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Abstract 19	  

 20	  

Pteropods and heteropods (holoplanktonic gastropods) are an important component 21	  

of the modern oceans; however, detailed information on their distribution in the fossil 22	  

record is often based on poorly preserved specimens. This study presents the 23	  

micropaleontological analysis of three exceptionally well-preserved Late Pleistocene 24	  

marine sediment cores from the eastern Caribbean Sea, western Mediterranean Sea 25	  

and the Indian Ocean. This study presents the first stratigraphical record of 26	  

heteropods in the Caribbean Sea and extends the known zonation of pteropods in 27	  

the Mediterranean Sea. Distributions of pteropods, heteropods and planktonic 28	  

foraminifera are presented with abundance and species richness data, as well as 29	  

stratigraphical dates inferred from the oxygen isotope stratigraphy, argon-argon 30	  

dating and biostratigraphy. The findings of this study greatly improve our 31	  

understanding of holoplanktonic gastropod stratigraphy and ecology. Results reveal 32	  

that the geographical range of heteropods, thought to be restricted to sub-tropical 33	  

warm waters, may be much greater, including waters of sub-polar temperature. 34	  

Heteropods were also found to be surprisingly abundant, potentially representing a 35	  

more important part of the ocean food web than previously thought. Analysis 36	  

revealed two species of holoplanktonic gastropod that are previously undescribed 37	  

and indicate that the pteropod Heliconoides mermuysi (Cahuzac and Janssen, 38	  

2010), known exclusively from the Moulin de Cabanes (Miocene), may have lived in 39	  



	   2	  

the Caribbean Sea and Indian Ocean as recently as 4 kyr ago. These findings 40	  

highlight the urgent need for increased research on holoplanktonic gastropods. The 41	  

threat that current climate change and ocean acidification poses, particularly to the 42	  

delicately shelled forms, means that some species may become extinct before they 43	  

have even been fully ‘discovered’. 44	  

 45	  

INTRODUCTION 46	  

 47	  

Pteropods and heteropods are planktonic gastropods, which have evolved wings 48	  

from the foot structure that characterises animals in the class Gastropoda. These 49	  

wings are uniquely adapted to enable the animals to live their entire lives as a 50	  

planktonic form (Bé and Gilmer, 1977) and they are, therefore, termed 51	  

holoplanktonic. Pteropods are a common component of the water column throughout 52	  

the world’s oceans (Bé and Gilmer, 1977) and consist of two orders; the shell-less 53	  

gymnosomes and the shell-bearing thecosomes. These two orders are now 54	  

considered to be less closely related than originally thought (Lalli and Gilmer, 1989) 55	  

despite superficial similarities, although, the term pteropod is still widely used. This 56	  

study focuses on the order Thecosomata, which is made up of shelled species in the 57	  

suborders Euthecosomata and Pseudothecosomata. The Heteropoda, more recently 58	  

known as the superfamily Pterotracheoidea, are less well-known. They consist of 59	  

three families: one shelled, the Atlantidae, one with reduced shells, the Carinariidae, 60	  

and one shell-less, the Pterotracheidae. Representatives of all three families, 61	  

including larval shells of the Pterotracheidae, were found during this study. At 62	  

present, the distribution and abundances of heteropods are not known in detail. 63	  

Available information suggests that they are found in moderate to low abundances 64	  

primarily in tropical and sub-tropical warm water regions (Thiriot-Quiévreux, 1973; 65	  

Lalli and Gilmer, 1989; Seapy, 2011). However, the results of this study indicate that 66	  

heteropods can also reside in sub-polar waters, since they were found to be 67	  

abundant in sediments from glacial periods in the geological past.  68	  

 69	  

Shells produced by pteropods and heteropods are formed of aragonite, a polymorph 70	  

of calcium carbonate, which is particularly susceptible to dissolution (50% more 71	  

susceptible than calcite). Consequently, in over 98% of the oceans, all of the 72	  

aragonite shells produced are dissolved while sinking through the water column or 73	  

during early sedimentation (Byrne et al., 1984; Fabry, 1990). The fossil record of 74	  

pteropod and heteropod shells is, therefore, restricted to sediments in shallow water 75	  

that is supersaturated with respect to aragonite. The known stratigraphical range of 76	  
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pteropod shells extends from the Recent to the Paleogene (Lokho and Kumar, 2008; 77	  

Janssen and Peijnenburg, 2013), with the first known occurrence in the latest 78	  

Paleocene of Europe (Janssen and King, 1988) and North America (Janssen et al., 79	  

2007). The fossil record of heteropods is less well-known, however, the 80	  

stratigraphical range is known to extend from the Recent to the Jurassic (Janssen 81	  

and Peijnenburg, 2013). 82	  

 83	  

Holoplanktonic gastropod shells are rarely used in biostratigraphy because of their 84	  

susceptibility to dissolution. However, the sensitivity of living holoplanktonic 85	  

gastropods to changes in environmental conditions makes them extremely valuable 86	  

both for stratigraphical correlation and paleoenvironmental reconstructions. This 87	  

study aims to improve the use of holoplanktonic gastropods in biostratigraphy by 88	  

documenting their stratigraphical distributions throughout three Late Pleistocene 89	  

sediment cores from the Caribbean Sea, the Mediterranean Sea and the Indian 90	  

Ocean. In particular, the results of this study extend the known zonation of pteropods 91	  

in the Mediterranean Sea, both spatially and stratigraphically, allowing a detailed 92	  

paleoenvironmental reconstruction. Results also contribute to a greater 93	  

understanding of holoplanktonic gastropod ecology and taxonomy.  94	  

 95	  

METHODOLOGY 96	  

 97	  

Sampling sites 98	  

 99	  

For this study, three core sites situated well above the Aragonite Lysocline (ALy) 100	  

were chosen to reduce the effects of post-depositional dissolution (Gerhardt and 101	  

Henrich, 2001; Sabine et al., 2002; Schneider et al., 2007). All three cores show 102	  

exceptional preservation, indicated by surface sediment assemblages of planktonic 103	  

foraminifera and holoplanktonic gastropods, which are comparable to those in the 104	  

overlying waters. This implies that specimens have not been affected by dissolution 105	  

or transportation, retaining an accurate representation of the abundance and species 106	  

richness of the overlying waters. Low fragmentation of planktonic foraminifera tests 107	  

and extremely well preserved pteropod shells also indicate little to no post-108	  

depositional dissolution.  109	  

 110	  

Core CAR-MON 2 was collected to the south-west of Montserrat (16°27.699’N, 111	  

62°38.077’W, water depth 1102 m) in the Lesser Antilles volcanic arc (Fig. 1) and 112	  

was sampled at 5 cm (~2.2 kyr) intervals. Oxygen isotope stratigraphy (Fig. 2) and 113	  
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additional data for CAR-MON 2 has previously been published by Le Friant et al. 114	  

