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ABSTRACT 
We used two atmospheric dispersion models (ADMS and AERMOD) to simulate the 
short-range dispersion of ammonia emitted by two pig farms to assess their 
suitability in situations with frequent calm meteorological conditions. Simulations 
were carried out both using constant and temporally-varying emission rates to 
evaluate the effect on the model predictions. Monthly and annual mean 
concentrations predicted by the models at locations within one kilometre of the farms 
were compared with measured values. AERMOD predicted higher concentrations 
than ADMS (by a factor of 6-7, on average) and predicted the atmospheric 
concentrations more accurately for both the monthly and annual simulations. The 
differences between the concentrations predicted by the two models were mainly the 
result of different calm wind speed thresholds used by the models. The use of 
temporally-varying emission rates improved the performance of both models for the 
monthly and annual simulations with respect to the constant emission simulations. A 
Monte Carlo uncertainty analysis based on the inputs judged to be the most uncertain 
for the selected case study estimated a prediction uncertainty of ± a factor of two for 
both models with most of this due to uncertainty in emission rates.  

Keywords: Ammonia emissions; Atmospheric dispersion modelling; Uncertainty 
analysis 

1. INTRODUCTION 
Ammonia (NH3) emitted into the atmosphere from agricultural sources can have an 
impact on nearby sensitive ecosystems either through elevated ambient 
concentrations or dry/wet deposition to vegetation and soil surfaces (Bobbink et al., 



1998). Evidence of impacts of elevated NH3 concentrations on vegetation has made 
it possible to define ‘critical levels’ for NH3 exposure. An annual critical level of 3 
µg m-3 (with an uncertainty range of 2-4 µg m-3) has been recommended for 
ecosystems containing higher plants only and a lower critical level of 1 µg m-3 for 
ecosystems containing lichens or bryophytes (Cape et al., 2009). Based on current 
evidence, impacts to these ecosystems may occur when the annual mean NH3 
concentration is above the critical level. Similarly, impact thresholds of long-term 
(e.g. 20-30 years) nitrogen deposition rates (critical loads) have also been developed 
for different ecosystem types (Achermann and Bobbink, 2003). 

In Europe, where NH3 is a regulated pollutant, potential impacts of agricultural 
emissions to nearby sensitive habitats are normally assessed using atmospheric 
dispersion models. Model predictions of annual mean atmospheric NH3 
concentrations and nitrogen deposition rates are used to determine whether the 
critical levels and critical loads, respectively, of nearby sensitive habitats are likely to 
be exceeded. Since dry deposition rates are calculated by the models from ground-
level concentrations using empirically-derived and uncertain deposition 
parameterisations, the deposition predictions are likely to be more uncertain than the 
concentration predictions (Environment Agency, 2010). For this reason, it may be 
preferable to base an environmental impact assessment on critical levels instead of 
critical loads. A range of different models are used for these assessments, with the 
choice of model depending on local expertise and model development programmes 
(Theobald et al., 2012). For example, in the United Kingdom, assessments are 
usually carried out using one of two advanced Gaussian dispersion models 
(Environment Agency, 2010): the Atmospheric Dispersion Modelling System 
(ADMS, Carruthers et al., 1994) or the AMS/EPA Regulatory Model (AERMOD, 
Cimorelli et al., 2002). These two models have been evaluated for a range of 
applications, including some agricultural case studies (Hill et al., 2001; Theobald et 
al., 2012) and, in general, perform acceptably when all model inputs (emissions 
rates, meteorological variables etc.) are known with sufficient accuracy.  

However, for environmental impact assessments, assumptions and approximations 
have to be made when model inputs are not known accurately. For example, for 
assessments of environmental impacts of livestock facilities, emission rates are often 
assumed to be constant and based on national or international emission factors for 
each livestock type. Furthermore, meteorological data are normally taken from the 
nearest ‘representative’ meteorological station, which can be many kilometres from 
the assessment site. In addition, it may be difficult to obtain complete meteorological 
records due to sensor downtime or calm periods. Advanced Gaussian dispersion 
models such as AERMOD and ADMS include routines to simulate periods with low 
wind speeds. AERMOD, for example, uses a combined solution of a coherent plume 
(traditional Gaussian shape) and a radially-symmetric plume to simulate dispersion 
for low wind speeds. The model interpolates between these two plumes, tending to 
the radially-symmetric plume at very low wind speeds (US EPA, 2003). A similar 
approach is also used in ADMS, when the non-default calms option is selected 
(CERC, 2007). However, the default versions of the models cannot simulate ‘calm’ 
periods when the wind speed in the meteorological data record is zero and so these 
periods are removed from the model calculations. These are periods when the actual 
wind speed is less than the anemometer stalling speed but not necessarily zero. This 
is problematic because high concentrations may occur during these periods as a 
result of low dispersion rates. This problem is more commonly encountered when 



routine meteorological data from network stations are used (often the case for impact 
assessments), which tend to use cup anemometers, compared with meteorological 
data from research-grade model evaluation studies that use more advanced 
measurement techniques (e.g. ultrasonic anemometers). AERMOD identifies a calm 
period when the wind speed is below a user-defined threshold based on anemometer 
stalling speeds whereas ADMS has a default wind speed threshold of 0.75 m s-1 at a 
height of 10 m when the calms option is not selected. 

