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Abstract: Vegetation cover can affect the lithological mapping capability of space- and 

airborne instruments because it obscures the spectral signatures of the underlying 

geological substrate. Despite being widely accepted as a hindrance, few studies have 

explicitly demonstrated the impact vegetation can have on remote lithological mapping. 

Accordingly, this study comprehensively elucidates the impact of vegetation on the 

lithological mapping capability of airborne multispectral data in the Troodos region, 

Cyprus. Synthetic spectral mixtures were first used to quantify the potential impact 

vegetation cover might have on spectral recognition and remote mapping of different rock 

types. The modeled effects of green grass were apparent in the spectra of low albedo 

lithologies for 30%–40% fractional cover, compared to just 20% for dry grass cover. 

Lichen was found to obscure the spectra for 30%–50% cover, depending on the spectral 

contrast between bare rock and lichen cover. The subsequent impact of vegetation on the 

remote mapping capability is elucidated by considering the outcomes of three airborne 

multispectral lithological classifications alongside the spectral mixing analysis and field 

observations. Vegetation abundance was found to be the primary control on the inability to 

classify large proportions of pixels in the imagery. Matched Filtering outperformed direct 
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spectral matching algorithms owing to its ability to partially unmix pixel spectra with 

vegetation abundance above the modeled limits. This study highlights that despite the 

limited spectral sampling and resolution of the sensor and dense, ubiquitous vegetation 

cover, useful lithological information can be extracted using an appropriate algorithm. 

Furthermore, the findings of this case study provide a useful insight to the potential 

capabilities and challenges faced when utilizing comparable sensors (e.g., Landsat 8, 

Sentinel-2, WorldView-3) to map similar types of terrain. 

Keywords: lithological mapping; vegetation; multispectral; geology; Troodos ophiolite 

 

1. Introduction 

Reflectance measurements in the visible/near-infrared (VNIR) to shortwave infrared (SWIR) 

wavelength region (0.4–2.50 μm) provide diagnostic information that can be used to identify rocks and 

their constituent minerals [1]. This information is primarily manifest as absorption features that appear 

at specific wavelengths in the reflectance spectra, corresponding to electronic or vibrational processes 

in constituent ions and molecular bonds, respectively [2,3]. The processes responsible for these 

wavelength-specific absorption features have been well-documented based on laboratory spectral 

analysis of numerous rocks and minerals [1,4–9]. 

Continuous access to a variety of spaceborne and airborne sensors operating in the VNIR-SWIR 

wavelength region has seen remote sensing utilized extensively as a tool for lithological  

mapping [2,10–18]. The standard approach to performing rapid remote mapping involves directly 

matching image pixel spectra to the reflectance spectra of outcropping lithologies using automated 

image classification algorithms. Spectral signatures for the lithologies can either be obtained through 

spectroscopic measurements [16] or extracted from the spectral imagery [13]. 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and airborne 

hyperspectral scanners have arguably been the most commonly utilized instruments for mapping 

lithologies during the last decade. However, useable up-to-date ASTER imagery has been unavailable 

since the SWIR detector failure in 2008, whereas hyperspectral imagery is very limited in terms of 

global coverage because of the need to specially commission airborne surveys. Nevertheless, with the 

recent launches of Landsat 8 and WorldView-3, and upcoming launch of ESA’s first Sentinel-2 

satellite in 2015, access to more contemporary imagery should increase considerably. With this in 

mind, existing datasets acquired using instruments with similar spectral configurations present timely 

opportunities for gaining useful insights into the anticipated capabilities and limitations of these new 

satellites for lithological mapping applications (e.g., [19]). 

Besides rocks with an inherent lack of spectral distinction, the presence of vegetation cover is 

arguably the most significant issue affecting the mapping capability of space- and airborne 

instruments, since vegetation cover can obscure or completely mask the spectral signatures of the 

underlying geological substrate [20,21]. As a consequence, most lithological mapping studies have 

focused on arid areas that are essentially barren of vegetation [3]. A few studies have, however, 

attempted to quantify the effect of fractional vegetation cover on the VNIR-SWIR reflectance spectra 
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of various lithologies using spectral mixing analysis. To summarize, just 10% green grass cover can 

cause its own spectral features to be imparted on the VNIR-SWIR reflectance spectra of underlying 

lithologies with low albedo [22]. Dry or dead grass cover can mask spectral features in the SWIR 

region for as little as 20%–30% fractional cover [23], while the VNIR-SWIR reflectance spectra of low 

albedo lithologies can be obscured by 20%–30% lichen cover [24]. A number of techniques have been 

developed to try to overcome the effects of vegetation on spectral discrimination of the underlying 

lithological substrate. These include techniques based on Principal Component Analysis [20], statistical 

“forced invariance” [25], spectral unmixing [26–31], use of ancillary data [32–34] and correction of 

diagnostic absorption depths using linear regression models [35,36]. Despite the significant body of 

research on overcoming the problems posed by vegetation cover, little attention has been paid to 

demonstrating how the effects observed through spectral mixing analysis translate to remotely sensed 

imagery. Although few studies have alluded to the impact vegetation can have on remote lithological 

mapping [22,24,37,38], fewer still have explicitly demonstrated this (e.g., [39]). More comprehensive 

case studies on the impact of vegetation would help to establish the limitations of various sensors for 

remote lithological mapping, and may therefore help to ultimately inform which sensor and mapping 

technique is most suitable for specific regions. 

The primary aim of this study is to explicitly determine the impact of vegetation on the lithological 

mapping capability of airborne multispectral imagery, for a well-documented case study area 

comprising upper ophiolitic rocks and sedimentary cover. To achieve this, representative spectral 

signatures for the lithological units are first established using a spectroradiometer. To help anticipate 

and quantify the potential impact that vegetation cover might have on mapping using the remotely 

sensed data, synthetic spectra are generated by linearly mixing the representative spectra of the 

lithologies with the spectra of several common vegetation types. The relevance of the modeled 

obscuring and masking effects of vegetation with respect to those in the remotely sensed imagery is 

then determined. Lastly, the impact of vegetation on the remote mapping capability is subsequently 

elucidated by considering the outcome of conventional airborne multispectral lithological classification 

approaches alongside the spectral mixing analysis and field observations. 

2. Study Area 

The study area is located in the northern foothills of the Troodos mountains, on the eastern 

Mediterranean island of Cyprus (Figure 1). Basement rocks consist of an uplifted slice of oceanic crust 

and lithospheric mantle—the Troodos ophiolite, which was created through sea-floor spreading [40,41]. 