(2008), Messenger et al. (2010) and Wall-Palmer et al. (2012, 2013). Core B5-1 was 115	  

collected to the south-east of the Balearic island of Mallorca (39°14.942’N, 116	  

03°25.052’E, water depth 1519 m) in the western Mediterranean Sea (Fig. 1). B5-1 117	  

was sampled for microfossil analysis at 10 cm (~2.7 kyr) intervals and oxygen 118	  

isotope stratigraphy at 5 cm intervals (Fig. 3). The stratigraphy of B5-1, based on 119	  

oxygen isotope stratigraphy and biozonation of planktonic foraminifera (Fig. 4), is 120	  

reported in this study. Indian Ocean Hole 716B was collected by the Ocean Drilling 121	  

Program, from a shallow site (Site 716, 04°56.0’N, 73°17.0’E, water depth 533 m) on 122	  

the Chagos-Laccadive Ridge within the Maldives Islands (Fig. 1). Of the cores 123	  

collected at Site 716, this study is based on the upper 13 m of Hole B, which was 124	  

recognised by Droxler et al. (1990) to contain abundant holoplanktonic gastropods. 125	  

Oxygen isotope stratigraphy (Fig. 5) for Hole 716B has been previously published by 126	  

Backman et al. (1988) and Droxler et al. (1990). Hole 716B was sampled at a low 127	  

resolution at points corresponding to major changes in climate, which were identified 128	  

with the use of oxygen isotope stratigraphy (Backman et al., 1988). 129	  

 130	  

Microfossil analysis 131	  

 132	  

No chemicals were used during sample processing. Dried samples were gently 133	  

disaggregated, weighed and re-hydrated using deionised water (pH 7.89). Each 134	  

sample was then washed over a 63 µm sieve, filtered and air dried. Dried samples 135	  

were then weighed to calculate the amount of <63 µm sediment that had been 136	  

removed during washing. Counts of planktonic foraminifera and holoplanktonic 137	  

gastropods were made from two size fractions, 150–500 µm and >500 µm, in order 138	  

to provide representatives of both small and large species. Results from the two 139	  

fractions have been combined for all subsequent data analysis. For each sample, 140	  

just over 300 (or until the sample was exhausted) planktonic foraminifera and just 141	  

over 300 (or until the sample was exhausted) holoplanktonic gastropod specimens 142	  

were counted and identified from both size fractions. Only whole specimens and 143	  

fragments retaining the proloculus or protoconch were counted to avoid the distortion 144	  

produced by several fragments of the same specimen. Samples were weighed 145	  

before and after analysis to calculate the overall abundance of microfossils 146	  

(specimens per gram of sediment). 147	  

 148	  

The identification of planktonic foraminifera was made using the taxonomic reviews 149	  

by Bé (1977), Saito et al. (1981) and Kennett and Srinivasan (1983). The 150	  
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identification of pteropod species was made using the keys published by Bé and 151	  

Gilmer (1977), Van der Spoel (1976) and Janssen (2012), with additional information 152	  

from Tesch (1946, 1949). Identification of heteropods was made using Tesch (1949), 153	  

Thiriot-Quiévreux (1973), Seapy (1990)Janssen (2012) and the online guide 154	  

compiled by Seapy (2011). Counts of microfossils are expressed as a percentage 155	  

(relative abundance) of the total number of specimens, separately for planktonic 156	  

foraminifera and holoplanktonic gastropods. 157	  

 158	  

Stable isotope analysis and stratigraphical framework for B5-1 159	  

 160	  

Stable isotope analysis of core B5-1 were carried out at the Natural Environment 161	  

Research Council (NERC) Isotope Geosciences Laboratory, British Geological 162	  

Survey, Keyworth. Ten specimens of Globigerinoides ruber (d’Orbigny, 1839) of size 163	  

250 µm to 355 µm were analysed from each sample at 5 cm intervals, using a GV 164	  

IsoPrime mass spectrometer plus Multiprep device. Isotope values ( δ 18O) are 165	  

reported as per mille (‰) deviations of the isotopic ratios (18O/16O) calculated to the 166	  

VPDB scale using a within-run laboratory standard calibrated against NBS standards 167	  

(δ13C were analysed but are not reported here). Analytical reproducibility of the 168	  

standard calcite (KCM) is <0.1‰ for δ18O. The isotope profile produced is 169	  

comparable to published data for sediments in the area (Weldeab et al., 2003). 170	  

Marine δ18O data are used as a proxy for global ice volume and data can, therefore, 171	  

be compared globally. By comparing the δ18O record within core B5-1 to a globally 172	  

standardised record, such as the LR04 stack (Lisiecki and Raymo, 2005), glacial and 173	  

interglacial periods, termed Marine Isotope Stages (MIS), can be identified, dating 174	  

certain parts of the core. The δ18O data show that B5-1 contains a marine isotope 175	  

record extending back to MIS 6. Alignment of the MIS (Fig. 4) was achieved by 176	  

comparison to the δ18O record published by Weldeab et al. (2003) for site SL87 (Fig. 177	  

4), approximately 60 km south east of B5-1 and the LR04 stack (Lisiecki and Raymo, 178	  

2005). 179	  

 180	  

Planktonic foraminifera distributions within B5-1 were also used to date parts of the 181	  

core and refine the position of MIS boundaries. The down-core distributions of 182	  

several key species reflect the bio-events identified by Pujol and Vergnaud-Grazzini 183	  

(1989) and Pérez-Folgado et al. (2003) in the Mediterranean Sea (Fig. 4). These 184	  

events indicate several minor climatic episodes, providing additional dating points 185	  

throughout the upper 190 cm of the core. 186	  
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 187	  

Statistical analysis 188	  

 189	  

Cluster analysis was carried out for Mediterranean Sea core B5-1, where changes in 190	  

species composition appear to be strongly influenced by changes in climate. Cluster 191	  

analysis has been used in this study to identify whether apparent warm and cold 192	  

water assemblages are significantly different from one another. Cluster analysis was 193	  

carried out using the Paleontological Statistics package (PAST). The Paired-Group 194	  

algorithm and Euclidian similarity measure were used. 195	  

 196	  

RESULTS 197	  

 198	  

The Caribbean Sea 199	  

 200	  

The assemblage of planktonic foraminifera and holoplanktonic gastropods in the 201	  

surface sediments of CAR-MON 2 is comparable to that of the overlying waters and 202	  

this sedimentary record is, therefore, useful in reconstructing the paleoenvironmental 203	  

conditions at this site. The similarity between surface sediment microfossil content 204	  

and living assemblages in the Caribbean Sea has previously been demonstrated by 205	  

Wells (1975), who found that euthecosome pteropods deposited in the surface 206	  

sediments close to Barbados accurately reflect the species composition and relative 207	  

abundances of the overlying waters. All species of pteropod found in the surface 208	  

waters of the Western Caribbean Sea (Wells, 1975, 1976; Parra-Flores, 2009) are 209	  

present in CAR-MON 2 sediments. The majority are represented within the surface 1 210	  

cm of sediment. The distribution of living shelled heteropods is not well documented 211	  

and no published data from the Caribbean Sea were found. It is assumed that, like 212	  

the shelled pteropods, the living assemblage of heteropods is well represented within 213	  

the surface sediments of CAR-MON 2. No extensive studies have been made of the 214	  

modern living planktonic foraminifera assemblage of the Caribbean Sea. More 215	  

generally, Bé and Tolderlund (1971) described the distribution of living planktonic 216	  

foraminifera in the surface waters of the Atlantic. This study includes species 217	  

distribution maps, which allow the living planktonic foraminifera assemblage of the 218	  

