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This study proposes a fully automated and objective technique to mapmarine landscapes in submarine canyons.
The method is suitable for broad and regional scale mapping derived from sonar data using multivariate statisti-
cal analysis. The method is divided into two main parts: the terrain analysis and the multivariate statistical
analysis. The first part aims to optimise the sonar data and comprises three steps 1) data resampling, 2) determi-
nation of length scale, and 3) multiple scale analysis. The second part covers the actual marine landscape
classification and consists of 1) principal component analysis (PCA), 2) K-means clustering, and 3) cluster deter-
mination. In addition, a confidencemap is presented based on cluster membership derived from cluster distance
in attribute space.
The technique was applied in the Lisbon–Setúbal and Cascais Canyons offshore Portugal. The area was classified
into 6 marine landscapes that represent the geomorphological features present in submarine canyons. The main
findings from the study are 1) the transferability of a tool from geomorphometric analysis – Estimation of Scale
Parameter (ESP) – to detect the length scale of potential patterns in bathymetric grids; 2) multiple scale terrain
analysis allows an appropriate discrimination of local and broad scale geomorphic features in marine landscape
mapping; 3) the method not only delineates geomorphic seafloor features but also points out properties that
might influence biodiversity in a complex terrain.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over the past decade, the ongoing effort to develop an efficient and
reliable method to map and study benthic habitats in various environ-
ments has promoted the advancement of classification techniques in
the habitat mapping community (Brown et al., 2011). Benthic habitats
are physically distinct areas of seafloor that are associated with particu-
lar communities of plants and/or animals. Of those two components
that structure a benthic habitat – the physical environment and the
species community – it is often the detailed species information that is
lacking during seafloor characterisation. General geophysical mapping
is therefore commonly used as the basis for benthic habitat mapping.
Advances in sonar technology now permit seafloor imaging with high
resolution and wide coverage using a wide variety of instruments and
systems of different frequencies and resolutions (Hayes and Gough,
2009; Hansen et al., 2011; Nakanishi and Hashimoto, 2011; Paull et al.,
2013; Harris et al., 2014; Wynn et al., 2014). These data can be used to
depict various seafloor geomorphic features and interpreted to provide
potential habitats represented on a marine landscape map.
. This is an open access article under
“Marine landscape” is a concept introduced originally by Roff and
Taylor (2000), who developed a classification based on enduring geo-
physical features that reflect changes in biological community composi-
tions. They emphasized the importance of identifying and conserving
representative spaces or landscapes rather than preserving individual
species. They produced a classification using geophysical features to
identify representative and distinctive benthic habitats supporting dif-
ferent communities, which works as an ecological framework for ma-
rine conservation.

Based on this fundamental concept, the marine landscape in this
study is defined as an environment distinguished by its abiotic charac-
teristics with a potential to provide colonization ground for specific
biological assemblages. This approach has been applied successfully
in the marine realm, specifically in shallow water environments
(Al-Hamdani et al., 2007; de Grosbois et al., 2008; Verfaillie et al.,
2009; Kotilainen and Kaskela, 2011). On a global scale a similar ap-
proach was used to segment the ocean floor based on a multivariate
analysis of biophysical data by Harris and Whiteway (2009).

Although the aim of the studies mentioned above is similar, i.e., to
classify the seabed in relation to its biological association, either for
managerial purposes or to predict biological occurrences, each study of-
fers a different methodology. The methods vary from the conventional
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Bathymetry map of Lisbon–Setúbal and Cascais Canyons offshore Portugal, overlain by TOBI sidescan sonar imagery coverage. Contour interval is 500 m. The inset map shows the
location of the study area relative to the location of Portugal.

Fig. 2.A simplifiedflowchart of the automated and objective techniques used to producemarine landscapemaps for submarine canyons. Themethod consists of twoparts; terrain analysis
and multivariate statistical analysis.
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Table 1
List of abiotic variables included in the principal component analysis.

Abiotic variable Descriptions Length scale

25 m 225 m

Digital terrain model (DTM)
of bathymetry

Obtained from multibeam bathymetry survey. Represent depths of the ocean floor.

Slope First derivatives of DTM. Represents the maximum rate of change in value from a cell to its neighbour

Aspect First derivatives of DTM.
Eastness = sin(aspect) Describes the orientation of slope. Indices for eastness and northness provide continuous measure (−1 to +1)

Northness = cos(aspect)

Bathymetric position index (BPI) Measures the elevation of each cells compared to the mean elevation of neighbouring cells (Weiss, 2001)

Fractal dimension A derivative from DTM. Indicates the spatial variation in roughness

Feature extract A third derivative of DTM. Classified the surface into 6 categories (pit, channel, pass, ridges, peaks and planar)
based on slope tolerance and curvature tolerance value

Plan curvature A second derivative of DTM. Provides the rate of change of aspect

Profile curvature A second derivative of DTM. Provides the rate of change of gradient

Rugosity A measure of small scale variations of the surface area across the neighbourhood of the central pixel (Jenness, 2004)

Sidescan sonar imagery Obtained from Towed Ocean Bottom Instrument (TOBI). Sonar images are acquired by emitting continuous sonar
pulses whilst moving, this returns with the image of the seafloor.

Ratio of sidescan sonar to
synthetic imagery

Synthetic sidescan sonar imagery was produced by simulating the TOBI vehicle movement over the canyon
bathymetry, and represents the sidescan backscatter components produced by the sloping terrain (Ismail, 2011).
Ratio represents the lithological attribute of the imagery.