The ophiolite forms a dome-like structure centered on Mt. Olympus (1952 m), and stratigraphically 

comprises a mantle sequence of harzburgites, dunites and a serpentinite diapir, a largely gabbroic 

plutonic complex, a sheeted dyke complex, a lava sequence and oceanic sediments [42]. The complex 

is exposed along the northern slopes of the range, with the shallowest stratigraphic levels exposed at 

decreasing elevation towards the north. The study area encompasses the contact between the lava 

sequence and overlying sedimentary cover sequences. The four main lithological units that outcrop 

within the 16 km2 study area are the Basal Group (generally comprising 80%–90% dykes and 10%–20% 

lavas), pillow lavas (divided into Upper and Lower sub-units), late Cretaceous to early Miocene chalky 

marls of the Lefkara Formation, and alluvium-colluvium derived from a variety of parent rock types. 
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The main primary and secondary constituent minerals for each lithological unit (see table in Figure 1) 

were identified based on petrological descriptions by Gass [43]. Due to the chemistry and formation of 

the rocks, there are some inherent similarities in the mineralogical compositions of the lithological 

units, especially within the volcanic sequence and between alluvial-colluvial sediments and their 

parent rocks. Of the two published geological maps of the region, the most recent, but coarser 

1:250,000-scale shown in Figure 1 is considered to be the most geologically accurate [44].  

Figure 1. Location and geology of the Troodos ophiolite, Cyprus. Primary and secondary 

constituent minerals are based on the petrological descriptions by Gass (1960). Digital 

geology was provided by the Geological Survey Department of Cyprus. 

 

Vegetation cover in the study area is ubiquitous, typically covering 30%–90% of the surface at 

length scales greater than 1 m (Figure 2). In terms of decreasing abundance, the predominant 

vegetation types are dry grass, lichen cover on outcrops, green grass, crops (e.g., cereals, olive groves) 

and scrub [45]. Less common vegetation cover consists of isolated pine and oak trees, through to dense 

thickets and copses. 

Anthropogenic influences on the landscape include the disused Mathiati mine and spoil heaps in the 

southwest, Agia Varvara Lefkosias village in the north, and agricultural activity largely confined to the 

northwest. Despite the complexity of the terrain, the geology of this area is well-understood and 

documented, therefore making it an excellent case study area for highlighting the impact of vegetation 

cover on the remote lithological mapping capabilities. 
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Figure 2. Field photographs showing the range of vegetation types and abundances 

typically found growing on the four main lithologies in the study area. Predominant 

vegetation associations are: alluvium-colluvium—crops and grasses; Basal Group and 

Lefkara Formation—grasses and scrub; pillow lavas—lichen and scrub.  

 

3. Methods 

The methodology employed in this study to elucidate the impact of vegetation cover on mapping of 

lithologies using remotely sensed spectral imagery comprised three main aspects. These were:  

(1) establishing spectral signatures for the lithological units, (2) quantifying the effects of vegetation 

cover through spectral mixing analysis, and (3) investigating the impact on classifications performed 

using airborne multispectral imagery. 

3.1. Spectral Signatures of the Lithological Units 

Reflectance spectra of rock and soil samples from the study area were established for input to the 

spectral mixing analysis and subsequent mapping using remotely sensed spectral imagery. Spectral 

measurements of approximately 40 samples were made using an Analytical Spectral Devices (ASD) 

FieldSpec® Pro spectroradiometer that records reflected energy in the 0.35–2.50 μm wavelength 

region. To account for local mineralogical variation within lithologies, multiple samples from across 

the study area were collected and analyzed for each unit. Numerous spectra were acquired for each 

sample to account for intra-sample spectral variation caused by heterogeneity in both the surface 

mineralogy and micro-topography. To illustrate the effects of vegetation on spectral recognition of the 

lithologies, care was taken to ensure that only completely vegetation-free samples were analyzed. 

Consequently, the observed spectral characteristics only reflect the elemental and mineralogical 

composition of the lithologies. The resulting ~300 reflectance spectra were converted to absolute 

reflectance using a calibrated Spectralon® panel, and then processed to establish average fresh and 

weathered surface spectra (where appropriate) for each lithological unit. 
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3.2. Modeling the Impact of Vegetation on the Spectra of the Four Lithologies 

Due to the presence of ubiquitous, abundant vegetation cover at length scales of 1 m or greater, the 

majority of pixels in the remotely sensed imagery—and thus their spectra—will encompass mixtures 

of bare rock/soil and vegetation. To help quantify the effects of sub-pixel (fractional) vegetation cover 

on the spectra of the lithologies, and subsequently anticipate its impact on mapping using the remotely 

sensed data, synthetic reflectance spectra were generated by mixing the representative spectra of the 

lithologies with the spectra of common vegetation types [22–24,35]. Spectral mixing (or unmixing) is 

based on the principle that the resulting spectrum for an image pixel containing a mixture of several 

distinct materials will be a combination of all of their individual reflectance spectra [46]. Spectral 

mixing models usually consider composite image pixel spectra to be a linear combination of the 

spectra of each material, weighted according to their fractional abundances [47]. For an image pixel 

containing two different surface materials, lithological unit U and vegetation type V, this model can be 

written as: 
( ) ( ) ( )λλλ VVUUobs RXRXR +=  (1)

and 
1=+ VU XX  (2)

where Robs(λ) is the observed image pixel spectrum, XU is the relative proportion of lithology U within 

the pixel, RU(λ) is the sensor-convolved reflectance spectrum of lithology U, XV is the relative 

proportion of vegetation type V within the pixel, and RV(λ) is the sensor-convolved reflectance 

spectrum of vegetation type V. 

Synthetic spectra were generated using this two end-member model to mix the sensor-convolved 

spectrum of each lithological unit with increasing proportions of the spectrum of the vegetation types 

commonly found growing on each unit. The vegetation types comprised lichen, green grass and dry 

grass, which are the most abundant in the study area. 

3.3. Remote Lithological Mapping and the Impact of Vegetation  

The capability of airborne multispectral imagery for lithological mapping of the study area was 

assessed using a standard direct approach of matching the image pixel spectra to the spectral signatures 

of the lithologies. In summary, this approach comprised data calibration, image classification, and an 

assessment of the classification performance. The impact of vegetation on the lithological mapping 

capability was subsequently investigated by considering the classification results alongside 

information on vegetation abundance. A more detailed description of each methodological step is 

provided below.  