Lesser Antilles to be inferred. All species included in the maps of Bé and Tolderlund 219	  

(1971) for the Lesser Antilles are present within the surface sediments of CAR-MON 220	  

2 with one exception, Hastigerina pelagica (d’Orbigny, 1839), which is absent from 221	  

the entire core. However, Bé and Tolderlund (1971) only found H. pelagica to be 222	  

present within the surface waters in low numbers (0.1–4.9 %) and it may, therefore 223	  
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not have been present in the waters overlying this site. Although there appear to be 224	  

several species present within the surface sediments of CAR-MON 2 that were not 225	  

found by Bé and Tolderlund (1971), these are mainly recently described species. For 226	  

example, Globigerinoides trilobus (Reuss, 1850) would have been included within the 227	  

counts of Globigerinoides sacculifer (Brady, 1877) by Bé and Tolderlund (1971), but 228	  

has now been identified as a separate species. 229	  

 230	  

Due to the low latitude location of the Caribbean Sea, and the consequent low 231	  

variation in surface water temperature across glacial and interglacial periods, CAR-232	  

MON 2 shows that very little change in species composition and species richness 233	  

(28–47 species) occurred over the last 250 kyr (Fig. 2). The lack of significant 234	  

synchronous changes between oxygen isotope data and the relative abundances of 235	  

temperature sensitive species (Fig. 2) supports this observation. The overall 236	  

abundance (specimens per gram of sediment) of holoplanktonic gastropods and 237	  

planktonic foraminifera shows greater variation, but does not change synchronously 238	  

with oxygen isotope data, suggesting that factors such as nutrient availability have 239	  

produced the fluctuations in overall abundance. Foster (2008) reconstructs the range 240	  

in temperature from the last glacial maximum at MIS 2.2 to the last interglacial 241	  

maximum at MIS 5.5 as being between 25.7 and 29.1°C. Schmidt et al. (2006) show 242	  

a comparable reconstruction for Caribbean surface water, finding temperatures 243	  

between 2.1–2.7°C colder than the present during the last three glacial maxima. The 244	  

species assemblage throughout CAR-MON 2 is composed of warm water sub-245	  

tropical species of planktonic foraminifera and holoplanktonic gastropods. Dominant 246	  

planktonic foraminifera species include G. ruber, G. sacculifer (including G. trilobus) 247	  

and Neogloboquadrina dutertrei (d’Orbigny, 1839). Other common species include 248	  

Globigerinella siphonifera (d’Orbigny, 1839), Globigerinoides conglobatus (Brady, 249	  

1879), Globigerinita glutinata (Egger, 1893) and Globorotalia truncatulinoides 250	  

(d’Orbigny, 1839). The pteropod genera Heliconoides and Limacina dominate the 251	  

assemblage of holoplanktonic gastropods. The most abundant species is 252	  

Heliconoides inflatus (d’Orbigny, 1834), which comprises up to 68% of the 253	  

holoplanktonic gastropod population. Other common and often abundant species of 254	  

pteropod include Creseis clava (Rang, 1828), Creseis virgula (Rang, 1828), Limacina 255	  

bulimoides (d’Orbigny, 1834), Limacina trochiformis (d’Orbigny, 1834) and Styliola 256	  

subula (Quoy and Gaimard, 1827). The dominant heteropod genus is Atlanta, with 257	  

the most abundant species being Atlanta peronii Lesueur, 1817 and Atlanta 258	  

selvagensis de Vera and Seapy, 2006. Other common and often abundant heteropod 259	  
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species include Firoloida desmarestia Lesueur, 1817 and Carinaria lamarckii 260	  

Blainville, 1817. 261	  

 262	  

The Mediterranean Sea 263	  

 264	  

 The surface sediments of B5-1 contain a comparable assemblage of planktonic 265	  

foraminifera and holoplanktonic gastropods to that of the overlying waters. In 266	  

agreement with the distribution of living pteropods in the western Mediterranean Sea 267	  

(Bé and Gilmer, 1977), the surface sediments of B5-1 contain a single extremely 268	  

abundant pteropod species (H. inflatus), with many more present in low numbers. 269	  

Limited data on modern Mediterranean heteropod species (Richter, 1968; Thiriot-270	  

Quiévreux, 1973) indicate that the surface sediments of B5-1 contain six out of the 271	  

seven species which live in the overlying waters. There are also some species that 272	  

were found within the surface sediments of B5-1 that are not recognised from the 273	  

Mediterranean Sea. These include Atlanta rosea Gray, 1850 and A. selvagensis, 274	  

which are found in tropical and sub-tropical waters of the Atlantic and Indian oceans. 275	  

This is partly due to the improved recognition of species, since A. selvagensis was 276	  

not described until 2006 (de Vera and Seapy, 2006) and specimens previously 277	  

identified as Atlanta inflata Gray, 1850 are now thought to belong to the species A. 278	  

selvagensis in the Atlantic Ocean. Planktonic foraminifera within the surface 279	  

sediments of B5-1 are also representative of the assemblages found in overlying 280	  

waters (Bé, 1977; Pujol and Verhaud-Grazzini, 1995; Parker, 2002). However, 281	  

several of the species (including Globorotalia hirsuta (d’Orbigny, 1839), Globigerina 282	  

falconensis Blow, 1959, H. pelagica and G. glutinata) which Bé (1977) described as 283	  

being dominant, are not found in the surface sediments of B5-1. All but one species 284	  

of planktonic foraminifera, G. siphonifera, found within the surface sediments of B5-1 285	  

are recorded from the Mediterranean Sea. This suggests that the sediments at this 286	  

site have not been affected by post-depositional dissolution, allowing the microfossil 287	  

assemblage to be used in reconstructing paleoenvironmental conditions. 288	  

 289	  

Climatic events within the Mediterranean Sea tend to be amplified due to the semi-290	  

enclosed nature of the basin (Pérez-Folgado et al., 2003). Considerable variations in 291	  

species composition therefore occur across glacial and interglacial periods. These 292	  

variations have been used by several authors to reconstruct the past climate of the 293	  

central and eastern Mediterranean Sea (Chen, 1968; Herman, 1971; Jorissen et al., 294	  

1993; Capotondi et al., 1999; Sbaffi et al., 2001; Janssen, 2012), the Tyrrhenian Sea 295	  

(Carboni and Esu, 1987; Biekart, 1989; Asioli et al., 1999; Buccheri et al., 2002), the 296	  
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Adriatic Sea (Jorissen et al., 1993; Asioli et al., 1999) and more generally the entire 297	  

Mediterranean Sea (Hayes et al., 2005).  298	  

 299	  

Throughout B5-1, species richness changes synchronously with the oxygen isotope 300	  

data (Fig. 3), suggesting a strong link to water temperature. Core B5-1 contains two 301	  

distinct planktonic assemblages, which divide the core into four major zones (Zone C 302	  

is further subdivided into five sub-zones), two of which (Zones B and A) have been 303	  

previously recognised (Herman, 1971; Carboni and Esu, 1987; Jorissen et al., 1993; 304	  