Ticked boxes indicate the available scale for the variables.
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approach of manual digitising over algorithm-assisted digitising to fully
automated techniques, or use combinations thereof. Unfortunately,
mostmethods developed so far have subjective aspects in several stages
of their application (e.g., the parameters to use, the number of classes,
the scale). The ideal methodology should offer robust statistical ways
to make these choices objectively. Moreover, with the current state of
the art in acoustic technology, large volumes of data are commonly
available, therefore a time- and labour-saving approach is preferable.
A robust approach that is objective, repeatable and can speed up the de-
lineation of marine landscape from acoustic or other remotely-sensed
full coverage data is much needed.

1.1. Scope and aims

Taking the above arguments into account, the aim of this study is to
develop a fully automated marine landscape mapping technique that is
robust, objective and repeatable, based on remotely sensed acoustic sur-
vey data, using multivariate statistical analysis. The method is devel-
oped in submarine canyons because of their complex characteristics
defined by their spatial structure that contains true three-dimensional
morphology and terrain variability often supporting increased
Fig. 3. ROC-LV graph obtained using the ESP tool to determine themost appropriate analysiswin
analysiswindow size best represents real-world objects. Dragut et al. (2010) defined the thresho
of the references to colour in this figure legend, the reader is referred to the web version of thi
biodiversity. However, submarine canyons are difficult to quantify as
they often overwhelm conventional mapping techniques. This aim
will be addressed through the following objectives:

1. Evaluate and compare the effect of a single scale vs. multiple scale
approach

2. Test the transferability of amethod used in Object Based Image Anal-
ysis (OBIA) to detect the scale that best represents real-world objects
in multibeam bathymetry data.

3. Evaluate the advantages of the proposed method in comparison to
manual delineation for marine landscape mapping.

2. Materials and methods

2.1. Study area

Submarine canyons are important geological features incised
in most continental margins of the world's oceans (Harris and
Whiteway, 2011). They serve as conduits for the transport of large
amounts of sediment and organic matter from continental shelves to
the deep abyssal plains (Hickey et al., 1986; Puig and Palanques, 1998;
dow size formultiple scale terrain analysis. Blue arrow indicates the threshold atwhich the
ld as thefirst break in ROC-LV curve after continuous and abrupt decay. (For interpretation
s article.)



Fig. 4. 3D views of the Portuguese Canyons from south. The figure shows variations of bathymetric position index analysis (top) and slope analysis (bottom) resulting from using two
different length scales. The local length scale is 25 m (initial pixel size) and broad length scale at 225 m. Note the different features delineated at the different analysis scales. Results
from local length scale contained detail features but noisier whereas broader length scale shows the gross canyon morphology.
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Monaco et al., 1999). The deep and complex topography, strong cur-
rents and occurrence of high turbidity promote a high variability of sub-
strates and terrain, affecting the habitat heterogeneity and making
submarine canyons a potential hotspot for biodiversity (Vetter and
Dayton, 1998; Mortensen and Buhl-Mortensen, 2005; Tyler et al.,
2009). Considerable interest in benthic habitats associated with subma-
rine canyons (Tyler et al., 2009; Huvenne et al., 2012; Currie and
Sorokin, 2014; De Leo et al., 2014), especially in vertical and overhang-
ing terrains that occur at the heads of shelf-incising canyons, has been
Table 2
Component matrix showing correlation between rotated PCs and the original variables.

Abiotic variables

Bathymetry (B)

Bathymetric position Index 225 m (BPI)

Bathymetric position Index 25 m (BPIf)

Eastness 225 m (E)

Eastness 25 m (Es)

Feature extraction 225 m (FE)

Feature extraction 25 m (FEf)

Fractal dimension 225 m (FD)

Fractal dimension 25 m (FDf)

Northness 225 m (N)

Northness 25 m (Ns)

Plan curvature 225 m (PL)

Plan curvature 25 m (PLs)

Profile curvature 225 m (PR)

Profile curvature 25 m (PRs)

Rugosity (RG)

Slope 225 m (S)

Slope 25 m (Ss)

TOBI ratio (R)

TOBI sidescan sonar (T)

Eigenvalues

PC1

0.2218

0.4467
0.4079
0.0868

0.0525

0.1841

0.0942

0.0508

0.1115

–0.0224

–0.0230

–0.3543

–0.2619

0.4112
0.3504

0.0137

0.0570

0.0153

–0.0872

–0.1361

3.5780

PC2

–0.1743

0.0513

0.0469

–0.2879

–0.2767

0.1727

0.3065

–0.1845

–0.0496

0.1360

0.1012

0.0062

–0.0339

0.0578

0.0324

–0.4141
–0.4338
–0.4987

0.0230

0.0443

2.9221

PC3

0.3156

0.0196

–0.1128

0.1453

0.1719

–0.0748

0.0411

0.2898

0.2470

–0.4576
–0.4407

0.1552

0.0973

0.0369

–0.0901

–0.1565

–0.3251

–0.2488

0.1165

–0.1790

2.3250

Highest factor loads in each PC are highlighted in bold. A 3D representation for the first three p
generated (Yoklavich et al., 2000; Brodeur, 2001; Huvenne et al.,
2011; Johnson et al., 2013). Such terrains hold biologically diverse com-
munities, but are especially difficult to map.