3.3.1. Airborne Multispectral Imagery 

Airborne multispectral imagery for the study area was acquired using a Daedalus 1268 Airborne 

Thematic Mapper (ATM) instrument in May 2005. The ATM instrument is a passive multispectral 

scanner that measures electromagnetic radiation in eleven spectral wavebands located in the visible to 

thermal infrared wavelength range, with a spectral configuration similar to that of the Landsat 8, 

Sentinel-2 and WorldView-3 satellites (Table 1). Five overlapping flight-lines of imagery were 
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acquired, evaluated and processed to correct for issues such as atmospheric haze and across-track 

brightness differences, resulting in a single image mosaic providing full coverage of the study area at a 

spatial resolution of 4 m [34]. Wavebands 1 and 11 were discarded from further analysis since these lie 

outside of the VNIR-SWIR wavelength range of interest. 

Table 1. Spectral configuration of the Airborne Thematic Mapper (ATM) sensor in 

comparison with Landsat 8, Sentinel-2 and WorldView-3 satellites. 

ATM 

Band 

Wavelength 

(μm) 
Spectral Region 

Equivalent 

Landsat 8 Band 

Equivalent 

Sentinel-2 Band 

Equivalent 

WorldView-3 

Band 

1 0.42–0.45 Ultraviolet/blue 1 1 Coastal 

2 0.45–0.52 Blue 2 2 Blue 

3 0.52–0.60 Green 3 3 Green 

4 0.60–0.62 Yellow/orange   Yellow 

5 0.63–0.69 Red 4 4 Red 

6 0.69–0.75 Near-infrared  5 and 6 Red Edge 

7 0.76–0.90 Near-infrared 5 7, 8, 8a Near-IR1 

8 0.91–1.05 Near-infrared  9 Near-IR2 

9 1.55–1.75 Shortwave infrared 6 11 SWIR-2,3,4 

10 2.08–2.35 Shortwave infrared 7 12 SWIR-5,6,7,8 

11 8.50–13.00 Thermal infrared 10 and 11   

3.3.2. Data Calibration 

In order to match the ATM image pixel spectra to the spectroscopy-derived spectral signatures of 

the lithologies, it is essential to ensure that the datasets are compatible. To achieve this, the spectral 

signatures of the lithologies were first convolved to the ATM wavebands (bands 2–10) by using the 

Spectral Library Resampling tool in ENVI 4.8 in conjunction with a filter function file containing the 

sensor response (bandpass) for each ATM waveband. Next, the ATM imagery was converted from  

at-sensor radiance to absolute reflectance. With atmosphere correction via rigorous radiative transfer 

models ruled out due to a lack of atmospheric measurements at the time of the airborne survey, the 

correction was instead achieved using the Empirical Line method [48]. The Empirical Line method 

performs data calibration by exploiting the linear relationship between pixel values (digital numbers; 

DNs) in the imagery and the reflectance of surface materials found within the scene [49]. Calibration 

requires at least two ground surfaces with contrasting albedos [50,51], with accurate calibration results 

attainable using between 2 and 4 different surfaces [52,53]. Successful Empirical Line calibration of 

the ATM imagery to absolute reflectance was performed here in ENVI 4.8 using three homogenous 

surfaces of low, moderate and high albedo.  
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3.3.3. Image Classification 

Lithological maps were generated using a conventional approach of classifying the calibrated ATM 

multispectral imagery in conjunction with the ATM-convolved spectral signatures of the lithologies. 

Classification was performed using three different algorithms that are typically used for lithological 

mapping applications: Spectral Angle Mapper, Matched Filtering and Spectral Feature Fitting. 

The Spectral Angle Mapper (SAM) algorithm calculates the spectral similarity between an image 

pixel spectrum and a reference spectrum as the angle between their vectors in a space with 

dimensionality equal to the number of bands [46]. It is widely considered to be relatively insensitive to 

gain factors (e.g., variations in topography and illumination) because these only alter the lengths of the 

vectors and not the angle between them [10]. The SAM algorithm was applied to the ATM imagery by 

using the ATM-convolved spectral signatures as the reference spectra. Spectral angle values in the 

output “rule image” for each reference spectrum range between 0 and π/2 radians, signifying a perfect 

match and no match, respectively. Pixels closely matching each reference spectrum were extracted by 

applying a 0–0.16 radian threshold (i.e., within 10% of a perfect match) to each rule image.  

The Matched Filtering (MF) algorithm is an orthogonal sub-space projection operator [54], capable 

of identifying sub-pixel abundances of reference spectra through partial unmixing of image pixel 

spectra [14]. Utilizing the Minimum Noise Fraction (MNF) Transformation [55], the MF algorithm 

first maximizes the spectral response of the target material in each image pixel whilst simultaneously 

suppressing that of the interfering background materials, before then comparing the enhanced spectrum 

of each pixel to that of the reference spectrum [12]. The MF output is a grey-scale MF score image for 

each reference spectra, with pixel values (MF scores) of 0 or less corresponding to the background 

materials (0% abundance) and scores near to 1 representing a close match (100% abundance) to the 

reference spectrum [56,57]. A threshold was applied to each MF-score image in order to extract pixels 

that represent a ≥90% match to each of the reference spectra. 

Spectral Feature Fitting (SFF) performs classification by comparing continuum-removed pixel 

spectra to the continuum-removed reference spectra using a two-stage approach, comprising image 

scaling and least-squares fitting [58–60]. By utilizing the continuum-removed spectra, the SFF 

algorithm is less sensitive to variations in illumination, grain size and impurities [61–63]. Pixels 

closely matching each reference spectrum were extracted by applying a threshold to a “fit” image, 

which was computed as the ratio of the “scale” and root-mean-square (RMS) error images output by 

the SFF algorithm. In each case, the appropriate threshold was defined based on the overall spatial 

coherence between classified pixels and the known geology. Due to a lack of spectral coverage of the 

ATM sensor in the SWIR wavelength region, the SFF algorithm was applied across the entire VNIR-SWIR 

range covered by ATM bands 2–10. This helps retain the broader “shape-of-the-curve” spectral 

features that are often lost through continuum removal targeted at absorptions within narrower 

wavelength ranges [18]. Considering the spectral sampling and resolution of the ATM sensor, it is 

likely to be these broader features that prove more diagnostic of the lithologies. 
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3.3.4. Classification Performance 

Lithological classification performances of the three algorithms were evaluated through both a 

qualitative visual assessment and a quantitative accuracy assessment. The qualitative assessment 

involved comparing the classification results with observations made in the field. The accuracy was 

assessed quantitatively by deriving confusion matrices, which detail the comparison of the known 

lithological class identities of a set of validation pixels to the classes assigned through classification [64]. 

