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ABSTRACT

Nine distributed hydrological models, forced with common meteorological inputs, simulated naturalized

daily discharge from the Thames basin for 1963–2001. While model-dependent evaporative losses are critical

for modeling mean discharge, multiple physical processes at many time scales influence the variability and

timing of discharge. Here the use of cross-spectral analysis is advocated to measure how the average

amplitude—and independently, the average phase—of modeled discharge differ from observed discharge at

daily to decadal time scales. Simulation of the spectral properties of the model discharge via numerical

manipulation of precipitation confirms that modeled transformation involves runoff generation and routing

that amplify the annual cycle, while subsurface storage and routing of runoff between grid boxes introduces

most of the autocorrelation and delays. Too much or too little modeled evaporation affects discharge vari-

ability, as do the capacity and time constants of modeled stores. Additionally, the performance of specific

models would improve if four issues were tackled: 1) nonsinusoidal annual variations in model discharge

(prolonged low base flow and shortened high base flow; three models), 2) excessive attenuation of high-

frequency variability (three models), 3) excessive short-term variability in winter half years but too little

variability in summer half years (two models), and 4) introduction of phase delays at the annual scale only

during runoff generation (three models) or only during routing (one model). Cross-spectral analysis reveals

how reruns of one model using alternative methods of runoff generation—designed to improve performance

at the weekly tomonthly time scales—degraded performance at the annual scale. The cross-spectral approach

facilitates hydrological model diagnoses and development.

1. Introduction

Within the Water and Global Change (WATCH) Eu-

ropean Union (EU) Sixth Framework Programme (FP6),

a variety of distributed hydrological models were run

globally, excluding the effects of anthropogenic land cover

and management. Additionally, river basin models were

run for specific basins. TheWaterModel Intercomparison

Project (WaterMIP) protocol adopted during WATCH

(Haddeland et al. 2011) used common meteorological

forcing data for the twentieth century provided at 0.58 3
0.58 resolution (Weedon et al. 2011), a common routing

network for surface and subsurface runoff between grid

boxes, and a common reporting format (www.eu-watch.org/

watermipprotocol2009a). This paper presents a practical

approach to quantitative comparison of daily discharge

outputs from WATCH models, and hence allows anal-

ysis of model performance, as demonstrated for the

Thames basin of southeast England, United Kingdom.

Typically, metrics of hydrological model performance

for comparing observations with model output include

correlation, root-mean-square error (RMSE),mean bias
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error (MBE), and standard deviation or related indices

such as Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe

1970). When assessing several climate models, Taylor

diagrams, based on standard deviation and correlation,

are often used to combine multiple metrics visually, al-

lowing one to assess whether a particular model out-

performs others and/or whether model developments

are leading to improved performance (Taylor 2001;

Gleckler et al. 2008).

In the context of modeling very large basins, domi-

nation of the discharge variability by a small range of

frequencies (e.g., cycles at the annual scale) means that

analysis with traditional metrics is not a problem and

cross-spectral methods are not needed. However, in

general, with the exception of MBE, these metrics often

fail to provide sufficiently unambiguous insights into the

ways in which particular model outputs differ from ob-

servations or from other models (Lane 2007). This is

because, for example, day-to-day variability and per-

sistence of high and low discharge are not measured

separately because of the averaging across all time

scales. However, by measuring the relative difference of

modeled from observed discharge, MBE can be related

directly to the two main factors influencing the water

balance in a catchment: the inputs (in the form of pre-

cipitation) and the residual from the losses (through

evapotranspiration) over multiple years or decades

(assuming subsurface storage is approximately constant

in the long term). Here, MBE is used with modeled

discharge versus observed naturalized discharge.

Very often, visual inspection of modeled and ob-

served discharge time series is extremely informative as

this reveals the variability at all time scales. For exam-

ple, this might show that the RMSE and standard de-

viation would be improved by increasing the magnitude

of the short-term responsiveness of a hydrological model

to precipitation events or that correlation would be in-

creased by improving the timing of the annual/seasonal

cycle of the modeled discharge relative to observations.

Expert hydrologists often use visual inspection of the

hydrographs in their assessment of a modeled response,

but this can be subjective and is not a quantified (ob-

jective) measure.

Here, we investigate how a cross-spectral approach to

comparing model outputs with observations can yield

physical insights into the behavior and deficiencies in

models. The approach advocated here differs from, but

is complementary to, a more traditional approach in

hydrology where spectral properties are used numeri-

cally to help refine model parameter estimates (e.g.,

Montanari and Toth 2007; Quets et al. 2010; Pauwels

and De Lannoy 2011; Moussu et al. 2011). However, by

combining the mismatches across all frequencies into

their objective functions, the traditional approach does

not consider frequency-specific model deficiencies.

We are not primarily concerned with identifying op-

timal model parameters and structures, but rather with

quantifying model deficiencies, by analyzing amplitudes

and phases at different time scales, to concentrate on

how specific physical processes are represented. This

analysis concerns average model performance rather

than alternative methods that concentrate specifically

on extreme high or low flows. We focus on average

mismatches for 1963–2001 rather than localizing in time

when the specific mismatches between model outputs

and observations have occurred [compare use of wave-

lets (e.g., Smith et al. 1998; Labat et al. 2000b; Lane 2007;

Schaefli and Zehe 2009; Labat 2010; Liu et al. 2011) and

other approaches (e.g., Herman et al. 2013)].

Padilla and Pulido-Bosch (1995) used cross-spectral

analysis for comparing discharge with precipitation in

Spanish and French karst systems. However, Labat et al.