Capotondi et al., 1999; Sbaffi et al., 2001; Buccheri et al., 2002). These zones 305	  

coincide with the MIS and are characterised by a homogenous set of species 306	  

preferring either sub-polar cold water or sub-tropical warm water (Fig. 3). The distinct 307	  

assemblages can be identified using cluster analysis (Fig. 6) which shows that the 308	  

holoplanktonic gastropod and planktonic foraminifera assemblage of samples 309	  

present within cold water Zones D, C(iv), C(ii) and B is approximately 97% different 310	  

to the assemblage of samples within warm water Zones C(v), C(iii), C(i) and A. There 311	  

are four samples, 50, 240, 270 and 490 cm, which appear to be present in the 312	  

incorrect cluster. However, these samples all contain a slightly different assemblage 313	  

from other samples within their zone. For example, samples 50 and 490 show a 314	  

sudden reduction in cold water species and an increase in warm water species, 315	  

representing a very short warm fluctuation in the otherwise cold Zone B. Therefore, 316	  

instead of occurring in the cold water cluster, they are placed in the warm water 317	  

cluster.  318	  

 319	  

Zone D (490–476 cm) ~133–130 ka 320	  

Zone D occurs within MIS 6 and is a known cool period, with a high global ice 321	  

volume. The species present during this period are representative of a sub-polar 322	  

assemblage similar to that of the modern North Atlantic (Bé and Gilmer, 1977; Bé, 323	  

1977). It is very similar in composition to Zone B (Fig. 3), with high numbers (25–73% 324	  

of holoplanktonic gastropods) of the sub-polar pteropod species Limacina retroversa 325	  

(Fleming, 1823) and low numbers of H. inflatus (18–38%). Cluster analysis shows 326	  

that, at 490 cm, there is a fluctuation in the dominant species of pteropod (Figs 4 and 327	  

5), indicating a comparable composition to warmer zones. The presence of some 328	  

warm water transitional species also suggests that this is the late transition from a 329	  

colder period, which was not recovered in the core. The dominant species of 330	  

planktonic foraminifera and pteropods during this period suggest an annual sea 331	  

surface temperature range of 12–16°C (Bé and Tolderlund, 1971; Bé and Gilmer, 332	  

1977). 333	  
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 334	  

Zone C (475–226 cm) 130–71 ka 335	  

This is a zone mainly composed of warm sub-tropical to tropical planktonic species. It 336	  

spans the whole of MIS 5 and contains alternating warm periods with short term 337	  

cooler periods. It signifies a gradual warming from the boundary of MIS 6 throughout 338	  

MIS 5. The overall species composition of Zone C is similar to that of the modern 339	  

western Mediterranean Sea (Fig. 3). 340	  

 341	  

Sub-Zone C (v) (475–446 cm) 342	  

This is a short warm period, occurring during MIS 5.5, characterised by an increase 343	  

in the abundance of H. inflatus (77–94%) and a coinciding decrease in the 344	  

abundance of L. retroversa (1–8%). It is similar in species composition to Zone C(i) 345	  

and C(iii). Cold water species do not disappear, but remain in lower numbers. 346	  

Dominant planktonic foraminifera and pteropod species during this period suggest an 347	  

annual sea surface temperature range of 16–19°C (Bé and Tolderlund, 1971; Bé and 348	  

Gilmer, 1977). However, since MIS 5.5 was the last interglacial maximum and shows 349	  

the greatest oxygen isotope excursion, dominant fauna should indicate the highest 350	  

temperature within the core. Bardaji et al. (2009) estimate mean annual sea surface 351	  

temperature at MIS 5.5 to be 23–24°C and never below 19–21°C during the winter.  352	  

 353	  

Sub-zone C (iv) (445–416 cm) 354	  

This is a short cooler period, occurring during MIS 5.4 and is characterised by a 355	  

sharp peak in L. retroversa (from 8% at 450 cm to 85% at 420 cm) and a coinciding 356	  

reduction in the abundance of H. inflatus (from 77% at 450 cm to 12% at 420 cm). 357	  

The warm water species, such as L. bulimoides and A. selvagensis, do not 358	  

disappear, but remain at a lower abundance, suggesting that this period is cooler but 359	  

not sub-polar. Globigerina bulloides d’Orbigny, 1826, a dominant species of 360	  

planktonic foraminifera in sub-polar provinces (Bé, 1977), is also present, but in low 361	  

numbers. Dominant planktonic foraminifera and pteropod species during this period 362	  

suggest an annual sea surface temperature range of 12–16°C (Bé and Tolderlund, 363	  

1971; Bé and Gilmer, 1977). 364	  

 365	  

Sub-zones C (iii) 415–366 cm; ii) 365–356 cm; i) 355–226 cm 366	  

This section is characterised by a relatively high abundance (up to 44% of planktonic 367	  

foraminifera) of the sub-tropical planktonic foraminifera Orbulina universa d’Orbigny, 368	  

1839. In common with Zone A, it contains a higher abundance of the pteropod H. 369	  

inflatus (average 24%), the heteropod A. selvagensis (average 24%) and the 370	  
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planktonic foraminifera Globorotalia inflata (d’Orbigny, 1839, 8–28%) and a generally 371	  

low abundance of the sub-polar pteropod L. retroversa (variable between 2–72%). 372	  

During Sub-Zone C(iii), dominant planktonic foraminifera and pteropod species 373	  

suggest an annual sea surface temperature range of 19–21°C (Bé and Tolderlund, 374	  

1971; Bé and Gilmer, 1977). With exception to this, there is a very short cooler 375	  

period between 365 and 356 cm (Sub-Zone C(ii)) with a higher abundance of L. 376	  

retroversa. During Sub-Zone C (ii) the temperature decreased to between 12–16°C. 377	  

The surface water then warmed again during Sub-Zone C(i) to between 17–19°C (Bé 378	  

and Tolderlund, 1971; Bé and Gilmer, 1977). Cluster analysis shows that there is 379	  

also some temperature fluctuation during Zone C(i), indicating that samples 240 and 380	  

270 cm reflect a cold water assemblage (Fig. 6). In both samples, this is due to 381	  

increased numbers of L. retroversa coinciding with decreased numbers of H. inflatus 382	  

(Fig. 3). Pteropod species L. bulimoides and C. virgula return to Zone C with an 383	  

increase in the abundance of Diacria trispinosa (Blainville, 1821), a warm water 384	  

cosmopolitan species of pteropod. The climate switched to reflect a sub-polar 385	  

assemblage (Zone B) at the MIS 5/4 boundary (71 kyr, 230 cm). 386	  

 387	  

Zone B (225–36 cm) 71 –14 ka 388	  

This cool period indicates a major turning point in the climate, with steady cooling 389	  

throughout MIS 4, 3 and 2, towards the Last Glacial Maximum (MIS 2.2). This is a 390	  

zone of sub-polar species similar to that of the modern North Atlantic (Bé and Gilmer, 391	  