Validation pixels were selected from several regions of interest (ROIs) that were defined to represent 

each lithological unit. The ROIs were defined across the study area based purely on the known 

geology—i.e., completely independent of the type or abundance of vegetation cover—by using 

extensive field observations in conjunction with high-resolution QuickBird satellite imagery. Validation 

pixels were then sampled from the ROIs using a random stratified sampling protocol to ensure 

proportional representation and avoiding spatial autocorrelation within the validation dataset [65,66],  

and to ensure that the chosen pixels represent a range of vegetation abundances for subsequent 

analysis. A total subset of 12,946 validation pixels (≥2451 pixels for each lithology) was determined to 

be a statistically valid sample size for estimating the accuracy of the entire mapped scene [34].  

3.3.5. Vegetation Abundance 

A vegetation index was derived from the calibrated ATM imagery to help investigate the impact of 

vegetation abundance on spectral recognition and remote mapping of the lithologies. The Soil-Adjusted 

Vegetation Index (SAVI) of Huete [67] was selected for this purpose because it is directly proportional 

to fractional vegetation cover and minimizes soil background influences [68], thus making it more 

suitable for use in arid or semi-arid environments than other common indices [69]. The SAVI is 

derived using: 

( )
LBB

BB
L

57

57

++
−

+= 1SAVI  (3)

where B5 and B7 is the reflectance in the calibrated ATM bands 5 and 7, respectively, and L = 1.0, 0.5 or 

0.25 for increasing vegetation densities. An intermediate value of L = 0.5 was selected to represent the 

typical vegetation density observed in the study area. Resulting SAVI values were scaled between 0 and 1, 

corresponding to 0–100% fractional vegetation cover within any given pixel. 

4. Results and Discussion 

4.1. Spectral Signatures of the Lithological Units 

Representative VNIR-SWIR reflectance spectra established for the fresh and weathered surfaces of 

the four main lithologies are shown in Figure 3. Rocks of the Basal Group exhibit low albedo, with 

fresher surfaces (Figure 3a) exhibiting a higher albedo than weathered surfaces (Figure 3b). Dark to 

opaque and spectrally featureless minerals such as hypersthene, diopside, labradorite and magnetite 

account for the low albedo of Basal Group rocks. The notable, observed difference in albedo between 

fresh and weathered surfaces is likely due to a weathering-induced decrease in the grain size, which 

subsequently decreases the reflectance across the VNIR-SWIR wavelength region [70]. The broad Fe-O 
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charge-transfer absorption feature at wavelengths less than 0.55 μm is associated with goethite [2], 

which occurs in Basal Group rocks following the oxidation of fine-grained sulphides such as pyrite [71]. 

The prominent absorption band centered on 2.30 μm, and multiple weak absorption features at 2.25 μm, 

2.35 μm and 2.40 μm, are likely due to a combination of OH stretching with the Mg-OH bending  

mode [1,12]—possibly attributed to the occurrence of chlorite [72].  

Figure 3. Spectral signatures of the four main lithologies. Reflectance spectra for (a) fresh 

rock surfaces, (b) weathered rock surfaces and (c) alluvium-colluvium. 

 

Figure 4. Spectral signatures of the four main lithologies convolved to the ATM 

bandpasses (wavebands indicated by red text). (a) Basal Group, (b) pillow lavas, 

(c) Lefkara Formation and (d) alluvium-colluvium. Spectra vertically offset for clarity. 
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Two types of pillow lavas—“Pillow lava A” (PLA) and “Pillow lava B” (PLB)—were identified 

during spectral analysis of the samples (Figure 3a,b). Through comparison with the spectra acquired by 

van der Meer et al. [10] using a Portable Infrared Mineral Analyzer, the weathered PLA spectrum is 

consistent with that of the “Upper Pillow Lavas”, while the weathered PLB spectrum resembles that of 

the “Lower Pillow Lavas”. Fresh and weathered PLA surfaces exhibit a broad charge-transfer 

absorption feature at wavelengths less than 0.55 μm. This is most likely associated with Fe-O in 

hematite [73], which also contributes to the pink color of the extensive calcite veining in the “Upper 

Pillow Lavas” [43]. The weak absorption near 2.16 μm exhibited by weathered surfaces and a common 

stronger broad feature near 2.34 μm are due to respective combinations and overtones associated with 

the CO3
2- ion in calcite [1]. The general appearance of the PLB spectra closely resembles that of the 

Basal Group. This is unsurprising because the PLB are consistent with the “Lower Pillow Lavas”, and 

the distinction between the “Lower Pillow Lavas” and Basal Group is primarily based on dyke 

abundances rather than mineralogy [74]. As with Basal Group rocks, goethite (limonite) is responsible 

for the broad Fe-O charge-transfer band at wavelengths less than 0.55 μm in the spectra of both fresh 

and weathered surfaces [1]. Molecular water absorption features observed at 1.42 μm and 1.91 μm 

have a much smaller band depth than those exhibited by PLA rocks. Since weathering enhances these 

water absorption features [10], the greater band depths exhibited by PLA rocks are probably the result of 

more prolonged weathering due to their higher stratigraphic position. A 2.26 μm, 2.30 μm and 2.34 μm 

absorption triplet in the weathered PLB spectrum is attributed to combinations of Al,Fe,Mg-OH 

absorptions, characteristic of celadonite [75]. 

Lefkara Formation rocks exhibit a high albedo (Figure 3a,b) due to the predominance of carbonate 

minerals such as calcite and aragonite. The occurrence of these minerals is indicated by the broad 

absorption featured centered on 2.34 μm and the associated feature near 2.50 μm, which represent 

combination and overtone bands of the CO3 fundamentals [9]. The weak absorption superimposed on 

the broad feature at 2.21 μm is associated with the Al-OH bond in clay minerals such as kaolinite, illite 

and montmorillonite [9,75].  