UK modelling guidance (Defra, 2009) recommends that models can be used for 
predicting annual mean concentrations when valid non-calm meteorological data are 
available for more than 75% of the modelling period (provided that there are no gaps 
of several weeks). However, it may not be possible to meet this criterion in locations 
with frequent calm periods and so there is a need to evaluate model performance 
when this criterion cannot be met. 

As mentioned above, one of the assumptions frequently made in these assessments is 
that the emission rates are constant. However, emission rates of agricultural sources 
are not constant since they depend on many factors as a result of management 
practices and environmental conditions. The assumption of constant emissions may, 
therefore, affect the annual mean concentrations predicted by the models, although 
this has not been tested.  

In this paper we simulate the atmospheric dispersion of NH3 emitted by a Spanish 
pig farm with two advanced Gaussian dispersion models: ADMS and AERMOD. 
This case study was chosen because the pig farm is located in a region with frequent 
calm winds and so is a good candidate to test the suitability of these two models for 
these meteorological conditions. This is done by statistically comparing monthly and 
annual mean NH3 concentrations predicted by the models with those measured at 
multiple locations up to one km from the farm. Many of the model inputs are 
uncertain (emission rates, exit velocities, meteorological variables, etc.), as in many 
real impact assessments and so an uncertainty analysis has been done to assess the 
influence of these uncertainties on the models’ predictions. We also test an emission 
model that better represents the temporal variability of the pig farm emissions. The 
objectives of this study were, therefore: 

1. To assess the suitability of the two dispersion models ADMS and AERMOD for 
an agricultural case study with frequent low-wind conditions;  

2. To quantify the uncertainty of model predictions due to uncertainties in input 
data; 

3. To assess the effect on the concentration predictions of using an emissions 
model to simulate the hourly variability of emissions. 

 

2. MATERIALS AND METHODS 
2.1.  Experimental site 

A one year field experiment was carried out in the vicinity of a pig farm (Farm 1 in 
Figure 1) in the region of Segovia, central Spain. The farm is a pig breeding unit with 
a fairly constant number of sows (565 animals, on average) with piglets up to 20 kg 
(1092 animals). The unit consists of three main buildings: the adaptation building for 
new sows (105 animals) (A in Figure 1), the gestation building (370 animals) (B) and 
the birthing building (90 sows and 1092 piglets) (C). The buildings have fully-slatted 
floors with slurry pumped frequently to an outdoor lagoon (D). Slurry is removed 



periodically for application to nearby arable fields, although no information is 
available on where and when the slurry is applied. All buildings of the farm are 
mechanically ventilated with wall inlets. The adaptation building has four wall 
ventilation outlets, whilst the gestation and birthing buildings have roof outlets 
(Figure 1). Approximately 1.2 km NW of the unit is another similar unit (Farm 2) 
with an average of 240 breeding sows in three buildings and an outdoor slurry 
lagoon. All buildings of this farm have roof ventilation outlets. The area is very flat 
and the land use around the two farms is arable fields (cereals and sunflowers) with 
some set-aside and woodland. Detailed management data for the arable fields (e.g. 
crops grown and fertiliser applications) are not available. There is also a small 
infrequently used road that passes through the experimental area. 

Figure 1: Plan showing land cover, the location of the two farms and the measurement 
locations within the experimental area.  The dotted lines indicate the six radial 
directions used for the measurements. The insets on the right show the locations of the 
buildings, slurry lagoons and ventilation points (small circles) of the two farms. 

 

2.2.  Ammonia emission estimates 
Ammonia emission data are not available for Farm 1 or Farm 2 and, therefore, 
emission estimates were taken from the emission inventory guidebook produced 
jointly by the European Monitoring and Evaluation Programme (EMEP) and the 
European Environment Agency (EEA) (EEA, 2009). The emissions were calculated 
using the Tier 2 mass flow approach using standard values of nitrogen excretion and 
emission factors for each stage of the manure management process. The housing 
emission calculated this way was 6.45 kg NH3 per sow (including piglets) per year 
and the slurry lagoon emission was 3.38 kg NH3 per sow per year.  



The use of constant annual emission factors is not ideal because temporal variations 
will occur due to changes in ambient conditions, especially for the slurry lagoons, 
which are exposed to large diurnal and seasonal changes in meteorological 
conditions. In order to take these variations into account, an emissions model was 
used (Gyldenkærne et al., 2005). The model distributes the annual emissions of each 
source using the ambient air temperature and either the wind speed or ventilation 
rate, for slurry lagoons and animal houses, respectively, whilst maintaining the 
annual emission factor. A description of the emission model is included as 
Supplementary Material.  