1977; Bé, 1977). It is characterised by a very high abundance of the sub-polar 392	  

pteropod L. retroversa (up to 100%, with an average of 79% of holoplanktonic 393	  

gastropods) and the sub-polar planktonic foraminifera G. bulloides (average 48% of 394	  

planktonic foraminifera). There are also higher abundances of the planktonic 395	  

foraminifera Globorotalia scitula (Brady, 1882, 10%) and G. glutinata (9%), which 396	  

occupy a range of habitats from sub-polar to equatorial (Fig. 3). The abundance of 397	  

the heteropod A. rosea, which is only known from warm waters, fluctuates throughout 398	  

this zone. It is interesting to note that peaks in the occurrence of A. rosea occur when 399	  

the abundance of L. retroversa reduces and may therefore signify temperature 400	  

fluctuations in this sub-polar zone. However, cluster analysis only indicates that one 401	  

sample (50 cm) contains an assemblage comparable to the warm water zones (Fig. 402	  

6). Dominant planktonic foraminifera and pteropod species during this period suggest 403	  

an annual sea surface temperature range of 7–10°C (Bé and Tolderlund, 1971; Bé 404	  

and Gilmer, 1977). This is in agreement with temperature reconstruction data 405	  

published by Sbaffi et al. (2001) and Hayes et al. (2005). 406	  

 407	  



	   12	  

Zone B is comparable to Zone 3 described by Biekart (1989) in a deep sea core from 408	  

the Tyrrhenian Sea. Biekart (1989) found similar abundances of L. retroversa, but 409	  

much higher abundances of D. trispinosa, which are only present in this section of 410	  

B5-1 in low numbers (maximum 13%). Chen (1968) also recorded this period of 411	  

abundant L. retroversa in a core collected south of the island of Crete. This zone has 412	  

also been detected in cores throughout the eastern Mediterranean Sea and in the 413	  

Balearic Sea (Herman, 1971), in the Tyrrhenian Sea (Carboni and Esu, 1987; 414	  

Jorissen et al., 1993; Buccheri et al., 2002) and the Adriatic Sea (Jorissen et al., 415	  

1993). Capotondi et al. (1999) and Sbaffi et al. (2001) have expanded on the work of 416	  

Jorissen et al. (1993), splitting the previous ‘Zone 3’ into more detailed zones. At the 417	  

top and bottom of Zone B (225 cm to 140 cm and 50 cm to 36 cm) an increased 418	  

abundance of the transitional species Clio pyramidata Linnaeus, 1767 and G. inflata 419	  

signifies the transition between warm and cold periods. Many authors consider the 420	  

upper transitional period (50 cm to 36 cm) as a distinct zone (Carboni and Esu, 1989; 421	  

Jorissen et al., 1993; Buccheri et al., 2002), characterised by an increase in 422	  

transitional and warmer water species. Capotondi et al. (1999) and Sbaffi et al. 423	  

(2001) also subdivide this period into smaller bio-zones. 424	  

 425	  

Zone A (35–0 cm depth) 14–0 ka 426	  

This is a zone of sub-tropical species, which spans MIS 1 (Fig. 3) and is 427	  

characterised by a high abundance of the tropical pteropod H. inflatus (average 43% 428	  

of holoplanktonic gastropods) and a very low abundance of the sub-polar pteropod L. 429	  

retroversa (average 1%). The transitional planktonic foraminifera G. inflata (13–31% 430	  

of planktonic foraminifera) and the sub-tropical heteropod A. selvagensis (16–21%) 431	  

also increase in abundance. Zone A contains the warm water pteropods L. 432	  

bulimoides and C. virgula and the tropical planktonic foraminifera G. siphonifera and 433	  

G. sacculifer which are not found in Zone B. This assemblage is similar to that found 434	  

in Holocene sediments described from the Tyrrhenian Sea (Carboni and Esu, 1987; 435	  

Jorissen et al., 1993; Capotondi et al., 1999; Sbaffi et al., 2001; Buccheri et al., 436	  

2002), the Adriatic Sea (Jorissen et al., 1993; Capotondi et al., 1999), south of Sicily 437	  

(Capotondi et al., 1999), in the western Mediterranean Sea (Pérez-Folgado et al., 438	  

2003) and south of the island of Crete (Chen, 1968). Species present within Zone A 439	  

indicate a sub-tropical climate similar to that of the modern day western 440	  

Mediterranean Sea (Bé and Gilmer, 1977; Bé, 1977). The sea surface temperature at 441	  

this time, averaged over the entire Mediterranean Sea, ranged from 14–25 °C (Sbaffi 442	  

et al., 2001). At the site of B5-1, dominant planktonic foraminifera and pteropod 443	  
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species suggest an annual sea surface temperature range of 19–21°C (Bé and 444	  

Tolderlund, 1971; Bé and Gilmer, 1977). 445	  

 446	  

The Indian Ocean 447	  

 448	  

Due to drilling disturbance at the top of ODP Hole 716B, the uppermost sample at 449	  

this site was collected at 15–16 cm in the core. Assuming the average sedimentation 450	  

rate of 3.8 cmkyr-1 (Backman et al., 1988), this sample likely represents around 4 kyr 451	  

before the present day. Planktonic species present in the modern overlying waters at 452	  

ODP Site 716 will, therefore, not be accurately represented within this sample. 453	  

However, many of the species of holoplanktonic gastropod found within the overlying 454	  

waters (Tesch, 1949; Thiriot-Quiévreux, 1973; Bé and Gilmer, 1977; Aravindakshan, 455	  

1977) are also found within the 15–16 cm sample. Species missing from the 456	  

sediments primarily appear to be the larger Cavolinia spp. and Clio spp. All pteropod 457	  

species found within sample 15–16 cm are recorded by Bé and Gilmer (1977) as 458	  

being present in the overlying waters at ODP Site 716. Fourteen of the twentyone 459	  

heteropod species recorded as living in the Indian Ocean were found within sample 460	  

15–16 cm (Tesch, 1910; Taki and Okutani, 1962; Richter, 1974; Aravindakshan, 461	  

1977; Seapy et al., 2003).  The majority of planktonic foraminifera species found in 462	  

the overlying waters of the Indian Ocean are present within the sample 15–16 cm. 463	  

Species missing from the sample are uncommon in the overlying waters, found only 464	  

to be ‘present’ (<5%) by Bé and Tolderlund (1971) and Cullen and Prell (1984). 465	  

These include Candeina nitida d’Orbigny, 1839 and H. pelagica, which are found 466	  

elsewhere in the core, and Globigerinoides tenellus Parker, 1958, which was not 467	  

found in the sediments of ODP Hole 716B. Several species found in the sample 15–468	  

16 cm of Hole 716B were not recorded from the overlying water. This is both a factor 469	  

of the 4 kyr gap and also because some species are more recently described, and 470	  

not recognised by Bé and Tolderlund (1971) or Cullen and Prell (1984). Species 471	  

found in the sample 15–16 cm, but not recorded in the overlying waters include G. 472	  

bulloides, G. trilobus, Globorotalia tumida (Brady, 1877), Globorotalia theyeri 473	  

Fleisher, 1974 and Sphaeroidinella dehiscens (Parker and Jones, 1865). 474	  

 475	  

Similar to the Caribbean Sea, the low latitude location of ODP Hole 716B created a 476	  

low temperature variation across glacial and interglacial periods of the Late 477	  