The Cascais and Lisbon–Setúbal Canyons that are the subject of this
study, cut the western Portuguese continental margin between 38°
and 38° 30′N (Fig. 1). Cascais Canyon begins at a water depth of
175m at the shelf edge of the Portuguesemargin. It is not connected di-
rectly to a river system but its head is situated 27 km southwest of the
Tagus river mouth. It is the shortest canyon on the Central Portuguese
PC4

0.2163

0.0374

–0.0831

–0.3705

–0.3297

0.0168

–0.0495

0.5001
0.4893

0.2526

0.2664

0.0708

0.0677

0.0226

–0.0651

0.2073

–0.0802

0.0688

–0.0435

–0.0388

1.8047

PC5

–0.1114

–0.0937

0.1966

–0.4482
–0.4627
–0.1006

–0.0143

–0.0266

–0.1057

–0.4097
–0.4383

0.0298

–0.1446

–0.0319

0.1784

0.1734

0.0945

0.1465

0.0081

0.1667

1.4658

PC6

0.2176

0.2715

–0.1630

–0.1676

–0.2143

–0.2428

–0.4097
–0.2048

–0.2876

0.0328

0.0032

0.0648

0.4346
0.3326

0.0045

–0.1513

0.0876

–0.0392

–0.0634

–0.2933

1.3373

PC7

–0.0012

–0.1152

0.2895

0.0802

0.1629

–0.5214
–0.0296

0.0960

0.0207

0.1057

0.1222

0.4444

0.0018

0.1372

0.4046

–0.0597

–0.1340

–0.0767

–0.2677

0.2870

1.1772

PC8

0.0869

–0.1453

0.1995

–0.0489

–0.0231

–0.2453

0.0742

–0.0141

–0.1147

0.1225

0.1399

0.1356

–0.2248

–0.1252

0.1624

0.0213

–0.0128

0.0457

0.6667
–0.5069

1.1644

rincipal components is illustrated in Fig. 5 with each variable plotted in abbreviation.



Fig. 5. 3D representation of the first three principal components and coefficients of each
variable. The plot illustrates which variables are driving the PCs. The longest arrow in
the plot represents the most prominent abiotic variable in the principal components.
The distances between arrows describe their correlation, the closer the arrows, the more
correlated they are.
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continental margin. Although the average gradient of the whole axis is
only about 3°, its slope gradients typically exceed 10°, making it the
steepest canyon (Lastras et al., 2009) in the region. The upper Cascais
Canyon first trends south-southwest then changes direction further
down, to a westward and later north-westward trend.

The Lisbon Canyon head is situated 13 km southwest from the Tagus
river mouth and 5 kmwest of the nearest coastline at an approximately
120 mwater depth. It incises 28 km into the shelf with a total length of
37.5 km (Lastras et al., 2009). The canyon trends north–south towards
the middle course of Setúbal Canyon and is almost perpendicular to
the Setúbal branch at a 2010 mwater depth, where these canyons join.

The Setúbal Canyon is east–west oriented and the canyon head is lo-
cated at an approximately 90 m water depth, situated at about 20 km
south-southwest of the Sado river mouth and 6 kmwest of the nearest
coastline in Setúbal Bay. The branch cuts 41 km into the continental
shelf (Arzola et al., 2008). Setúbal Canyon is amongst the submarine
Fig. 6. Plot of number of clusters against within sum of squares. The bend (change in slope) mar
(For interpretation of the references to colour in this figure legend, the reader is referred to th
canyons that extend across the continental shelf and approach the
coast. This type of canyon is known to intercept organic-matter-rich
sediments; these cause organic rich material to be supplied downslope.
For example, Gage et al. (1995) reported finding sea grass at a water
depth of 3400 m in the middle canyon.

2.2. Data

The data and samples used in this study were collected during 5 dif-
ferent cruises in the area. Multibeam bathymetry data were compiled
from RRS Charles Darwin cruises 157 (May/June 2004) and 179
(April/May 2006) and from ancillary data kindly provided by IFREMER
(French Research Institute for Exploration of the Sea). The datawere in-
tegrated during the HERMES project (Hotspot Ecosystem Research on
the Margins of European Seas) (http://www.eu-hermes.net). The
multibeam bathymetry was processed using SwathEd and results in
an image with a pixel size of 100 m.

30 kHz TOBI (Towed Ocean Bottom Instrument) sidescan sonar im-
agery was collected during three cruises in 2003, 2005 and 2006: RV
Pelagia 219, RSS Discovery 297 and RSS Charles Darwin 179. The
sidescan sonar imagery, also published in Lastras et al. (2009), was
pre-processed using the PRISM (v4.0) and Erdas Imagine (v8.5) soft-
ware suites to produce imagery with improved geographical registra-
tion (Ismail, 2011). TOBI was towed at an altitude of approximately
400m above the seafloor at about 2 kn, producing 6 kmwide swath im-
ages with a horizontal resolution of 6 m (Le Bas et al., 1995).

The grids of multibeam bathymetry and sidescan sonar imagery
used here had a different resolution of 100 m and 6 m, respectively.
Therefore, the data was resampled to a common cell size of 25 m reso-
lution. This is thought as a good compromise to keep the sidescan sonar
detail, without over-interpolating the multibeam-derived datasets.

2.3. Research strategy

The technique to map the marine landscape in submarine canyons
developed here, is divided into two parts: terrain analysis andmultivar-
iate statistical analysis. The first part focuses on optimising the usage of
the acoustic dataset whilst the second part addresses the classification
of the data into distinct physical areas and is partly based on the work
of Verfaillie et al. (2009) in shallow waters. Both parts comprise 3
steps each, a simplified illustration of the research strategy is presented
in Fig. 2.