2.3. Ammonia concentration measurements 
An array of 21 passive samplers (Figure 1) was used to measure monthly mean 
atmospheric NH3 concentrations over the period mid May 2008-mid May 2009. At 
each location, triplicate passive (ALPHA) samplers (Tang et al. 2001) were exposed 
beneath a white plastic rain shelter at a height of 1.5 m above ground for 12 
consecutive periods of approximately one month (sample periods of 26-35 days). 
These samplers work on the principal of diffusion of atmospheric NH3 over a short 
distance (7 mm) down a short plastic tube to an absorbing medium (acid-coated 
filter) during the exposure period. Turbulent transport of NH3 into the sampler is 
minimized through the use of a PTFE membrane at the sampler entrance. Sampler 
preparation was according to Tang et al. (2001) except phosphoric acid was used as 
the filter-coating medium instead of citric acid due to its better stability at high air 
temperatures. Following exposure in the field, the acid-coated filters were each 
extracted in 3 ml of deionised water and 2 ml of the extract was analysed for 
ammonium using the indophenol blue method (Searle, 1984) and spectrophotometry. 
Samples below the detection limit (defined as 3 standard deviations of the laboratory 
blank samples) and sample outliers were removed from all subsequent analyses. 
Background concentrations for each sampling period were estimated to be the 
concentration measured at the site with the lowest concentration during the sampling 
period. The background concentration was then subtracted from the concentrations 
measured at the other sampling locations for each period.  

2.4.  Meteorological data 
Measurements of wind speed and wind direction (at heights of 0.51, 1.17 and 2.74 m 
above ground) and air temperature (0.51 and 2.74 m) were made on a mast located 
80 m NE of the birthing building of Farm 1 (Site 1 in Figure 1). This location was 
probably not out of the region of influence of the farm buildings, since building 
wakes can extend up to 10-20 building heights downwind (Arya, 2001), whereas the 
mast was only 14 building heights from the main building, but this was the furthest 
secure location available. The measurements were made by three weather stations 
(Davis Weather Wizard III) (one for each measurement height) and hourly data were 
stored on the internal dataloggers.  

2.5.  Model simulations 
The atmospheric dispersion models AERMOD (version 12345) and ADMS 4.1 were 
used to predict the monthly and annual mean atmospheric NH3 concentrations, 
resulting from the NH3 emissions of both farms, at the 21 measurement locations. 
Model simulations were carried out for both the constant emission scenario and for 
the scenario using the time-varying emission model. More details of the model 
configurations are provided in the Appendix. 



2.6.  Uncertainty analysis 
In order to evaluate the uncertainty of model predictions due to the uncertainty in the 
model inputs, a Monte Carlo analysis was carried out for the inputs that we judged to 
be the most uncertain and/or most influential. The five inputs selected were: emission 
rates, exit velocity, aerodynamic roughness length (z0), cloud cover and boundary 
layer height. These inputs were not measured directly and so the emission rates, exit 
velocities and z0 had to be estimated, cloud cover was taken from a weather station 
more than 30 km away and boundary layer heights were taken from the output of a 
numerical weather prediction model (see Appendix). We considered that these five 
inputs were more uncertain than directly-measured model inputs such as source 
heights and diameters, building dimensions, wind speed, wind direction, air 
temperature, etc.  

Values for the selected inputs were chosen randomly following a midpoint latin 
hypercube design (Iman and Helton, 1988), in order to ensure the selection of values 
representative of the entire probability distributions (Table 1) and to reduce the 
number of required simulations (compared with a standard Monte Carlo design). No 
correlations were assumed between the selected inputs.  

Table 1: Model input variables and their distributions used in the uncertainty analysis 

Input Distribution 
type 

Most probable value  95% Confidence 
Interval a 

Emission rate Lognormal EMEP/EEA emission factor ± factor 2 b 
Exit velocity Normal Calculated from recommended building 

flow rates (see Appendix) 
± 35% 

Roughness length Lognormal 0.05 m ± factor 3 c 
Cloud cover Normal Observed value ± 40% d 
Boundary layer 
height 

Lognormal WRF v3.1.1 prediction ± factor 2 

 

a Hourly values of cloud cover and boundary layer height were a combination of variations in the 
annual mean and hourly fluctuations, both with the same probability distributions (Hanna et al., 2007) 

b EEA (2009) 

c Hanna et al. (2007) 

d Twice the value used by Hanna (2007) due to the distance between measurement location and 
modelling domain (34 km) 

In order to assess the minimum number of simulations necessary for a robust 
uncertainty estimate, analyses were carried out for increasing numbers of model 
simulations until the uncertainty range of the model predictions stabilised. 
Stabilisation in this case was defined as a change of less than 10% in the annual 
mean concentrations and their respective standard deviations when the number of 
simulations was doubled. From this the optimum number of simulations was 
estimated to be 100. 