Pleistocene. Consequently, very little change in species composition, species 478	  

richness (37–46 species) and overall abundance is observed throughout ODP Hole 479	  

716B (Fig. 5). This is supported by the lack of significant synchronous changes 480	  
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between oxygen isotope data and the relative abundances of temperature sensitive 481	  

species (Fig. 5). Barrows and Juggins (2005) reconstruct the sea-surface 482	  

temperature at ODP Site 716 to range between 25–28°C at the Last Glacial 483	  

Maximum (18 cm core depth, MIS 2.2). The mean annual sea-surface temperature 484	  

close to ODP Site 716 at this time was 27°C, just one degree lower than that of today 485	  

(Barrows and Juggins, 2005). Cullen and Droxler (1990) reconstruct the sea surface 486	  

temperature at ODP Site 716 to be below 26°C during MIS 6–8 and suggest that any 487	  

variation in species abundances are more likely to be due to changes in other 488	  

environmental parameters, such as salinity and nutrient availability. The species 489	  

assemblage throughout ODP Hole 716B is composed of warm water sub-tropical 490	  

species of planktonic foraminifera, pteropods and heteropods, with some transitional 491	  

species. The dominant planktonic foraminifera species is Globorotalia menardii 492	  

(d’Orbigny, 1826), making up to 39% of planktonic foraminifera. Other abundant 493	  

species include G. sacculifer (including G. trilobus), N. dutertrei and Globoquadrina 494	  

conglomerata (Schwager, 1866). G. siphonifera and O. universa are also common 495	  

throughout the core. The pteropod genera Heliconoides and Limacina dominate the 496	  

assemblage of holoplanktonic gastropods, the most abundant species being H. 497	  

inflatus (up to 66% of the holoplanktonic gastropod population of Hole 716B). Other 498	  

common and often abundant species of pteropod include L. trochiformis and Clio 499	  

convexa (Boas, 1886). The dominant heteropod genus is Atlanta, with common and 500	  

often abundant heteropod species including A. frontieri and C. lamarckii. 501	  

 502	  

 503	  

DISCUSSION 504	  

 505	  

The application of holoplanktonic gastropods in stratigraphy 506	  

 507	  

The results of this study demonstrate that the success of using down-core 508	  

distributions of holoplanktonic gastropods as biostratigraphical markers is variable. 509	  

Changes in temperature appear to drive changes in the assemblage composition, 510	  

therefore, identifying MIS boundaries using species assemblages is only possible 511	  

where water temperature changes considerably through time. This method proved 512	  

useful in the Mediterranean Sea, where amplification of the climatic changes lead to 513	  

substantial changes in holoplanktonic gastropod assemblage. However, in low 514	  

latitude locations, such as the Caribbean Sea and Indian Ocean, where temperature 515	  

changes are less significant, variations in species composition were not evident and 516	  

could not be used to identify the positions of MIS. This is, however, also true for the 517	  
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assemblages of planktonic foraminifera, which are more widely used in 518	  

biostratigraphy. In this study, no first or last occurrences of species were identified. 519	  

Further research upon a longer record of holoplanktonic gastropods is necessary to 520	  

identify these datum species, which would undoubtedly enhance their use in 521	  

biostratigraphy. 522	  

 523	  

Despite the variable success of using holoplanktonic gastropods for biostratigraphy, 524	  

this study demonstrates their consistent use as a tool in reconstructing 525	  

paleoenvironments. In particular, temperature ranges for the Mediterranean Sea 526	  

were constrained by using the known temperature ranges of pteropod species 527	  

combined with ranges for planktonic foraminifera. Further research into the 528	  

environmental requirements of living holoplanktonic gastropods will increase their 529	  

use in paleoenvironmental interpretations.  530	  

 531	  

Previously undescribed species 532	  

 533	  

Down-core distributions have revealed three species of holoplanktonic gastropod that 534	  

are potentially previously undescribed, or that were previously assumed to be extinct. 535	  

A number of specimens of the heteropod ‘Atlanta sp. D’ (Plate 3, Figs 3 a–c) were 536	  

found in Caribbean Sea sediments. This species appears to be previously 537	  

undescribed and may, therefore, represent a new species. Further to this, pteropod 538	  

specimens, thought to be Heliconoides mermuysi, but potentially larval shells of the 539	  

benthic gastropod Architectonicidae, were found in sediments from the Caribbean 540	  

Sea and Indian Ocean. The descriptions of these species can be found below. 541	  

During microfossil analysis, it was also noticed that some specimens of H. inflatus 542	  

from ODP Hole 716B showed a slightly different morphology from specimens 543	  

collected in both the Caribbean Sea and the Mediterranean Sea. Although adult 544	  

forms remain an overall depressed shape, the protoconch and first whorl of Indian 545	  

Ocean specimens were found to be slightly raised in comparison to specimens from 546	  

other locations (Fig. 7). Although this is only a slight variation of the morphology, it 547	  

may indicate a new sub-species of H. inflatus and requires further investigation. 548	  

 549	  

 550	  

Limacina sp. C [Heliconoides mermuysi?] 551	  

Plate 3, Figure 1 a–c. 552	  

 553	  
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Diagnosis: A shell similar in size and morphology to H. inflatus but with whorls that 554	  

inflate more gradually. The aperture is circular and the apertural margin ends in a 555	  

thickened rim. The apex protrudes slightly. 556	  

 557	  

Remarks: The morphology of Limacina sp. C is very similar to species belonging to 558	  

the genus Heliconoides, in particular H. mermuysi as described by Cahuzac and 559	  

Janssen (2010) exclusively from Moulin de Cabanes. However, the morphology is 560	  

also similar to larval shells of the Architectonicidae. The specimens are all in good 561	  

condition and are unlikely to be the result of sediment reworking. Fifteen specimens 562	  

were collected in total from the >500 µm fraction throughout CAR-MON 2 and from 563	  

the >500 µm and 150–500 µm of Hole 716B. The youngest specimen was collected 564	  

at 10 cm core depth in CAR-MON 2, which is approximately 4 kyr.  565	  

 566	  

Distribution: During this study, Limacina sp. C was found in the Caribbean Sea and 567	  

in the Indian Ocean and showed no temperature preference through the cores. 568	  

 569	  

Atlanta sp. D 570	  

Plate 4, Figure 11a–b. 571	  

 572	  

Diagnosis: A relatively large, highly spired, conical shell, with up to four whorls. The 573	  

whorls are flat-topped at the sutures, giving a step shape in side-on profile. The 574	  

umbilicus is large and open.  575	  

 576	  

Remarks: This species is similar in form to Atlanta inclinata but has flat-topped 577	  

whorls. Specimens found are assumed to be juvenile forms as no specimens with a 578	  

large final whorl, typical of the Atlantidae, were found. Thirteen specimens were 579	  

collected from the 150–500 µm fraction and six from the >500 µm fraction of CAR-580	  

MON 2. The most recent specimen was found at 40 cm core depth, which equates to 581	  

around 17 kyr. 582	  

 583	  

Distribution: Atlanta sp. D was only found in the Caribbean Sea during this study. 584	  