The software used for each step in the first and second parts is listed
as follows; the first part: 1) data were resampled in ArcMap 10.0 using
bilinear algorithms, 2) determination of length scale for multiple scale
analysis using the Estimation Scale Parameter tool in Ecognition and
ked in red and projected towards the x-axis indicates the optimum number of cluster is 6.
e web version of this article.)

http://www.eu-hermes.net
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Fig. 8. Interpretationmap showing Portuguese Canyonwith 6 clusters solution using the fully automated technique summarised in Fig. 2. Characteristics and interpretation for each cluster
are described in Table 3. Important geomorphological features of the canyon are clearly visible from the classification; Cluster 1 being themost shallowest and flat is the continental shelf,
Cluster 2 as wall or cliff with highest ruggedness, Cluster 3, 5 and 6 are the flanks with different orientation and Cluster 4 with depression features is the channel floor.
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3) production of terrain indices usingmultiple scale analysis in Landserf
v2.3 (Wood, 2005). RStudio v0.98.484 was used in the second part of
the method to carry out: 1) principal component analysis (PCA); 2) K-
means clustering; and 3) cluster determination using within group
sum of squares.
2.3.1. Single scale vs multiple scale terrain analysis
Multiple scale analysis refers to the incorporation of terrain indices

produced at different scales to optimise the detection of details and fea-
tures in bathymetric surfaces for marine landscape characterisation.
Two length scales are used to represent local features and broad fea-
tures, both of which are valued for habitat characterisation. The length
scales represent n× n analysis window sizes to calculate terrain indices,
where n is any odd integer value (Wilson et al., 2007). As suggested by
Dolan and Lucieer (2014), using terrain indices obtained from multiple
scale analysis in comparison to other approaches allows retaining the
full detail of the bathymetric surface, whilst at the same time keeping
the computation time reasonable. However, in their studies the length
scales for the analysis were predetermined. An automated and objective
procedure to select length scales for multiple scale analysis is proposed
here and is adapted from a technique used for image segmentation in
geomorphometry (Dragut et al., 2010). The Estimation Scale Parameter
(ESP) tool is used for fast estimation of scale parameters for a
multiresolution segmentation in Object Based Image Analysis (OBIA).
The tool is based on the fundamental concept of the relationship be-
tween spatial structures of images and the size of objects in the real
Fig. 7. Upper maps: membership value of K-means partitioning for each cluster ranging from 0
index map. It shows a quantification of clustering uncertainty ranging from 0.0 to 1.0, with 1.0
approaching white is much certain area. Inset plot is a density plot of confusion index value fo
positive skeweddensity plot indicates a low conflicting clusteringwith good separation amongs
is referred to the web version of this article.)
world. Hence both methods – multiple scale terrain analysis and seg-
mentation – try to emulate real-world units by aggregating cells. The
tool calculates the local variability or Local Variance (LV) in the segment
or window, for increasing segment/window sizes. However, for
multiple scale analysis, the LV graph does not show an obvious
threshold for suitable scale, therefore the rate of change of local variance
(ROC-LV) graph is used instead, as suggested by Dragut et al. (2010).
ROC-LVmeasures the amount of change in LV fromone scale level to an-
other. Steps in the ROC-LV graph indicate the scale at which groups of
real-world objects are more appropriately imaged.

Once the appropriate length scales are determined through the ROC-
LV graph, terrain variables are calculated at those scales using Landserf.
The resulting layers are then exported to R and are subjected to multi-
variate statistical analysis. A comparison between marine landscape
maps created using single scale andmultiple scale terrain indices is car-
ried out to evaluate the significance of this step. A total of 20 abiotic ter-
rain variables are used in the final multivariate statistical analysis. They
include the multibeam bathymetry data and the TOBI sidescan sonar
imagery, and their derivatives. The variables are listed in Table 1 with
a brief explanation for each.
2.3.2. Principal component analysis
One of the most difficult tasks when automating a seabed classifica-

tion technique is to ensure objectivity when selecting the variables that
will form its basis. A commonly used method to condense a highly col-
linear dataset prior to clustering is Principal Component Analysis (PCA)
.0–1.0, where 1.0 indicates the highest membership value. The bottommap is a confusion
being themost uncertain. A zoomed area in red box shows the uncertain area as black and
r the attributes. Narrow highly confused zones (black) in the confusion index map and a
t the clusters. (For interpretation of the references to colour in this figure legend, the reader



Table 3
The characteristic of the 6 clusters and their interpretation based on the boxplot in Fig. 9.

Clusters Characteristics Interpretation

1 Shallowest, most homogeneous,
flat, planar and linear surface

Continental shelf/slope

2 Most rugged and heterogeneous
surface with steepest slope

Canyon wall or cliff
(including cliff edge)

3 Mid depth SSW oriented canyon
slope with linear surface

Canyon slope/rise
(facing SSW)

4 Planar to depression, slight sidewardly
and upwardly concave and diverge
surface, valleys, channel-like features

Canyon floor

5 SSE oriented canyon slope Canyon slope/rise (facing SSE)
6 NNW oriented canyon slope Canyon slope/rise

(facing NNW)
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(Kabacoff, 2013). The abiotic variables in this study are highly collinear
because they are derived from only two primary sources (i.e.,
multibeam bathymetry and sidescan sonar imagery). PCA is used to
compute a set of new and linearly independent variables that are
known as Principal Components (PC). Prior to PCA, all variables are
standardised to have zero-mean and unit-variance in order to give
them an equal weight in the PCA. The first PCs account for most of the
variance in the original data, and can be chosen to form a smaller set
of variables. The remaining variance, represented by the last PCs, is
the error portion of the dataset.

A decision criterion based on the eigenvalues of the underlying cor-
relation matrix is often used to determine how many PCs are to be
retained in the analysis (Kabacoff, 2013). Following the Kaiser–Harris
criterion, the analysis is limited to those PCs that have eigenvalues larg-
er than 1, because they explain more variance than is contained in an
original variable.

2.3.3. Clustering
The PCs resulting from the PCA are then used as attributes for clus-

tering. The K-means algorithm is often used for data partitioning, also
in the marine environment (Legendre et al., 2002; Verfaillie et al.,
2009; Amiri-Simkooei et al., 2011; Ahmed and Demsar, 2013). K-
means is an iterative procedure that starts with a random allocation of
class centres. All data points are given the class of the closest class cen-
tre, calculated using the Euclidian distance in the N-dimensional space
of the retained PCs (Hartigan and Wong, 1979). Once the clusters are
formed, the class centres are updated to the location of the average for
each cluster. Re-allocation of the centres proceeds by iteration until a
stable solution is reached where the location of the centres no longer
moves.