2.7.  Model performance evaluation 
Model performance was evaluated from the measured and predicted monthly and 
annual mean NH3 concentrations using the acceptability criteria of Chang and Hanna 
(2004) shown in Table 2. Performance measure values were calculated for all model 
simulations and compared with the acceptability criteria. Recent work on model 



performance evaluation by Hanna and Chang (2012) has recognised that, due to 
stochastic and turbulent processes, even an acceptable model may not meet all 
acceptability criteria for all experiments. As a result, they propose that an acceptable 
model is one that meets the criteria for at least half of the performance tests. 
However, it must be borne in mind that these acceptability criteria were developed 
for assessing model performance in short-term research-grade evaluations where 
emission rates, source parameters and required meteorological variables are 
measured with sufficient accuracy. The criteria may be excessively strict for case 
studies such as that presented here, where many model inputs have to be estimated, 
although ADMS and AERMOD have been shown to meet the criteria for similar case 
studies for averaging times of several months (Theobald et al., 2012). 

Table 2: Definitions of the performance measures used and their relationships to the 
observed (Co) and predicted concentrations (Cp). 

Performance measure Definition Optimum value Acceptability Criterion 

Fractional bias (FB) 
)(
)(2

po

po

CC
CC

FB
+

−
=  0 |FB| < 0.3 

Geometric Mean Bias 
(MG) ( )po CCMG lnlnexp −=  1 0.7 < MG < 1.3 

Normalised mean 
square error (NMSE) 

( )
po

po

CC
CC

NMSE
2−

=  0 NMSE < 1.5 

Geometric variance 
(VG) ( )[ ]2lnlnexp po CCVG −=  1 VG < 4 

Fraction of model predictions within a factor of two 
of the observations (FAC2) 1 FAC2 > 0.5 

 
2.8.  Statistical analyses 

To estimate the contribution of each input used in the uncertainty analysis to the 
model output uncertainty an analysis of relative importance was carried out using the 
“relaimpo” package of R (Grömping, 2006; R Development Core Team, 2008), 
which partitions the value of R2 between the input variables in linear regression 
models following Lindemann et al. (1980). 

3. RESULTS 
3.1.  Meteorological data 

Figure 2 shows the mean air temperatures and wind speeds (measured at a height of 
2.74 m) for the monthly ALPHA sampler measurement periods and wind frequency 
rose for the entire experimental period. Mean air temperatures had a large seasonal 
range of 1-23 °C. Mean wind speeds on the other hand were fairly constant 
throughout the year with no clear seasonal trends other than increased variability 
during winter. Zero wind speeds occurred during the monthly measurement periods 
9-42% of the period and wind speeds below 0.5 m s-1 (including zero) occurred 17-
68% of the period. For the entire experimental period, wind speeds were zero or 
below 0.5 m s-1 for 24% and 37% of the time, respectively. Winds during the entire 
experimental period mainly came from the north or the south to west sector.   



Figure 2: Mean air temperature and wind speed for each ALPHA sampler 
measurement period (left) and wind frequency rose for the entire experimental period 
(right) plotted using WRPLOT v7.0 (Lakes Environmental Software). 

3.2.  Ammonia concentration measurements 
Figure 3 shows the annual mean atmospheric NH3 concentrations for the 21 ALPHA 
sampler locations. An analysis of the monthly variability shows that at most sites 
concentrations peak in July-August and March-April. The summer peak is most 
likely due to a combination of nearby field-application of fertilisers (observed during 
field visits) and high in-house and/or slurry lagoon temperatures at the two pig farms. 
In fact the concentration at Site 1 (one of the nearest sites to Farm 1) is well-
correlated with the mean air temperature (linear regression: R2=0.83). The smaller 
spring peak in concentrations (March-April) is not correlated with air temperature 
and is probably due to slurry handling operations and the field-application of 
fertilisers to nearby fields.  

 

Figure 3: Annual mean atmospheric NH3 concentrations measured by the ALPHA 
samplers. The numbers indicate the sample number. 



 

3.3.  Emission model estimates 
The emission model predicted smaller temporal variability in emissions from the pig 
houses than from the slurry lagoon due to the smaller air temperature range inside the 
pig houses (Figure 4). The outdoor slurry lagoon emissions have a large diurnal 
variability because of the difference between night-time and day-time temperatures 
and also because of the calm night-time conditions, when the model predicts zero 
emissions. 

 

 

Figure 4: Daily means (solid lines) and daily range (shading) of a) measured air 
temperature and modelled NH3 emissions from b) the pig houses and c) the slurry 
lagoon for Farm 1 calculated using the hourly emission model. 