The alluvium-colluvium spectra identified from the samples (Figure 3c) were found to comprise 

regolith material derived from the Lefkara Formation (“Alluvium-colluvium A”), fanglomerate 

(“Alluvium-colluvium B”) and pillow lavas (“Alluvium-colluvium C”). As anticipated, the overall 

appearance of the spectra for “Alluvium-colluvium A” and “Alluvium-colluvium C” are similar to 

those of their parent rocks. However, the notable absence of the broad 2.19–2.38 μm absorption 

centered on 2.34 μm and associated feature at 2.50 μm in “Alluvium-colluvium A” suggests that 

weathering processes have removed the CO3 minerals from the parent Lefkara Formation rocks during 

regolith formation. Likewise, weathering of the pillow lavas (particularly PLA) probably accounts for the 

absence of combinations and overtones of CO3 fundamentals in calcite in the “Alluvium-colluvium C” 

spectrum. Regolith of the “Alluvium-colluvium B” originates from continental fanglomerates, which 

are generally derived from heterogeneous mixtures of the igneous rocks [43]. The spectrum exhibits 

several familiar absorption features linked to the presence of iron and clays. The absorption feature 

near 0.48 μm superimposed onto a broad charge-transfer band at wavelength less than 0.58 μm, and the 

absorption at 0.91 μm are typical ferric iron features of goethite (limonite). A prominent absorption near 

2.21 μm and an addition associated weak feature near 2.25 μm resemble Al-OH absorptions in illite [58]. 
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Convolving the spectral signatures of the lithologies to the ATM bandpasses leads to a considerable 

loss of information on many diagnostic absorption features, particularly in the SWIR region (Figure 4). 

Nonetheless, the albedo and general shape of the spectra are retained, which should still enable 

discrimination between contrasting lithologies, such as the Lefkara Formation and Basal Group. 

Discrimination of the alluvium-colluvium and the parent rocks, and Basal Group and Pillow lavas, 

however, is likely to be more difficult due to their spectral similarity in the ATM-convolved spectra. 

4.2. Impact of Vegetation on Spectral Recognition of the Lithologies 

The effects of vegetation on the ATM-convolved spectra of the lithologies were investigated by 

linearly mixing their spectra with the appropriate vegetation spectra for increasing amounts of 

fractional cover. The resulting synthetic spectra are shown in Figures 5–7.  

Figure 5. Modeled effect of increasing green grass abundance on the ATM-convolved 

spectra of the (a) Basal Group, (b) “Pillow lava A” (PLA), (c) “Pillow lava B” (PLB), 

(d) Lefkara Formation and Alluvium–colluvium (e) “A”, (f) “B” and (g) “C”. Spectra 

vertically offset for clarity.  

 

The effects of green grass on the spectra are pronounced for all lithologies (Figure 5), with the most 

notable being the impartation of a characteristic chlorophyll absorption feature at 0.65–0.70 μm, and 

moderate and high reflectance peaks at 0.55 μm and 0.80–0.90 μm, respectively. The combined effect 

of the 0.65–0.70 μm absorption feature and 0.55 μm reflectance peak on spectral recognition of the 

lithologies can be quantified by considering how increasing vegetation fractional cover alters the 

reflectance ratio for ATM waveband 3 (B3) and 5 (B5). The B3/B5 ratio reveals curvilinear responses to 



Remote Sens. 2014, 6 10872 

 

 

increasing vegetation abundance for all lithologies, increasing with upward concavity from ~0.8 for 0% 

fractional green grass cover to 1.6 for 100% (Figure 8a). A ratio ≤ 1.0 for all lithologies is observed for 

abundances of 0–30%, indicating that the lithologies are generally not unduly affected by the 0.55 μm 

and 0.65–0.70 μm features when green grass represents a small proportion of the spectral mixture. 

Between 30% and 40% cover, however, the B3/B5 ratio for the low albedo lithologies (i.e., Basal Group 

and “Alluvium-colluvium C”) attains to 1.0 due to the presence of these spectral features. This 

corresponds to significant obscuring, and subsequent masking of the spectra of these lithologies with yet 

further increases in green grass cover. The spectra of the moderate albedo lithologies (i.e., PLA, PLB, 

“Alluvium-colluvium A”, “Alluvium-colluvium B”) become masked by the 0.55 μm and 0.65–0.70 μm 

spectral features of green grass at fractional cover of 50%–65%. The Lefkara Formation spectrum is 

less sensitive to green grass because of its high albedo; only becoming completely masked when 

fractional cover reaches 75%. These findings are consistent with those of Siegal and Goetz [22] and 

Murphy and Wadge [23], which report that the spectra of lower albedo rocks and soils (i.e., andesite) 

are masked by 30% green grass cover, whereas rocks and soils with moderate (i.e., limestone) and 

higher albedos (i.e., granite) are masked by 50%–60% and 70%–80% cover, respectively. 

Figure 6. Modeled effect of increasing dry grass abundance on the ATM-convolved 

spectra of the (a) Basal Group, (b) “Pillow lava A” (PLA), (c) “Pillow lava B” (PLB),  

(d) Lefkara Formation and Alluvium-colluvium (e) “A”, (f) “B” and (g) “C”. Spectra 

vertically offset for clarity.  
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Figure 7. Modeled effect of increasing lichen abundance on the ATM-convolved spectra 

of the (a) “Pillow lava A” (PLA), (b) “Pillow lava B” (PLB) and (c) Lefkara Formation. 

Spectra vertically offset for clarity.  

 

The predominant effect of dry grass cover is to produce a change of the direction of the slope in the 

reflectance spectra of all lithologies at 0.95–1.70 μm (Figure 6). The response of this characteristic 

change of slope to increasing fractional dry grass cover can be quantified by analyzing the ATM B8/B9 

ratio. Lithological variations are observed in the response of the B8/B9 ratio for increasing fractional 

dry grass abundance (Figure 8b). Moderate-to-high albedo lithologies (i.e., “Alluvium-colluvium A”, 

Lefkara Formation, PLA) exhibit concave-up curvilinear responses in B8/B9 for increasing fractional cover, 

whereas the remaining low-to-moderate albedo units exhibit linear or slightly concave-down responses. 