2.3.4. Cluster determination & confidence
An important step in achieving objectivity in automated classifica-

tion is to determine the optimal number of clusters. There are many
criteria that have been used to decide on the correct number of clusters
for K-means partitioning (Dunn, 1973; Caliński and Harabasz, 1974;
Davies and Bouldin, 1979). The method used here consists of a plot of
within group sum of squares against number of clusters from the K-
means clustering solution (ranging from 2 to 15). The change in gradi-
ent in the plot is used to determine the optimal number of clusters
from the K-means solutions (Kabacoff, 2013).

Once the final clustering through K-means solution is achieved, a
separate map of cluster membership is produced to show cluster dom-
inance at each location. The membership value can be expressed as fol-
lows

μ ik ¼
1
d2
ik

� �� 1
Xn

k¼1

1
d2
ik

� �

where μik is themembership value of the ith data point to cluster k, dik is
the distance between data point i and cluster centre k in attribute space
and n is number of clusters. The above expression is modified from an
expression used for fuzzy K-means classification for soil survey data
(Burrough et al., 1997). The original expression was also used and
reviewed in a study by Lucieer and Lucieer (2009) for seafloor sediment
classification.Membership values are assigned to each cluster so that all
values for each pixel sum to 1. Using this characteristic, clustering un-
certainty can be quantified using the confusion index, CI

CI ¼ μ max−1ð Þi
μ maxi

whereμ maxi
is themembership value of the clusterwithmaximum μik at

location i and μ max−1ð Þi is the second largest membership value at the
same i location. If the value of CI nears 0, then only one cluster k domi-
nates the location and it has a low confusion (high maximummember-
ship value of cluster k), however if the value of CI is near 1 there is high
confusion between two or more clusters at location i.

2.4. Qualitative assessment

Expert visual interpretation based on sidescan sonar imagery from
previous work in 2005 was used to evaluate the performance of the au-
tomated technique. The interpretation is independent from any input
from the automated marine landscape map. Visual comparison was
made between expert interpretations for Setúbal Canyon and the auto-
mated marine landscape map produced by overlaying both in ArcMap
10.0.

3. Results

3.1. Terrain analysis: ROC-LV graph

The ESP yields the ROC-LV graph as shown in Fig. 3. According to
Dragut et al. (2010), the ROC-LV plot enhances the discrimination of
the threshold atwhich the appropriate scale for real-world object repre-
sentation is reached compared to an LV graph. The threshold is defined
as the first break in the ROC-LV graph after the initial continuous and
abrupt decay, andmay appear as a step or small peak. In this case, it ap-
pears as a step in the ROC-LV curve. The next level after 25 m (initial
pixel) that is recognised as the appropriate scale that represents real-
world objects is 225 m. Meaningful objects refer to real world objects
such as gullies, the channel floor and other geomorphological features
that can be found in submarine canyons. The variation in slope and
bathymetric position index using different length scales is shown in
Fig. 4. The local scale (25m) picks outfine-scale variability in the canyon
such as gullies or small branches, whereas the broader scale (225 m)
shows the overall pattern of the whole canyon system, highlighting
major features and smoothing out details present in the local scale
analysis.

3.2. Multivariate statistical analysis

3.2.1. PCA
The principal component analysis is conducted using the 20 abiotic

variables listed in Table 1. Retaining only those PCs with eigenvalues
larger than one, PCA results in eight PCs, explaining 79% of the total var-
iance. The rotated component matrix (Table 2) shows the factor loads
that explain the correlations between the rotated PCs and the original
variables. The main variables that drive the PCA are bathymetric posi-
tion index (BPI), profile curvature, slope, rugosity and northness (Fig. 5).

3.2.2. Clustering
A total of 2,316,746 pixels with eight PC variables were subjected to

K-means clustering, in a cascade from two to fifteen clusters. The plot of



Fig. 9. a & b: Boxplot of clusters against original abiotic variables. Description of each abiotic variable is given in Table 1. In the boxplot, themiddle line is themean, the lower and the upper
box boundaries are the first and third quartiles. The whiskers are the maximum and minimum observed values that are not statistical outliers.
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within group sum of squares against number of clusters is shown in
Fig. 6, and indicates a distinct increase at six clusters. This change in
slope suggests that a six cluster solution may be a good fit for the data.
Hence, final clustering is carried out using the K-means algorithm
with six clusters.

3.2.3. Membership value and confusion index
The concept of membership values originates from the technique of

fuzzy classification, where it is used to show continuous spatial varia-
tion by creating overlapping classes (Lucieer and Lucieer, 2009).
Through this, using the Euclidean distances of data points towards clus-
ter centres from the K-means partitioning, the same calculations were
used to show classification uncertainty (Fig. 7). High membership
value means only one cluster is dominant for the data point; meaning
at that location there is a high certainty of classification.

Based on themembership value for each cluster, a confusion index is
produced (Fig. 7). The confusion index map has very narrow transition
zones between clusters, with high confusion values only at the cluster
boundaries. If spatial correlation in membership values is weak, broad
zones of high confusion index values are observed, but they are not
seen in the confusion index map. The density plot of confusion index
values indicates a positively skewed distribution, with a high percent-
age of data points with confusion value approaching zero. A low value
in confusion index (approaching zero) indicates a less conflicting
classification.

3.3. Marine landscape map

The result of the six cluster solution is presented in Fig. 8 and Table 3.
The six cluster solution represents the final marine landscape map
produced for this area. The interpretation of each cluster is based on
the boxplots of the original abiotic variables against the clusters
(Fig. 9a & b). Through these boxplots, the characteristics of each cluster
can be obtained based on the correlation with the original variables.
Seventeen out of twenty abiotic variables show an obvious contribution
to the classification.