 

3.4.  Modelled concentration predictions 
Figure 5a shows the predicted versus measured monthly mean NH3 concentrations 
for all sites for the constant emission scenario. The values plotted are the geometric 



means of the log-normally distributed concentrations of the 100 uncertainty analysis 
runs. In general, ADMS predicted lower concentrations than AERMOD for all sites 
by a factor of 1.3 to 41 (mean value: 6.8). For the analysis of annual mean 
concentrations, only those sites with valid measurement data for more than three 
quarters of the experimental period were used (sites 1-13, 19 and 20). Similarly to 
the monthly simulations, AERMOD predicted higher annual mean concentrations 
than ADMS by a factor of 2.0 to 12.4 (mean value: 5.9) (Figure 5b). The use of time-
varying emissions in the simulations increased ADMS concentration predictions by 
16% and 12%, on average, and decreased AERMOD concentration predictions by 
20% and 28%, on average, for the monthly and annual simulations, respectively 
(Figure 6). The prediction uncertainty (ninety-five percent confidence intervals of the 
100 uncertainty analysis runs) for both the monthly and annual simulations was 
approximately ± a factor of two for all sites and measurement periods. 

 

Figure 5: Modelled versus measured a) monthly and b) annual mean NH3 
concentrations for the constant emission simulations.  Each point represents the mean 
measured and modelled value for 100 model runs.  Error bars show ±2 standard 
deviations of predicted concentrations and ±2 standard errors of the measured values.  
The dashed line shows the 1:1 line and the dotted lines show the limits for predictions 
within a factor of two of the measured values. 

 



 

Figure 6: Box plot showing the effect of using time-varying emissions (relative to the 
constant emission scenario) on the monthly and annual mean predicted concentrations.  
The boxes show the median value and interquartile range, the whiskers are the 10th and 
90th percentiles and the circles are the 5th and 95th percentiles of the distributions. 

 

An analysis of the contribution of each selected input to the overall uncertainty of the 
annual model predictions shows that three of the five inputs (emission rate, z0 and 
exit velocity) contributed more than 90% of the variance of the model output. Less 
than 10% of the uncertainty at all sites was not accounted for (e.g. due to non-linear 
interactions). The largest contribution to model uncertainty was the source emission 
rate, which contributed 77-99% of the prediction uncertainty and when averaged 
over all sites contributed 96% and 87% of the uncertainty for ADMS and AERMOD, 
respectively. These contributions were similar for both the constant and the varying 
emission scenarios.  

 

3.5.  Model performance evaluation 
For the modelled and measured monthly mean concentrations shown in Figure 5a, 60 
performance measure values were calculated for each model (12 measurement 
periods × 5 performance measures) (data not shown). For the constant emission 
scenario, ADMS met 15 (25%) of the Chang and Hanna (2004) acceptability criteria 
whereas AERMOD met 24 (40%). On the other hand, the correlation (R) between 
modelled and measured mean concentrations was up to 34% higher for ADMS for 10 
of the 12 measurement periods, suggesting that this model better represents the 
spatial variability of the concentrations (data not shown). The use of time-varying 
emissions improved the performance of both models with ADMS meeting 19 (32%) 
and AERMOD meeting 34 (57%) of the acceptability criteria.  

For the annual simulations AERMOD also met more of the acceptability criteria than 
ADMS for both the constant and time-varying emission scenarios (Table 3). The 
poorer performance of ADMS for both scenarios was due to under-prediction of 



concentrations. Similarly to the annual simulations, the correlation (R) between 
modelled and measured annual mean concentrations was up to 9% higher for ADMS 
(data not shown). Again, the use of time-varying emissions improved the 
performance of both models with respect to the constant emission scenario. 

Table 3: Performance measure values for the annual mean concentrations predicted by 
ADMS and AERMOD for the constant and varying emission scenarios. (Shaded values 
indicate ‘acceptable’ model performance according to Chang and Hanna (2004).) 