This species appears to have a preference for warm climates, all specimens except 585	  

three (150–500 µm: 570 and 575 cm; >500 µm: 60 cm) were found during interglacial 586	  

periods. 587	  

 588	  

Extended geographical range of heteropods 589	  

 590	  
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Down-core distributions of heteropods suggest that their environmental requirements 591	  

are much broader than previously thought. All species of heteropods in the modern 592	  

oceans are assumed to be restricted to sub-tropical warm waters (Thiriot-Quiévreux, 593	  

1973; Van der Spoel 1976). However, this study shows that, during cold, glacial 594	  

periods in the Mediterranean Sea, up to 29% of the holoplanktonic gastropod 595	  

assemblage was made up of heteropods. This indicates that extant species of 596	  

heteropod are able to live in cold sub-polar water. This finding has implications for 597	  

future research, particularly regarding ocean acidification in the modern oceans, 598	  

which is predicted to affect aragonitic shelled gastropods in polar and sub-polar 599	  

waters as soon as 2016 (Steinacher et al., 2009). 600	  

 601	  

Results also highlight the importance of heteropods to the ocean food web. 602	  

Heteropods are not well studied and poor sampling techniques have led to an 603	  

underestimation of their numbers in our oceans. Heteropods have large eyes and the 604	  

ability to swim (Lalli and Gilmer, 1989), which allows them to avoid collection in 605	  

plankton nets (Seapy, 1990). The results of this study show that heteropod shells 606	  

often make up a large proportion of the holoplanktonic gastropod assemblage of 607	  

sediments (up to 32% in the Caribbean Sea and Indian Ocean and up to 69% in the 608	  

Mediterranean Sea), which suggests that they are an important component of the 609	  

ocean food web.  610	  

 611	  

CONCLUSIONS 612	  

 613	  

The results of this study provide new information on the distribution, taxonomy and 614	  

ecology of holoplanktonic gastropods and planktonic foraminifera through the Late 615	  

Pleistocene. In all cores analysed, comparison of core top sediments to modern-day 616	  

overlying waters, suggests that microfossils present within the sediments are 617	  

representative of the species richness and relative abundances of the overlying 618	  

waters at the time of deposition. These data provide the first information on both 619	  

fossil and modern heteropods in the Caribbean Sea, as well as providing an 620	  

extended and enhanced distribution of holoplanktonic gastropods and planktonic 621	  

foraminifera in the Mediterranean Sea and Indian Ocean. The success of using 622	  

holoplanktonic gastropods in biostratigraphy was found to be variable and generally 623	  

only of use in locations that had experienced considerable changes in temperature 624	  

over time. However, their application to paleoenvironmental reconstructions was 625	  

found to be consistently valuable, often improving upon the use of planktonic 626	  

foraminifera to calculate a range of temperature. More research into the first and last 627	  
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occurrences of a long holoplanktonic gastropod record would greatly improve their 628	  

use in biostratigraphy. 629	  

 630	  

The revelation that heteropods have a wider geographical range and make up a 631	  

larger proportion of the ocean food web, as well as the discovery of potential new 632	  

species and a pteropod species only recognised from the Miocene, highlights the 633	  

surprisingly poor understanding that we still have of holoplanktonic gastropod 634	  

ecology and taxonomy. Much further research is required in this field and would be 635	  

timely, since the threat from climate change and ocean acidification in the modern 636	  

oceans, means that some species may become extinct before they have even been 637	  

fully ‘discovered’. 638	  

 639	  
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 917	  

 918	  
 919	  

Figure 1. Location of core sites: CAR-MON 2 south-west of Montserrat in the Lesser 920	  

Antilles island arc, eastern Caribbean Sea; B5-1 south-east of Mallorca in the 921	  

western Mediterranean Sea; ODP Site 716, Hole B on the Chagos-Laccadive Ridge, 922	  

amongst the Maldives Islands in the Indian Ocean. 923	  

 924	  
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 925	  
 926	  

Figure 2. CAR-MON 2 Lithology, Oxygen isotope ratios and Marine Isotope Stages, 927	  

species assemblages, abundances by weight and species richness. Bubble areas 928	  

represent percentages, calculated separately for gastropods and planktonic 929	  

foraminifera. Dates from Le Friant et al. (2008). 930	  
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 931	  
Figure 3. B5-1 Lithology, Oxygen isotope ratios and Marine Isotope Stages, species 932	  

assemblages, abundances by weight and species richness. Bubble areas represent 933	  

percentages, calculated separately for gastropods and planktonic foraminifera. Dates 934	  

from biozonation and isotope stratigraphy. 935	  

 936	  

 937	  
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 938	  
Figure 4. Stratigraphy of B5-1 with bio-events of Pujol and Vergnaud-Grazzini (1989) 939	  

and Pérez-Folgado et al. (2003) identified within B5-1 planktonic foraminifera data. 940	  

Oxygen isotope stratigraphy of B5-1 and comparison of the marine oxygen isotope 941	  

records for B5-1, SL 87 (Weldeab et al., 2003), approximatey 60 km south east of 942	  

B5-1, and the LR04 benthic stack (Lisiecki and Raymo, 2005). 943	  

 944	  
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 945	  
Figure 5. Hole 716B Lithology, Oxygen isotope ratios and Marine Isotope Stages, 946	  

species assemblages, abundances by weight and species richness. Bubble areas 947	  

represent percentages, calculated separately for gastropods and planktonic 948	  

foraminifera. Dates from isotope stratigraphy (Backman et al., 1988). 949	  

 950	  
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 951	  
Figure 6. Cluster analysis of B5-1 samples performed using the Paleontological 952	  

Statistics package (PAST). Abundances of pteropods, heteropods and planktonic 953	  

foraminifera show two defined groups with similar assemblages, preferring either 954	  

warm or cold water. 955	  
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 956	  
 957	  

Figure 7. Specimens of Heliconoides inflatus 1a) and b) from Hole 716B (15–16 cm, 958	  

150–500 µm) have a protruding protoconch; 2a) and b) from B5-1 (0–1 cm, >500 µm) 959	  

have a depressed protoconch.  960	  

 961	  
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 962	  

 963	  

 964	  
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PLATE 1. FAMILY LIMACINIDAE AND PERACLIDIDAE. All scale bars 965	  

represent 100 µm, except where stated otherwise. 1. Heliconoides inflatus 966	  

a) apertural view (CAR-MON 2, 70 cm); b) apical (CAR-MON 2, 70 cm); c) 967	  

apical view (716B, 15 cm). 2. Limacina sp. C a) apical view (CAR-MON 2, 45 968	  

cm) 3. Limacina bulimoides a) apertural view (CAR-MON 2, 80 cm); b) 969	  

apical view (CAR-MON 2, 70 cm); c) larval shell (B5-1, 20 cm); d) larval shell 970	  

surface (B5-1, 20 cm). 4. Limacina trochiformis a) apertural view (CAR-971	  

MON 2, 70 cm); b) apical view (CAR-MON 2, 70 cm); c) larval shell (B5-1, 0 972	  

cm); d) larval shell surface (B5-1, 0 cm). 5. Limacina lesueurii a) apertural 973	  

view (CAR-MON 2, 30 cm); b) apical view (CAR-MON 2, 30 cm). 6. Limacina 974	  

retroversa a) apertural view (B5-1, 210 cm); b) apical view (B5-1, 210 cm). 7. 975	  