For instance, rugosity, which represents the ruggedness of the ter-
rain, shows a clear difference between the clusters. Cluster 2 is
interpreted as a canyon wall, owing to its high values in slope and ru-
gosity, and a wide range of distribution of rugosity and BPI. As canyon
walls often consist of near vertical to vertical outcropping bedrock
with the tendency to be covered by biological communities, such high
value of slope and rugosity is expected. Its wide range of rugosity distri-
bution is also explainable, because canyon walls have the most varied
surface ruggedness. They can consist of just bare rocks, or be covered
with sediments or fauna. Similarly, based on the boxplot (Fig. 9a), the
BPI for Cluster 2 has the biggest range although the mean value is
zero. Such a characteristic is observed because the Cluster 2morphology
is narrow and steep; therefore the value can change significantly from
one neighbouring cell to another.

The rest of the clusters are also interpreted based on the criteria seen
in the boxplots and the final interpretation is shown in Table 3. Each
cluster has its own prominent variable that best shows its characteris-
tics. Cluster 1 ismainly driven by the bathymetry and fractal dimension-
al variable, Cluster 2 is influenced by rugosity and slope, Cluster 4 has
the lowest BPI and is channel-like based on the feature extract variable,
whilst Clusters 3, 5 and 6 are dominated by the aspect variables.

3.4. Single scale vs multiple scale terrain analysis

An alternative marine landscapemapwas produced using only local
scale terrain indices to evaluate the effect of using multiple scale analy-
sis on the classification result (Fig. 10). Themap producedwas classified
into 10 clusters. The main difference observed is that the clusters are
more patchy and incoherent in the marine landscape map produced
using single scale analysis. The map corresponds less well to features
that can be seen in sidescan sonar imagery. Zoomed figures were
made at three locations (Areas A, B, C) to highlight the differences be-
tween using single scale andmultiple scales into themultivariate statis-
tical analysis (Fig. 10). For example in Area A, the channel floor that
appears in the sidescan sonar imagery was not delineated in the single
scale marine landscape map. However, in the marine landscape map
produced using multiple scale analysis, the channel floor is classified
as a separate cluster (Cluster 4), distinguishing it from a canyon slope
(Cluster 3). In Area B, the clusters from the single scale map can be
seen as patchy and incoherent as mentioned above. Of the 10 clusters,
one cluster (Cluster 5) is identified as a product of over-classification
from Cluster 7 because they consistently appear next to each other
and Class 5 almost forms an outline to Cluster 7. Meanwhile, Cluster 6
is identified as noise that has been picked out from TOBI sidescan
sonar imagery. Area C shows an example of clusters that result from
over-classification and noise. Another general difference between the
twomaps is that the single scale map has less-pronounced aspect influ-
enced clusters. Cluster 1 is slope angled to the north whilst Cluster 8 to
the south. However the patchiness of the clustering largely obscures the
effect of the aspect variable.

3.5. Qualitative assessment

A visual interpretation (Fig. 11) was carried out for Setúbal Canyon
based on the sidescan sonar imagery collected in 2005 (hence only cov-
ering Setúbal Canyon). A general comparison of the marine landscape
map produced by the automated technique and themanual delineations
shows that most clusters from the automated technique coincide with
the features delineated manually by the expert. Misclassifications of fea-
tures occur occasionally and most are within the navigational error. The
sidescan sonar map used for this study was navigationally corrected by
correlation with the bathymetry (Ismail, 2011), which was not the case
for the data used for expert interpretation. Four sub-areas within the
Setúbal Canyon were zoomed (Fig. 11) and clearly show that both
maps correlate well. There are many features that can be identified visu-
ally by the human eye. These features can be very small and overwhelm
the algorithm in the automated technique. However, often the algorithm
will naturally group these features together into the same cluster. The au-
tomated approach is observed to be more consistent in picking out fea-
tures and identifying homogeneity within features. The most obvious
features that can be seen to coincide successfully between the two
maps are the channelfloor and canyonwall. However inmanual delinea-
tion the channelfloor seemsnarrower than that in the automatedmarine
landscape map. This is because the expert tends to follow the axis of the
channel floor (thalweg) closely and has difficulty deciding class bound-
aries. In particular, the area of transition between two features/clusters
is often left unidentified in manual delineation, whereas the map from
the automated technique gives a complete coverage.

4. Discussion

4.1. Multiple scale terrain analysis

The ESP tool technique was adopted from segmentation in Object
Based Image Analysis (Dragut et al., 2010). It was used for fast estimation
of the optimum length scales in an automated way. This tool gives an ad-
vantage over manual estimation, as it reduces the time spent on trial and
error selection of the appropriate scale that best represents real-world
objects in multibeam bathymetry data. It also provides an objective an-
swer to the scale question. The ROC-LV graph indicates that at 225 m it
recognises patterns that are suitable to represent a real-world object. In-
deed, the terraces in the middle course of the Lisbon–Setúbal Canyon are
reported to be approximately 200 m wide (Lastras et al., 2009).

The incorporation of terrain indices produced from local (25 m) and
broad (225m) scales allows an appropriate discrimination between fea-
tures of potentially different ecological relevance. For instance, in a
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single scale approach using only the local length scale, terrain indices
may have similar slope values on the side of small geomorphic features
such as gullies compared to slopes on the canyon wall. However, if
broad scale terrain indices were to be used on their own, slopes over
small features would effectively disappear since the analysis scale will
be too large to capture the finer features available from the multibeam
bathymetry data. Therefore, by including local and broad length scale
terrain indices together, both fine scale and broad scale features are
retained and stand out as distinct properties of the seabed which con-
tribute as indicators of potential benthic habitats.

