwy	55146	82	99	96	96	95	99	70	1996
Northumbrian	Teesdale	- 87936	69	99	97	100	94	100	81	1996
	Kielder	(199175)	(87)	(100)	(93)	(97)	(90)	(94)	(85)	1990
SevernTrent	Clywedog	44922	84	91	88	94	92	99	85	1988
	DerwentValley	- 39525	84	100	100	100	100	100	54	1996
Yorkshire	Washburn	- 22035	71	99	98	100	94	100	76	1996
	Bradford supply	- 41407	78	99	99	99	93	99	60	1996
Anglian	Grafham	* (55490)	(96)	(95)	(94)	(90)	(94)	(96)	(73)	1997
	Rutland	**(116580)	(83)	(88)	(91)	(94)	(95)	(97)	(72)	1997
Thames	London	- 206399	90	94	95	95	98	97	86	1990
	Farmoor	- 13843	98	77	95	93	100	81	81	2000
Southern	Bewl	28170	54	74	95	98	98	100	63	1990
	Ardingly	4685	65	100	100	100	100	100	100	
Wessex	Clatworthy	5364	91	100	98	100	98	100	81	1990
	BristolWW	- (38666)	(89)	(93)	(94)	(96)	(95)	(98)	(85)	1990
South West	Colliford	28540	82	96	98	100	100	100	56	1997
	Roadford	34500	90	99	95	100	97	99	41	1996
	Wimbleball	21320	88	100	100	100	100	100	79	1992
	Stithians	5205	60	94	98	100	98	98	65	1992
Welsh	Celyn and Brenig	- 131155	89	99	99	100	100	100	75	1996
	Brianne	62140	96	100	98	100	97	100	86	1997
	Big Five	- 69762	92	94	98	97	96	98	85	1997
	Elan Valley	- 99106	100	100	100	100	100	100	91	1997
East of	Edinburgh/Mid Lothian	- 97639	80	100	98	99	99	100	62	1998
Scotland	East Lothian	- 10206	98	99	97	100	97	100	89	1992
West of	Loch Katrine	- 111363	95	88	85	95	88	84	84	2000
Scotland	Daer	22412	100	100	100	100	97	97	91	1995
	Loch Thom	- 11840	84	100	100	100	97	92	92	2000
Northern	Silent Valley	- 20634	58	61	62	63	57	58	58	2000

Ireland
()figures in parentheses relate to gross storage

- denotes reservoir groups *last occurrence
**updated gross capacity

[^0]
Location map... Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology, Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department of the Environment, Transport and the Regions, the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the regional divisions of the EA (England and Wales) and SEPA (Scotland), data for Northern Ireland are provided by the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, the West of Scotland and East of Scotland Water Authorities, and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by The Met. Office (address opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Since the discontinuation of The Met. Office's CARP system in July 1998, rainfall figures have been provided by differing methods. Initial rainfall estimates for Scotland and the Scottish regions were derived by IH in collaboration with SEPA. In England and Wales, between July 1998 and May 1999, provisional rainfall figures derive from MORECS*. Beginning with the June 1999 report, provisional rainfall figures for England and Wales, the EA regions and Northern Ireland (from September 1999) have been produced by The Met. Office, National Climate Information Centre (NCIC), using a technique similar to CARP. An initiative is underway
with The Met. Office to provide more accurate areal figures and, since October 1999, to include more raingauges in the analysis. A significant number of additional monthly rainfall totals are currently being provided by SEPA; over the coming months further monthly raingauge totals will be included for selected EA regions. Until the access to these additional data has stabilised the regional figures (and the return periods associated with them) should be regarded as a guide only.
*MORECS is the generic name for the Meteorological Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met. Office

Johnson House
London Road
Bracknell
RG122SY
Tel.: 01344856849
Fax:01344854906
The cooperation of all data suppliers is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX108BB
Tel.: 01491838800
Fax:01491 692424
Selected text and maps are available on the WWW at http://www.nwl.ac.uk/ih
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

[^0]: Details of the individual reservoirs in each of the groupings listed above are available on request. The featured reservoits may not be representative of the storage conditions across each region; this can be particularly important during droughts. The minimum storage figures relate to the 1988-2000 period only (except for West of Scotland where data commence in 1994). In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes.