Peracle moluccensis a) larval shell (CAR-MON 2, 365 cm); b) apertural view 976	  

(CAR-MON 2, 360 cm). 8. Peracle diversa a) apical view (CAR-MON 2, 350 977	  

cm); b) apertural view (CAR-MON 2, 70 cm); c) side view (CAR-MON 2, 75 978	  

cm). 979	  

 980	  

 981	  
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 982	  

 983	  

 984	  
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PLATE 2. FAMILY CAVOLINIIDAE. All scale bars represent 100 µm, except 985	  

where stated otherwise. 1. Creseis chierchiae a) adult shell (716B, 15 cm); 986	  

b) protoconch (716B, 15 cm). 2. Creseis virgula a) adult shell (CAR-MON 2, 987	  

70 cm); b) protoconch B5-1, 20 cm). 3. Creseis virgula adult shell (CAR-988	  

MON 2, 30 cm). 4. Creseis clava adult shell (CAR-MON 2, 70 cm). 5. 989	  

Hyalocylis striata (CAR-MON 2, 80 cm). 6. Clio pyramidata a) adult shell 990	  

(CAR-MON 2, 80 cm); b) protoconch (B5-1, 90 cm). 7. Clio convexa 991	  

protoconch (716B, 15 cm). 8. Clio cuspidata protoconch (B5-1, 20 cm). 9. 992	  

Styliola subula a) adult shell (CAR-MON 2, 80 cm); protoconch (CAR-MON 993	  

2, 80 cm). 10. Cavolinia inflexa a) protoconch (B5-1, 20 cm); b) protoconch 994	  

(CAR-MON 2, 80 cm); c) adult shell (CAR-MON 2, 80 cm). 11. Diacria 995	  

quadridentata a) adult shell, side view (CAR-MON 2, 70 cm); b) apertural 996	  

view (CAR-MON 2, 70 cm); c) protoconch (CAR-MON 2, 20 cm). 12. Diacria 997	  

trispinosa protoconch (CAR-MON 2, 0 cm). 998	  

 999	  

 1000	  



	   35	  

 1001	  

 1002	  

PLATE 3. FAMILY LIMACINIDAE AND CAVOLINIIDAE 1003	  

PHOTOMICROSCOPE IMAGES. 1. Limacina sp. C (CAR-MON 2, 50 cm): 1004	  

a) apical view; b) umbilical view; c) apertural view. 2. Diacavolinia 1005	  

longirostris (CAR-MON 2, 5 cm): a) ventral and apertural view; b) dorsal 1006	  

view. 3. Cuvierina columnella (CAR-MON 2, 310 cm) side view. 1007	  

 1008	  

 1009	  
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PLATE 4. FAMILY ATLANTIDAE JUVENILE FORMS. All scale bars 1011	  

represent 100 µm. 1. Atlanta helicinoidea a) apertural view (CAR-MON 2, 1012	  

520 cm); b) apical view (716B, 855 cm). 2. Atlanta selvagensis a) apertural 1013	  

view (716B, 75 cm); b) apical view (B5-1, 290 cm). 3. Atlanta plana apertural 1014	  

view (716B, 855 cm). 4. Atlanta frontieri a) apical view (716B, 775 cm); b) 1015	  

apical view (716B, 475 cm). 5. Atlanta turriculata a) apertural view (716B, 75 1016	  

cm); b) apertural view (716B, 75 cm). 6. Oxygyrus inflatus a) apertural view 1017	  

(716B, 75 cm); b) apical view (716B, 75 cm); c) apertural view (CAR-MON 2, 1018	  

90 cm). 7. Protatlanta souleyeti a) apical view (716B, 75 cm); b) apertural 1019	  

view (716B, 75 cm). 8. Atlanta rosea? apical view (B5-1, 150 cm). 9. Atlanta 1020	  

brunnea apertural view (CAR-MON 2, 350 cm). 10. Atlanta peronii? a) 1021	  

apical view (CAR-MON 2, 90 cm); b) apertural view (B5-1, 20 cm). 11. 1022	  

Atlanta tokioka? a) apical view (716B, 855 cm); b) apertural view (716B, 855 1023	  

cm). 12. Atlanta sp. D a) apical view (CAR-MON, 2 80 cm); b) apertural view 1024	  

(CAR-MON 2, 40 cm). 13. Atlanta tokioka a) apical view (CAR-MON 2, 520 1025	  

cm); b) apertural view (CAR-MON 2, 520 cm). 1026	  

 1027	  

 1028	  
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 1029	  

 1030	  

 1031	  
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PLATE 5. FAMILY ATLANTIDAE ADULT FORMS. All scale bars represent 1032	  

200 µm. 1. Atlanta helicinoidea a) apical view (CAR-MON 2, 75 cm); b) 1033	  

apertural view (CAR-MON 2, 75 cm). 2. Atlanta selvagensis a) apical view 1034	  

(CAR-MON 2, 75 cm); b) apertural view (CAR-MON 2, 75 cm). 3. Protatlanta 1035	  

souleyeti a) apical view (CAR-MON 2, cm); b) apertural view (CAR-MON 2, 1036	  

cm). 4. Protatlanta souleyeti a) apical view (CAR-MON 2, 75 cm); b) 1037	  

apertural view (CAR-MON 2, 75 cm). 5. Atlanta rosea? a) apical view (CAR-1038	  

MON 2, 70 cm); b) apertural view (CAR-MON 2, 75 cm); c) juvenile (B5-1, 150 1039	  

cm); d) juvenile (B5-1, 150 cm). 6. Atlanta turriculata a) apical view (CAR-1040	  

MON 2, 80 cm); b) apertural view (CAR-MON 2, 80 cm). 7. Atlanta tokioka? 1041	  

a) large specimen apical view (CAR-MON 2, 80 cm); b) apical view (CAR-1042	  

MON 2, 80 cm); c) juvenile apical view (CAR-MON 2, 520 cm); d) juvenile 1043	  

apertural view (CAR-MON 2, 520 cm). 1044	  

 1045	  

 1046	  
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 1047	  

PLATE 6. FAMILY CARINARIIDAE, CLIONIDAE AND CYMBULIIDAE. All 1048	  

scale bars represent 100 µm. 1. Carinaria lamarckii a) larval shell apical 1049	  

view (B5-1, 370 cm); b) umbilical view (B5-1, 370 cm). 2. Carinaria sp. larval 1050	  

shell (B5-1, 310 cm). 3. Carinaria sp. (galea?) larval shell (B5-1, 50 cm). 4. 1051	  

Carinaria pseudorugosa a) apical view (B5-1, 20 cm); b) apertural view (B5-1052	  

1, 20 cm). 5. Firoloida desmarestia a) adult shell apertural view (B5-1, 30 1053	  

cm); b) apical view (B5-1, 30 cm); c) juvenile shell (B5-1, 10 cm). 6. Gleba 1054	  

cordata a) and b) larval shell (B5-1, 240 cm). 7. Gymnosome veliger (B5-1, 1055	  

440 cm). 8. Paedoclione doliiformis larval shell (B5-1, 90 cm). 1056	  