 Constant emissions Varying emissions 
ADMS AERMOD ADMS AERMOD 

FB 0.77 -0.30 0.68 -0.01 
MG 4.0 0.79 3.6 1.1 
NMSE 1.2 0.43 0.98 0.29 
VG 19 1.6 14 1.6 
FAC2 0.40 0.53 0.40 0.67 
 

4. DISCUSSION 
4.1.  Differences between the models 

AERMOD predicted higher concentrations than ADMS both for monthly and annual 
averaging periods mainly as a result of how the model handles low wind speed 
conditions. AERMOD uses an estimate of the anemometer threshold to identify calm 
conditions (0.3 m s-1 for this experiment) that is lower than the default threshold in 
ADMS (0.75 m s-1 at a height of 10 m; equivalent to approximately 0.6 m s-1 under 
neutral conditions for the measurement height used here). This means that AERMOD 
modelled up to 60% more low wind speed periods (< 1 m s-1) than ADMS and since 
low wind speeds are generally associated with high near-source concentrations, 
AERMOD predicted higher mean concentrations than ADMS. This can be 
demonstrated by re-running one of the AERMOD simulations with a similar 
threshold to that used in ADMS.  Changing the threshold in this way reduces annual 
mean concentrations by 45-80% at all sites and instead of meeting all acceptability 
criteria, only one (NMSE) is met (data not shown). The performance of AERMOD 
with the higher threshold, therefore, is comparable to that of ADMS, although the 
concentrations predicted by AERMOD were still, on average, more than twice those 
predicted by ADMS. This difference could be the result of the more stable conditions 
estimated by ADMS and different plume-rise parameterisations (Theobald et al., 
2012). 

Although with a threshold of 0.3 ms-1 AERMOD identifies fewer calm periods than 
ADMS, there were still a substantial number of hours in the annual simulations 
(24%) that were not modelled when the wind speed was below this threshold. Since, 
high near-source concentrations would be expected for these periods, it might be 
expected that their omission would lead to an underestimate of mean concentrations, 
which does not seem to be the case for these data. Paine et al. (2010) have shown 
that AERMOD can overestimate concentrations for low wind speeds due to an 
underestimation of friction velocity for stable low wind conditions, especially for 
low-level sources. Several solutions have been proposed to correct this 
overestimation of concentrations (Paine et al., 2010; Qian and Venkatram, 2011). It 
is possible, therefore, that this overestimation during low wind periods is 
compensated by not modelling calm periods, resulting in concentration predictions 
that meet the acceptability criteria for model performance.  



4.2.  Effect of using varying emissions 
The use of the emissions model in the simulations effectively increased emissions for 
warm or windy periods (e.g. day-time, summer) and decreased emissions for cooler, 
calmer periods (e.g. night-time, winter), when compared with the constant emission 
scenario. Therefore there was a temporal redistribution of emissions although the 
total annual emissions were unchanged. This effect was stronger for the slurry 
lagoons since they are influenced more by the ambient conditions than the livestock 
houses. This temporal redistribution of emissions increased the ADMS concentration 
predictions by 14%, on average, because some of the emissions during calm periods 
(which were not modelled) were shifted to non-calm periods. This shift increased 
lagoon emissions for the modelled periods by an average of more than 50%, hence 
increasing the contribution of the lagoon emissions to the overall concentrations. By 
contrast, the use of the emissions model decreased the AERMOD concentration 
predictions, on average. Similarly to the ADMS simulations, lagoon emissions 
during periods with wind speeds above the model threshold increased by nearly 40%, 
but more importantly lagoon emissions for periods with the lowest modelled wind 
speeds (< 0.5 ms-1) decreased by about 40%. Since these low wind speed periods 
make a large contribution to mean concentrations, possibly as a result of 
overestimating concentrations during these periods, the overall result is a decrease in 
the predicted mean concentrations.  

4.3.  Model uncertainty 
For both the monthly and annual averaging periods, the 95% confidence intervals of 
the model predictions were ± a factor of two of the geometric mean concentrations 
for ADMS and AERMOD, respectively, mainly as a result of uncertainty in 
emissions. This is maybe not surprising due to the linear relationship between 
emissions and concentrations in the models and the large uncertainty in the NH3 
emission factors used. Hanna et al. (2007) also found that the emission rate was the 
largest contributor to model uncertainty when AERMOD was used to simulate the 
dispersion of air pollutants in the Houston Ship Channel area. Bergin et al. (1999) 
and Hanna et al. (1998) also identified emission rates as contributing most to model 
uncertainty for photochemical models, reflecting a widespread uncertainty in 
emission data.  

The five inputs selected for the uncertainty analysis were those judged a-priori to be 
the most uncertain or to have the largest influence on model prediction uncertainty. 
However, all model inputs are uncertain to some degree and could contribute 
additional uncertainty although directly measured variables (such as source heights, 
wind speeds, wind directions etc.) would be expected to contribute less uncertainty 
than estimated variables (such as emission rates, exit velocities, boundary layer 
heights etc.). Uncertainty in estimated values of model parameters such as the albedo 
and the Bowen ratio, will also contribute although AERMOD, for example does not 
seem to be particularly sensitive to these parameters over small uncertainty ranges 
(Faulkner, 2008). Concentration predictions will also be influenced by the deposition 
parameterisation, although Theobald et al. (2012) showed that removing the dry 
deposition entirely changed concentrations by less than 10% for distances up to one 
km from the source for a similar case study. Neglecting emissions from other sources 
of NH3 within the domain, such as fertiliser application, will also add uncertainty to 
the concentration predictions although this is more important for the monthly than 
for the annual simulations. However, subtracting the estimated background 
concentrations and removing outliers should reduce their influence on the measured 



values. The assumption of the background concentration being the lowest measured 
value can also add to the uncertainty in the measured concentrations, although it is 
the best approach available when dealing with long averaging periods. This 
assumption is most likely to lead to an overestimate of the background concentration 
since the method assumes that none of the NH3 measured at the background site 
came from the emissions of the two farms, which is unlikely for monthly averaging 
periods. This uncertainty is therefore unlikely to lead to an under-prediction of 
monthly or annual concentrations. 