Spectral recognition of the underlying lithologies is possible for fractional dry grass cover < 20% while 

B8/B9 has a value < 1.0. At approximately 20% dry grass cover, the spectra of the lower albedo 

“Alluvium-colluvium C” and PLB units are significantly obscured when the slope in the reflectance 

spectra at 0.95–1.70 μm has a zero gradient. With the exception of the PLA unit, all remaining spectra 

become obscured at 35%–40% cover. The inherently low B8/B9 ratio for PLA results in this unit being 

less affected by the dry grass spectra until fractional cover reaches 65%. Again, these observations 

concur with those of Murphy and Wadge [23], which indicated that the SWIR spectral features can be 

masked by as little as 20%–30% dry or dead vegetation for lower albedo soils, and 50%–60% for 

granitic soils with a higher albedo. The observations of both the current study and that of Murphy and 

Wadge [23] suggest that the obscuring effect of dry grass is generally more significant than that of 

green grass. In contrast, Siegal and Goetz [22] concluded that green vegetation has a greater obscuring 

effect than dry or dead vegetation across the full VNIR-SWIR wavelength range, with low-to-moderate 

albedo rocks still recognizable despite 60% dry sage cover. Indeed, across this wider wavelength 

range, the more visually pronounced spectral features in the VNIR region—particularly the reflectance 

peak at 0.80–0.90 μm—do suggest that green grass has a greater impact on the spectra of the lithologies 

than dry grass (see Figures 5 and 6). Nevertheless, the variation in the observed effects between these 

studies can be mainly attributed to their largely disparate combinations of lithology and vegetation 

species, in addition to differences in the spectral range and resolution of the spectroscopic measurements. 
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Figure 8. Modeled responses of ATM band ratios to increasing abundance of (a) green 

grass, (b) dry grass and (c) lichen.  

 

Lichen cover affects spectral recognition of its associated lithologies by imparting a subtle 

chlorophyll absorption feature near 0.65–0.70 μm (Figure 7). The response of this subtle feature to 

increasing lichen cover can be quantified using the ATM B5/B4 ratio (Figure 8c). For the pillow lavas 

(PLA and PLB), the response is linear, decreasing towards a value of 1.02 as the absorption feature at 

0.65–0.70 μm becomes progressively more pronounced in the composite spectra. On the other hand, 

the Lefkara Formation exhibits a slight decreasing concave-down trend. In keeping with the findings of 

Satterwhite et al. [37], the effect of lichen is dependent on the spectral contrast between the lithology 

and the lichen covering its surface, with a higher spectral contrast associated with a greater effect. 

Specifically, increased lichen cover acts to increase the reflectance of the low albedo PLB spectrum 

and decrease that of the high albedo Lefkara Formation (i.e., the units with high spectral contrast), 

while having a lesser effect on the PLA (with low spectral contrast). The B5/B4 responses further 

corroborate this spectral contrast-effect relationship by revealing that the 0.65–0.70 μm absorption 

affects the spectra of the Lefkara Formation and PLB at much lower fractional lichen cover than for 

the PLA. This chlorophyll absorption feature is significantly pronounced in the spectra of the PLA and 

Lefkara Formation for fractional lichen abundance of 30%, before complete masking occurs at 

approximately 50% for PLB and 75% for the Lefkara Formation. Due to their very similar reflectance in 

the VNIR-SWIR range, the PLA spectrum is initially more resistant to the effect of the 0.65–0.70 μm 

absorption feature until lichen abundance reaches 50%. Complete masking of the PLA spectrum 

occurs when fractional lichen cover exceeds 75%. Similarly, Ager and Milton [24] reported that the 

spectra of lithologies (i.e., hornfels and slates) with high spectral contrast between rock and lichen 

were obscured by 20%–30% lichen cover and masked by 40%–50% cover. Furthermore, granite with 

little spectral contrast was found to be generally obscured by 50%–60% lichen cover and completely 

masked at cover exceeding 80%. 

4.3. Implications for Spectral Recognition Using Airborne Multispectral Imagery 

Synthetic spectral mixing analysis enables the theoretical effects of vegetation on the spectra of the 

lithologies to be studied. The relevance of the modeled effects above with respect to those in the 

imagery was determined by computing the response of the image-derived ATM B8/B9 band ratio to 

increasing vegetation cover, for each lithology. To achieve this, the B8/B9 band ratio and corresponding 

SAVI values were extracted for a subset of pixels known to correspond to each of the lithologies on 
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the ground; the responses were subsequently modeled using regression analysis. The B8/B9 band ratio 

was chosen to be consistent with SAVI values, which should primarily reflect the abundance of dry 

grassy vegetation contained within each pixel, since this is the dominant type of vegetation cover in the 

study area.  

Figure 9. Image-derived responses of the ATM B8/B9 band ratio to increasing Soil-Adjusted 

Vegetation Index (SAVI), where SAVI reflects the abundance of predominantly dry  

grassy vegetation.  

 

The responses of the ATM B8/B9 band ratios to increasing SAVI (Figure 9) show marked similarities 

to those predicted by synthetically mixing the lithologies with dry grass. Concurrent with the modeled 

responses (see Figure 8b), the moderate-to-high albedo lithologies (i.e., “Alluvium-colluvium A”, 

Lefkara Formation, PLA) exhibit concave-up curvilinear responses in B8/B9 for increasing fractional 

cover, whereas the remaining low-to-moderate albedo units exhibit linear or slightly concave-down 

responses. Despite this, the impact of dry grass in the imagery seems to be slightly greater than 

predicted, with obscuring of the lithologies occurring for 15% less fractional cover, on average, than 

their theoretical responses. Such relatively minor deviations could be due to noise in the data [26], or 

due the influence of non-dry grass vegetation on both the ATM B8/B9 band ratio and SAVI. Although 

spectral unmixing of the ATM imagery could potentially be used to extract accurate sub-pixel 

abundances of each specific vegetation type, rigorous application of this technique was hindered by the 

lack of representative spectral end-members for some of the minor scene constituents (e.g., roads, mine 

spoil heap, buildings, trees). Nevertheless, the overall agreement indicates that the theoretical effects of 

vegetation determined using synthetic spectral mixing analysis are representative of those in the imagery. 

4.4. Impact of Vegetation on Remote Lithological Mapping 

Lithological classification of the calibrated ATM multispectral imagery was undertaken in 

conjunction with the ATM-convolved spectral signatures shown in Figure 4. Following classification, 

pixels matching each reference spectrum were grouped according to the four main lithologies. The 

three lithological maps generated using the SAM, MF and SFF classification algorithms are shown in 
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Figure 10a–c, respectively. The corresponding overall and individual lithological class accuracies 

associated with these maps are summarized in the confusion matrices shown in Table 2. 

Figure 10. Lithological maps generated using the (a) Spectral Angle Mapper (SAM), 

(b) Matched Filtering (MF) and (c) Spectral Feature Fitting (SFF) classification algorithms.  