In addition to this, with the incorporation of broad length scale ter-
rain indices, it is observed that the noise, compared to the local, single
scale map was reduced, subsequently increasing the feature to noise
ratio. Through this step, the automated technique is performed on
meaningful objects that represent both fine and broad scale features
that can be found in real-world canyons.

Apart from this, using multiple scale terrain analysis appears to re-
duce excessive clustering that result in meaningless clusters being de-
lineated in the map. Since multivariate statistical analysis is affected
by pixel size, having only single local scale terrain indices causes over-
analysis, which contributes to clustering of artefacts into the classifica-
tion. It became oversensitive towards slight changes in characteristics
between pixels causing similar features to be clustered into separate
clusters. However, by using multiple scale terrain indices, the multivar-
iate statistical analysis operates on meaningful objects related to real
features rather than just the pixel representation of the acoustic data.
4.2. Abiotic variables

One of the difficulties in maintaining objectivity in automated map-
ping is to justify the abiotic variables that are incorporated into the anal-
ysis without compromising the objectivity of the whole method. It is
important to ensure that the method is as objective as possible with
minimum input from the user. Every abiotic variable includedwill affect
the automated classification, therefore all abiotic variables should con-
tain relevant information about the canyon. Parameters yielded by the
GIS software must be considered with care, and not simply included
by default. For example, hillshade is often used to aid in the identifica-
tion of seafloor features (Walker and Gilliam, 2013). Although it is a de-
rivative of multibeam bathymetry, hillshade is not considered as an
abiotic variable, even if it can be a good indicator for the correlation be-
tween the seabed and a (residual, unidirectional) current. However if
there is no evidence of such interaction taking place, it would give
false information because the azimuth used for hillshadingwould be ar-
bitrary, rather than representing an actual characteristic of the terrain.
Instead, directionality of the terrain and any potential interaction with
oceanographic effects is simulated by the inclusion of aspect properties
that are divided into northness and eastness to provide continuous var-
iables (Hirzel et al., 2002; Wilson et al., 2007). Hence each abiotic vari-
able included is relevant and has a useful input regarding the canyon
and will contribute to the automated classification. In additional, by
using PCA, there is no problem if more than one abiotic variable gives
a similar input or representation of the canyon (i.e., if there is collinear-
ity). The more abiotic variables with useful information are incorporat-
ed as input, themore potential habitats can be classified (Verfaillie et al.,
2009). Once all the abiotic variables have been gathered, there are no
subjective selections to be made. Instead they are subjected to PCA,
which overcomes the problem that most conventional classification
methods encounter, the selection of abiotic variables (Al-Hamdani and
Reker, 2007). Also the selection of the relevant PCs (with eigenvalue
Fig. 10.Marine landscapemap produced using automatedmarine landscape classificationwith
sidescan sonar imagery and marine landscape maps produced using multiple scale terrain ana
using multiple scale, second row: sidescan sonar imagery and third row: marine landscape ma
and incoherent classes. There are products of over-classification since having fine details introd
N1) and the optimal number of clusters (based on the within group
sum of squares) are fully objective.

4.3. Marine landscape map

The resulting map for the Cascais and Lisbon–Setúbal Canyons has a
total of 6 clusters that represent the marine landscapes of the area
(Fig. 7). Each of these clusters is interpreted based on the correlation
of the clusters with the original abiotic variables. The marine landscape
map is largely based on the geomorphological features present in the
multibeam bathymetry data, and hence corresponds to the first levels
of typical hierarchical habitat classification systems (Davies et al.,
2004), that are based on broad-scale geomorphological divisions of
the marine realm. TOBI sidescan sonar data, and especially its ratio to
synthetic imagery, was used to potentially represent sediment distribu-
tion and seafloor roughness, regardless of the orientation towards the
sonar (Ismail, 2011), but that did not yield much contribution into the
classification. The rotated component matrix (Table 2) shows that
TOBI sidescan sonar imagery is not a high factor load in any of the PCs.
In addition, based on the boxplot distributions (Fig. 9b), when correlat-
ed with TOBI data the 6 clusters are more or less congregated around
similar values. Although it has the highest load in PC 8, the PC only ex-
plains 0.03% of the total variance. However, when visually compared
to the TOBI sidescan sonar, the marine landscapes classified here can
easily be related to the TOBI sidescan sonar features. It is already
known that sedimentological distributions in canyons are strongly con-
trolled by the geomorphological properties of the terrain (Arzola et al.,
2008). This explains the correlation between the marine landscape
map and TOBI sidescan imagery when compared visually.

Geomorphology is also recognised as a major control on biological
communities and diversity in submarine canyons (Kenchington et al.,
2014). Therefore, the marine landscape map can be useful to identify
areas with ecological relevance. Although, the ultimate goal of habitat
mapping is to identify ecologically relevant habitats that support differ-
ent biological communities, this is not the case for marine landscape.
The purpose of a marine landscape map is to identify areas that can
give an indication about the biological community, but not to predict
the biology. Therefore, the map produced in this study only acts as a
proxy to aid biological predictions and focus future surveys. This is espe-
cially beneficial as an alternative when biological data are limited since
it uses only abiotic variables to produce the marine landscape map.

Based on themarine landscapemap produced from this study, three
out of the six clusters are influenced by the aspect variable. Aspect is
represented in continuous values by northness and eastness. Northness
takes values close to 1 if the aspect is northward,−1 if southward and
close to zero if aspect is either east or west. Eastness behaves similarly,
except that values close to 1 show east-facing slope and−1west-facing
slope. However, is aspect an important feature to define marine land-
scape in submarine canyons? Naturally, aspect is a valuable variable
for shallow water, where it provides information regarding the expo-
sure to dominant swell or where sunlight is able to reach the seabed
(Lucieer et al., 2013). However this is not the case for the deep sea envi-
ronment, where it is known that light only penetrates approximately to
no more than 1000 m (with significant light only penetrating to about
200 m) (Schrope, 2007). Nevertheless, slope orientation in the deep
sea may still be meaningful if interaction between the current regime
and differently orientated slope surfaces creates variable habitats.