 

4.4.  Model suitability for impact assessments 
Based on the model performance assessment presented here, AERMOD performed 
better than ADMS for both the monthly and annual simulations, for this case study. 
However, it is not possible to assess the suitability of the models using this 
performance assessment, since the acceptability criteria used were designed for 
model evaluation using research-grade experimental data, not field data with a high 
degree of uncertainty, such as those used here.  

Another way to assess the suitability of the models for impact assessments is to 
compare the number of sites where the annual critical level of 3 μg m-3 is exceeded 
(calculated from the measurements) with the model predictions. Measured annual 
mean concentrations exceeded the critical level at 11 of the 15 measurement sites 
used in the analyses (taking into account measurement uncertainty). For the scenarios 
with constant emissions, ADMS predicted exceedance at six of these eleven sites 
(including prediction uncertainty) and AERMOD predicted exceedance at ten. For 
the scenarios using the emissions model, ADMS and AERMOD predicted 
exceedance at six and nine sites, respectively. Again, this indicates that AERMOD 
performs better than ADMS for this case study. 

However, model performance is not only due to model formulation but also depends 
on the quality of the input data. Model performance in impact assessments could be 
improved through the use of data with a lower threshold wind speed, e.g. from 
measurements made using ultra-sonic anemometers, in order to reduce the number of 
data records with zero wind speed. Routine meteorological measurement networks 
are starting to use this kind of technology, which has the potential to improve model 
performance by providing higher quality input data. 

 

5. CONCLUSIONS 
• For this case study, AERMOD predicted higher monthly and annual mean 

atmospheric NH3 concentrations than ADMS (by an average factor of 6.8 and 
5.9, respectively), mainly as a result of the different calm wind speed 
thresholds used in the models; 

• The 95% confidence interval of the model prediction uncertainty due to 
uncertainty in model inputs was estimated to be ± a factor of two for ADMS 
and AERMOD, respectively, as a result of a factor of two uncertainty in the 
emission factors used; 

• The use of temporally-varying emission rates improved the performance of 
both models by increasing the concentration predictions of ADMS and 
decreasing those of AERMOD; 



• Based on established performance measures, AERMOD performed better 
than ADMS, for this case study; 

• These results indicate that AERMOD may be more suited to situations with 
frequent calm periods, although additional model options for simulating low 
wind speed periods and improvements in meteorological data quality have the 
potential to improve the performance of both models. 
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APPENDIX: Dispersion model configurations 
 

A1.  Emission source data 

The location of the ventilation outlets of the pig houses were taken from aerial 
photographs and their emissions were modelled as elevated point sources with a 
diameter of 0.5 m.  The source height was assumed to be 0.5 m above the building 
height to simulate the effect of the roof chimney.  No data were available for the 
vertical exit velocities of the emissions and so values were calculated from 
recommended livestock building flow rates (Seedorf et al., 1998). The mean value 
(and standard deviation) of the recommendations for sows with piglets is 196 (34) m-

3 h-1 sow-1. For the simulations with time-varying emissions, the modelled exit 
velocity was scaled by the exit velocity parameter (V) in the emissions model. The 
modelled sources were assumed to emit at a constant temperature of 22 °C (the mean 
internal house temperature for Farm 1) for the constant emission simulations and the 
in-house temperature predicted by the emissions model for the simulations with time-
varying emissions.  The slurry lagoons were modelled as area sources at ambient 
temperature with no vertical exit velocity and no building effects, since this feature is 
not available for area sources in the models. Emissions from the application of 
organic or mineral fertilisers were not modelled due to insufficient data on the 
location and timing of these emissions. 

A2.  Buildings 

Buildings were modelled as cuboids with a height equal to the average of the 
building wall and apex heights (range: 3.9-4.8 m; measured for Farm 1 and estimated 
for Farm 2).  The buildings modules of ADMS and AERMOD were used to take into 
the account the effect of all buildings of Farms 1 and 2 on the atmospheric dispersion 
of the building emissions.   

A3.  Meteorological data 

Minimum meteorological data requirements for the AERMOD pre-processor 
(AERMET) are wind speed, wind direction, air temperature, cloud cover and an 
estimate of the boundary layer height (e.g. from a radiosonde sounding).  No on-site 
data were available for could cover and boundary layer height and so data were taken 
from the nearest meteorological station with available data (Segovia, 34 km from the 
site) and from simulations of the numerical weather prediction model WRF (version 
3.1.1), respectively.  NCEP/NCAR GFS data were used to initialise the WRF model, 
as described in Vieno et al. (2010). 