 

Table 2. Confusion matrices for the lithological maps derived using the SAM, MF and 

SFF algorithms. AC, Alluvium-colluvium; BG, Basal Group; LF, Lefkara Formation; PL, 

pillow lavas; UA, user’s accuracy, PA, producer’s accuracy; K, Kappa coefficient.  

SAM  Validation Data 
Row Total UA (%) 

Mapped as  AC BG LF PL 

Unclassified  3299 2544 1969 1875 9687 - 
AC  589 542 393 1046 2570 22.9 
BG  1 61 12 93 167 36.5 
LF  34 2 50 52 138 36.2 
PL  164 51 27 142 384 37.0 
Column total  4087 3200 2451 3208   
PA (%)  14.4 1.9 2.0 4.4   
Overall accuracy = 6.5%     
K = −0.01      
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Table 2. Cont. 

MF  Validation Data 
Row Total 

UA 
(%) Mapped as  AC BG LF PL 

Unclassified  4006 3052 2315 2960 12333 - 
AC  31 0 65 21 117 26.5 
BG  0 0 0 17 17 0.0 
LF  50 84 67 0 201 33.3 
PL  0 64 4 210 278 75.5 
Column total  4087 3200 2451 3208   
PA (%)  0.8 0.0 2.7 6.5   
Overall accuracy = 2.4%     
K = 0.01     

SFF  Validation Data 
Row Total 

UA 
(%) Mapped as  AC BG LF PL 

Unclassified  3964 3947 2445 2690 12046 - 
AC  10 65 0 79 154 6.5 
BG  1 1 0 1 3 33.3 
LF  16 49 3 100 168 1.8 
PL  96 138 3 338 575 58.8 
Column total  4087 3200 2451 3208   
PA (%)  0.2 0.0 0.1 10.5   
Overall accuracy = 2.7%     
K = 0.01     

The overall accuracy statistics suggest that all three algorithms result in the generation of inaccurate 

maps, with the SAM algorithm achieving the highest overall accuracy (6.5%), followed by SFF (2.7%) 

and MF (2.4%). The poor performance is corroborated by values of ~0.00 for the Kappa coefficient (K), 

which indicate that these results could easily be achieved through random classifications [76]. Although 

partially attributable to confusion between inherently similar lithologies (e.g., alluvium-colluvium and its 

parent rocks), the low user’s and producer’s accuracies for all algorithms are heavily influenced by the 

vast proportion of unclassified validation pixels. The proportion of validation pixels left unclassified in 

each of the three classifications is 75%–95%, which is also mirrored throughout the entire study area 

with 66%–92% of all scene pixels remaining unclassified. Only a relatively minor proportion of these 

unclassified pixels can be accounted for by the occurrence of non-lithological surface materials (e.g., 

mine spoil, roads, buildings). In all three cases, the proportion of unclassified pixels could be reduced 

by adjusting the classification threshold values that were used to extract closely matching pixels. For 

instance, in the case of the SAM algorithm, the mapping results could potentially be improved 

somewhat by defining the angle threshold for each reference spectrum separately [77]. However, 

achieving a considerable reduction in the proportion of unclassified pixels would require significant 

relaxation of the thresholds, which will undoubtedly further increase the confusion between classes and 

decrease the overall accuracy. Note that the readiness of the SAM algorithm to classify a relatively high 

proportion of pixels, albeit incorrectly, suggests that the angle threshold is already too low in this instance. 
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Table 3. SAVI statistics and statistical difference in SAVI between classified and 

unclassified pixels as determined using the unequal variance t-test.  

  Classified Unclassified 
p-value

 Classifier  n Mean SD n Mean SD 

Validation pixels SAM  3259 0.30 0.13 9687 0.67 0.19 <0.0001
 MF  613 0.23 0.15 12,333 0.59 0.23 <0.0001
 SFF  900 0.29 0.11 12,046 0.60 0.23 <0.0001

All scene pixels SAM  259,230 0.27 0.13 498,570 0.63 0.22 <0.0001
 MF  78,089 0.20 0.18 679,711 0.54 0.24 <0.0001

 SFF  57,279 0.26 0.11 700,521 0.53 0.26 <0.0001

A visually perceived spatial correlation between high SAVI values and unclassified pixels in the 

scene can be confirmed statistically (Table 3), suggesting that the large number of unclassified pixels is 

linked to the obscuring effects of vegetation cover. To investigate this further, ATM B8/B9 band ratio and 

SAVI values were analyzed for a random sample of scene pixels classified as one of the four lithologies 

using the SFF and MF algorithms (Figure 11). Whereas unclassified pixels in the SFF-derived map have a 

large range of 0.4–3.9 in B8/B9, classified pixels correspond to B8/B9 values of < 1.0 (Figure 11a). This is 

explicable because SFF is a direct spectral matching classifier, and the results of the synthetic spectral 

mixing analysis reveal that the spectra of the lithologies are significantly obscured at B8/B9 values ≥ 1.0. 

The maximum SAVI values for each lithology indicate the fractional abundances above which spectral 

recognition is no longer possible due to obscuring and masking by dry grassy cover. The fractional 

abundance limits for the four lithologies are consistent with those predicted through synthetic spectral 

mixing analysis. Again, this is expected because SFF is a direct spectral matching technique and the 

spectra of the lithologies are no longer recognizable above these abundances. In comparison, the MF 

algorithm appears capable of classifying pixels with B8/B9 values of > 1.0 and higher abundances of 

dry grasses (Figure 11b). On average, the maximum fractional abundances are 25% higher than those 

associated with the SFF algorithm, with classification of the Lefkara Formation, alluvium-colluvium 

and pillow lavas still possibly for cover ≥ 70%. The enhanced capability of the MF algorithm is due to 

its ability to partially unmix the composite spectra to separate the contribution of vegetation from that 

of the underlying lithology. Despite this added potential, the MF map does contain a higher number of 

unclassified pixels than the SAM-derived map (Table 3). Although classifying more conservatively, 

the MF algorithm outperforms both the SAM (25.8%; K = 0.00) and SFF (39.1%; K = 0.00) 

algorithms considerably in terms of overall mapping accuracy, assigning 50.2% (K = 0.30) of the 

classified validation pixels to the correct lithology. When unclassified pixels are excluded from the 

analysis, the primary source of error in the MF map is due to confusion between alluvium-colluvium 

and its parent rock types, as well as the inability to correctly classify any Basal Group validation pixels 

(see Table 2). 
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Figure 11. Impact of dry grassy vegetation abundance (SAVI) on the ability of the (a) SFF 

and (b) MF algorithms to classify pixels in the ATM imagery. 