Organisms inhabiting the deep sea environment are known to be
subjected to regulating disturbances related to upper water-column
processes (Gage and Tyler, 1992), which makes it possible to predict
faunal response in homogeneous deep sea habitats, and identify the
single scale in contrast tomap in Fig. 8. The three selected areas A, B and C are compared to
lysis. The close-ups are shown in the nine smaller maps. First row: marine landscape map
p using single scale. The marine landscape map produced using single scale exhibit patchy
uces noise and causes over-analysis.
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controlling factors that affect the presence of organisms. However, in a
more complex and complicated environment this is not as straightfor-
ward. This is particularly true in submarine canyons, where the different
regulating processes, heterogeneous environmental conditions and eco-
logical functions are far from understood. Ongoing research in subma-
rine canyons has shown that due to the terrain heterogeneity, the
biological communities in submarine canyons vary compared to the ad-
jacent continental slope (Soetaert et al., 1991; Grémare et al., 2002);
even twin branches within the same canyon may exhibit a large differ-
ence in their community composition (Bianchelli et al., 2008) andflanks
of the same branch can exhibit different biological coverage due to dif-
ferences in substrate cover as a result of the orientation of the canyon
with regard to the overall oceanographic regime in the area (Van
Rooij et al., 2010; De Mol et al., 2011). This shows that submarine can-
yons are dynamic and varied from one another, which leads to a conclu-
sion that no variables should be overlooked or neglected without solid
reason. Amongst the potential factors that can be related to aspect, the
current regime is themost prominent. It will affect the sediment, organ-
ic matter and food source pathways into submarine canyons. Although
the community structures are influenced by food supply and food avail-
ability, which are strongly related to upper water column processes, in
canyon communities, variability caused by habitat heterogeneity and
water depth differences can easily override the effect of upper water
column processes (Ramalho et al., 2014).

Unfortunately, the lack of detailed current information in most sub-
marine canyonshinders theprocess of evaluating the influence of aspect
towards the community structure. Themarine landscapemap produced
here indicates the potential influence of the aspect variable. The next
step now is to evaluate this against the community composition.

4.4. Qualitative assessment

Aqualitative assessmentwasmade based on visual comparisonwith
sidescan sonar imagery expert interpretation. The comparison between
the marine landscape map and visual interpretation of the sidescan
sonar imagery supports that the automated method yields a useful
and meaningful marine landscape map. Manual delineation in this
study lacked in contiguity whereas the automated map provides a bet-
ter coverage for a continuous classification. Other manual interpreta-
tions may have the same coverage as automated classification but
they will be more time consuming to produce. The advantage of expert
interpretation is the ability to pick out individual features in sidescan
sonar that often overwhelm the automatedmethod. Since the automat-
ed method is restricted to its pixel size for the ability to detect geomor-
phic features, it produces amore generalizedmap in comparison.On the
other hand, with manual delineation there are still a percentage of fea-
tures that are overlooked due to human error. Classification and bound-
aries between classes are more consistent throughout the whole
automated process and thiswill be a useful contribution for further hab-
itat quantification at later stages.

5. Conclusion

This study offers another step forward towards a bettermarine land-
scape mapping technique that stands out for being a fully automated
approach. The philosophy behind this study is to ensure that the meth-
odology is objective and suitable for broad and regional scale mapping
based on seafloor geomorphic features that can be identified from dif-
ferent types of sonar data. Such information is often included as one of
the attributes for actual habitat classification in one of the nested levels
Fig. 11. An expert visual interpretation of Setúbal Canyon from sidescan sonar imagery collected
are zoomed figures of the visual interpretationmap from sidescan sonar imagery (left) in the se
to Fig. 8 for symbol legends in the automatedmarine landscapemap. The expert interpretation
features to be picked out there is always a possibility of it beingmissed due to human error. In
eralized (i.e.: small features are often grouped together).
of hierarchal habitat mapping schemes. Additionally, the method uti-
lizes bathymetric grid data that are the most common type of data ob-
tained for most seafloor related studies. Therefore many habitat
mappers will find this method useful, time and labour efficient. This
method could also be advantageous to monitor seafloor changes
through time. Dynamics of the marine environment changes seafloor
conditions, however, the objective approach allows monitoring an
area over a period of time with more confidence without bias from ex-
pert interpretations. Mapping marine landscape provides a surrogate
for biodiversity and prospectively this method could contribute to de-
sign marine environmental management measures.

The following conclusions are drawn: 1) The ESP method that was
designed to detect characteristic scales in geomorphometric analysis
for OBIA is transferable, and can be used to detect potential patterns in
bathymetric grids. The comparison of single scale and multiple scale
maps reveals the delineation of seafloor features associated with pat-
terns of real-world submarine canyon geomorphic features. 2) It is
shown that using multiple scale terrain analysis, appropriate discrimi-
nation between features of different ecological relevance is achieved re-
gardless of fine or broad scale features. Incorporation of both local and
broad length scale terrain indices enables a production of amarine land-
scape map that contains fine and detailed canyon features without
compromising the prominent and large scale geomorphic features.
3) Potentially this methodology is thought to be a useful guideline for
complex deep sea habitat mapping because it does not only delineate
seafloor geomorphic features for potential habitat but also points to
properties that might influence biodiversity in a complex terrain as
pointed out in the Discussion section on the importance of aspect as a
driving parameter in submarine canyon marine landscape delineation.
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