Minimum meteorological data requirements for ADMS 4.1 are wind speed, wind 
direction and a way to estimate atmospheric stability (one of either the reciprocal of 
the Monin-Obukhov length (L), surface sensible heat flux or cloud cover).  Segovia 
cloud cover data were used for the calculation of atmospheric stability.  The WRF 
boundary layer height estimation was also included to be consistent with the 
AERMOD simulations. The ADMS ‘calms’ option was also tested but the 
simulations produced an internal error and did not finish correctly.   

 

 



A4.  Aerodynamic roughness length and dry deposition parameterisations 

Both models also need an estimate of the mean aerodynamic roughness length (z0) 
for the simulation domain.  This was estimated from the wind speed profile based on 
the assumption of a logarithmic profile for near neutral conditions (when there is a 
negligible vertical temperature gradient).  Under these conditions the intercept of the 
wind speed plotted against the natural logarithm of the measurement height gives z0 
(ignoring any displacement height).  From the log-normal distribution of z0 values 
the geometric mean value was calculated to be 0.05 m.  This value is between the 
“level country with low vegetation” and “cultivated area with low crops” 
classifications of Wieringa et al. (2001), which is appropriate for the study area. 

The dry deposition parameterisations of Theobald et al. (2012) for agricultural land 
cover were used. 



Supplementary Material: Description of the emission model 

The ammonia (NH3) emission model of Gyldenkærne et al. (2005) was used to 
estimate the hourly emissions from the livestock houses and slurry lagoons of the 
two pig farms. The model distributes the annual emissions of each source using the 
ambient air temperature and either the wind speed or ventilation rate, for slurry 
lagoons and animal houses, respectively, whilst maintaining the annual emission 
factor.   

Slurry lagoon emissions 

The hourly emissions (kg NH3 h-1) from the slurry lagoon were calculated as: 
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where Eannual is the total annual emission (kg NH3 yr-1), T is the air temperature (°C), 
V is the wind speed (m s-1) and t and s are the calculation time step (hour) and the 
annual simulation time step (hour). The wind speed and temperature data were taken 
from the measurements made at a height of 2.74 m.  This emission parameterisation 
has the limitation that emissions are zero when the wind speed is zero, which is not 
realistic and should be improved in subsequent versions of the model. 

Pig house emissions 

The hourly emissions (kg NH3 h-1) from the pig houses were calculated using the 
same equation as for the slurry lagoon (Equation 1), but with estimates of in-house 
temperature and ventilation rates instead of the external air temperature and wind 
speed, respectively. In-house temperatures were estimated for three temperature 
regimes: 

min( )rec low outT T T T T= + ∆ × − ,  [ ]min;outT T∈ −∞   

recT T= ,     [ ]min max;outT T T∈   

max( )rec high outT T T T T= + ∆ × − ,  [ ]min;outT T∈ ∞   

where Trec is the recommended in-house temperature, Tmin and Tmax are the 
temperature boundaries where the ventilation rate is at its minimum and maximum, 
respectively, ΔTlow is the temperature dependence for temperatures below Tmin, 
ΔThigh is the temperature dependence above Tmax, and Tout is the external air 
temperature. The parameter values recommended by Gyldenkærne et al. (2005) were 
used for Tmin, Tmax, ΔTlow and ΔThigh (0°C, 12.5°C, 0.5 and 1.0, respectively) and the 
recommended temperature suggested by the pig house manager was used for Trec 
(22°C).  However, since this model was developed for farms in Denmark, which are 
subjected to lower external temperatures than the case study used here, this model 
parameterisation estimated maximum in-house temperatures of 47 °C, which is much 
higher than the maximum temperature recorded in the building (35 °C). The 
maximum predicted in-house temperatures were fitted to the recorded value by 
increasing the parameter Tmax (the value of the outside temperature at which the 



ventilation system is fully on) from 12.5 to 26.4 °C.  This modification represents a 
ventilation system that functions over a larger temperature range, which is what is 
needed in a warmer climate. 

The ventilation rate (m s-1) within the pig house (V in Equation 1) was estimated for 
the same three temperature regimes as the in-house temperature: 

minV V= ,     [ ]min;outT T∈ −∞   

max min
min

max min
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V VV V T
T T

 −
= +  − 

,   [ ]min max;outT T T∈   

maxV V= ,     [ ]min;outT T∈ ∞   

where Vmin  and Vmax are the minimum and maximum ventilation rates (0.2 and 0.38 
m s-1, respectively, as suggested by Gyldenkærne et al. (2005)).  

More details of the derivation and parameterisation of the model and its application 
to other source types (e.g. natural ventilated livestock buildings) can be found in the 
original paper (Gyldenkærne et al., 2005). 
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