 

Figure 12. Comparison of the remote lithological mapping capabilities of the MF 

algorithm with observation made in the field. 

 

Considering the results obtained using the optimal MF algorithm alongside field observations 

enables a more comprehensive understanding of the mapping capabilities and limitations. Evidence of 

confusion between alluvium-colluvium and its parent rock types is apparent throughout the study area, 
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particularly for alluvium-colluvium and the Lefkara Formation in areas with low relief (Figure 12a,e). 

This confusion is due to the inherent spectral similarity between the two units. Despite appearing to be 

largely bare and unclassified in Figure 12a, the darker alluvium-colluvium soils were actually being 

used to grow crops at the time of the airborne survey. In agreement with the synthetic spectral mixing 

results, the MF algorithm successfully maps larger (higher relief) Lefkara Formation outcrops with less 

than 70% of predominantly grass cover (Figure 12d), while failing to map those with cover above this 

threshold (Figure 12a). None of the Basal Group validation pixels were correctly identified due to 

fractional dry grassy cover typically exceeding 45% at the pixel scale (i.e., 4 m)—45% corresponding 

to MF classification threshold for this lithology (see Figure 11b). However, a small cluster of Basal 

Group pixels not included in the validation dataset have been correctly mapped near the summit of the 

main central outcrop as a result of them becoming completely exposed through small-scale quarrying 

(Figure 12b). The spatial distribution of the pillow lavas is poorly mapped because field observations 

reveal that combined lichen and green-dry grass fractional cover commonly exceeds 70%. The MF 

algorithm is, however, capable of mapping sizeable proportions of pillow lava outcrops where 

vegetation cover is less than 70% at the pixel scale (Figure 12c,e).  

Overall, the impact of vegetation on spectral recognition and remote lithological mapping, 

elucidated here using a combination of spectral mixing and image analysis, is consistent with 

observations made in the field. From the results presented, it is evident that direct spectral 

identification of the lithological units in the ATM imagery is primarily controlled by the abundance of 

fractional vegetation cover. Vegetation abundance in the study areas regularly exceeds the limits above 

which spectral recognition of the lithologies is possible, thus accounting for the vast proportions of 

unclassified pixels in the derived maps. Nevertheless, it has been shown that it is possible to extract 

some useful lithological information from the ATM imagery provided that an appropriate technique is 

employed. Enhanced mapping of the spatial distribution of the lithologies in highly vegetated areas 

may be possible if geobotanical relationships with the underlying substrates are realized and the 

vegetation spectra used as proxies [12,14,78]. Indeed, for this same study area, Grebby et al. [34] 

exploited geobotanical relationships in conjunction with an artificial neural network classifier to 

produce an accurate (65.5%; K = 0.54) lithological map with well-defined contacts and contiguous 

spatial coverage. 

5. Conclusions 

This case study elucidates the impact of vegetation cover on the ability to use airborne multispectral 

imagery for direct identification and mapping of geological substrates in an area of the Troodos 

ophiolite, Cyprus. The impact of green and dry grass, and lichen on spectral recognition of the 

lithologies was determined through synthetic linear spectral mixing analysis. Green grass was found to 

impart a characteristic chlorophyll absorption feature at 0.65–0.70 μm, along with moderate and high 

reflectance peaks at 0.55 μm and 0.80–0.90 μm, respectively. These features were found to significantly 

obscure low albedo lithologies at 30%–40% fractional green grass abundance, and 50%–65% and 75% 

for the moderate and high albedo lithologies, respectively. The obscuring effects of dry grass were 

found to be more significant than those of green grass, with the spectra of most lithologies obscured 

for 20%–40% fractional cover. In agreement with previous studies, the obscuring effect of lichen cover 
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was found to be dependent on the spectral contrast between the lithology and lichen for a given 

wavelength range. Lithologies with higher spectral contrast in the 0.60–0.70 µm range were somewhat 

obscured by as little as 30% fractional lichen cover, compared to 50% for the lithology with low 

spectral contrast. Complete masking of the spectra of all lithologies occurred at 50%–70% lichen 

cover. The impact of dry grass abundance on spectral recognition of the lithologies in the ATM 

imagery was determined, thus confirming the relevance of the theoretical results modeled through 

synthetic mixing analysis. 

Lithological maps produced through classification of the ATM imagery in conjunction with the bare 

rock/soil spectra contained relatively little information on the spatial distribution of the lithologies, 

with 66%–92% of all scene pixels remaining unclassified. A correlation between the unclassified 

pixels and higher fractional vegetation abundances was confirmed quantitatively using an ATM-derived 

SAVI map. The maximum vegetation abundances above which pixel classification was no longer 

possible were established for the SFF- and MF-derived maps. The maximum vegetation abundances 

associated with the direct spectral matching SFF algorithm were consistent with those determined 

theoretically for each lithology. The corresponding abundances for the MF algorithm were 25% higher 

on average, which is a reflection of its ability to partially unmix the composite spectra to separate the 

contribution of vegetation from that of the underlying lithology. The mapping capabilities of the MF 

algorithm were further corroborated with field observations. 

Despite the limited spectral sampling and spectral resolution of the ATM sensor and the significant 

obscuring effects of the relatively dense, ubiquitous vegetation cover, this study highlights that 

lithological information can be extracted from the imagery with the aid of an appropriate mapping 

algorithm. In this case, the MF classification algorithm outperformed the direct spectral matching 

SAM and SFF algorithms because of its ability to partially unmix target spectra for pixels with higher 

sub-pixel vegetation abundances. It is anticipated that hyperspectral imagery with higher spectral and 

spatial resolution, application of spectral unmixing techniques, or use of reference spectra 

corresponding to rock-vegetation mixtures may yield better results in terms of contiguous mapping of 

the spatial distribution of the lithologies. The B3/B5, B8/B9 and B5/B4 ratios enable differentiation 

between green grass, dry grass and lichen, and, more importantly, their modeled responses to 

vegetation abundance could also prove useful in helping to extract more lithological information, 

especially for high proportions of vegetation cover. 

In summary, the results of this study provide useful insights to the potential capabilities and 

challenges faced when utilizing comparable sensors—such as those on-board the Landsat 8, Sentinel-2 

and WorldView-3 satellites—to map similar types of terrain. Careful consideration of the outcomes of 

both similar and contrasting case studies can ultimately help identify the most appropriate combination of 

sensor, platform and classification algorithm for mapping any given location, within the available budget.  
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