(2000a,b) showed that karst systems can be so physically

heterogeneous and dynamically varying that the dis-

charge variability is not sufficiently characterized by the

averaging inherent in the Fourier methods discussed

here. By contrast, the Thames basin (and many other

basins; Milly and Wetherald 2002) has a far simpler

geometry, far longer response times (Naden 1992), and

little input from snowmelt events, so the power spectra

and cross spectra of the precipitation and discharge data

provide meaningful estimates of the average variability

at different time scales.

After introducing the Thames basin and observations

(section 2) andmodels (section 3), we outline themethods

(section 4) with technical details in the appendixes. We

consider the transformation of the observed precipitation

to observed discharge (section 5a) as well as the trans-

formation of the gridded precipitation to modeled dis-

charge (section 5b). The runoff generation in separate grid

boxes and routing mechanisms in the distributed models

are discussed in section 5c. We illustrate how we can

reproduce the key spectral characteristics of the mod-

eled runoff and discharge outputs by simple numerical

manipulation of gridbox precipitation (section 5d). Un-

derstanding the origin of the spectral properties then al-

lows evaluation of the models via amplitude ratio and

phase spectra for comparing the modeled with the ob-

served discharge time series (section 6).

2. Data from the Thames basin

In southeast England, the Thames basin to Kingston,

the lowest gauging station on the river and a short dis-

tance upstream of its tidal limit, covers an area of about

9947km2 with relatively subdued topography (maximum
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elevation less than 330m) and an average (for 1961–90)

of 720mm of precipitation per year (Fig. 1). On average

there are only a few millimeters of snowmelt per year,

but substantial variations from year to year; generally,

snowmelt has negligible impact on the timing of river

flow. Around 65% of the precipitation, which occurs

year-round, is lost to evaporation, especially from April

to September.

A daily time series of the area-average precipitation in

the Thames basin was derived using the triangle method

of Jones (1983) from, on any particular day, an average

of around 1000 out of 1265 daily rain gauges available

for 1963–2001 (Fig. 1). Since 1986, discharge is measured

at Kingston using a multipath ultrasonic gauge, but from

1974 to 1986 it was assessed via a single-path ultrasonic

gauge. Earlier than this, the flow was measured at the

tidal limit (at Teddington, about 2 km downstream from

Kingston) from a complex system of gates, sluices, and

weirs, with a tail water rating between level and dis-

charge. A naturalized daily discharge record is available

where the gauged flows have been adjusted for the net

impact of upstream abstractions and discharges (Marsh

and Hannaford 2008); this has been used as the observed

naturalized discharge series.

The Thames basin is diverse in terms of geology, with

45% covered by permeable rocks and providing sub-

stantial groundwater flow. The remainder of the basin is

characterized by more responsive flow from less perme-

able soils, particularly clays. The subannual-frequency

ranges of the spectra described later are subdivided using

response times characteristic of different physical

processes. For the permeable parts of the catchment,

a response time period of 2–6 months (60–182.5 days) is

typical, that is, the slow response (SR) scale. For more

responsive areas, the longest response (analogous to

concentration time) is around 7 days. As two flood peaks

are considered independent if separated by 3 times the

catchment response time, an interval of 7–21 days defines

the quick response (QR) scale. Water takes 2–4 days to

flow directly from impermeable surfaces and down the

channel from the headwaters to the discharge measure-

ment point—the surface runoff and channel routing

(SCR) scale.

3. Meteorological forcing data and models

The WATCH models were forced using the WATCH

forcing data (WFD) that are based on the 40-yr European

Centre forMedium-RangeWeather Forecasts (ECMWF)

Re-Analysis (ERA-40), which was interpolated, elevation

corrected, and adjusted at the monthly scale to match

gridded observations (Weedon et al. 2011). The WFD

provide 0.58-spatial-resolution, three-hourly data for near-
surface air temperature, wind speed, pressure, specific

humidity, downward longwave radiation flux, downward

shortwave radiation flux, rainfall rate, and snowfall rate.

Five WFD grid boxes cover the Thames basin as

connected by the 0.58 30-min global drainage direction

map (DDM30) routing network for surface runoff plus

subsurface runoff (Fig. 1; Döll and Lehner 2002). Mod-

eled discharge was assessed using the grid box containing

the discharge gauging station at Kingston. Grid boxes

FIG. 1. (middle) Location of the Thames basin within the United Kingdom. Scale bar relates to maps in (left) and

(right). (left) The 1265 daily precipitation gauges used to generate the observed basinwide-average precipitation for

1963–2001. The gauges used extend out to 1.5 km beyond the limit of the CLASSIC 20-km grid (not shown). (right)

Five regular 0.58 lat–lon grid boxes from the WFD grid are connected within the DDM30 routing network used in

WATCH andWaterMIP. BasinwideWFD precipitation was obtained as an unweighted average of the dailyWFD

precipitation in the five grid boxes shown.Model discharge was obtained from the grid box containing the Kingston

discharge gauging station (indicated by the gray circle).
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external to those shown in Fig. 1 are specified by the

DDM30 network as draining outside the basin.

Comparing the daily WFD precipitation time series—

averaged across the five grid boxes—with the observed

precipitation (Fig. 2; N 5 14 245 days) shows similar

means (mean6 95% confidence interval for observed5
1.97 6 0.06mm versus WFD 5 1.96 6 0.06mm), stan-

dard deviations (3.68mm versus 3.78mm), lag-1 auto-

correlation (0.24 versus 0.23), and tolerable mean

absolute error (MAE; 1.58mm). These very similar re-

sults occur despite the land covered by the five grid

boxes being about 1.5% less than the area defined by the

catchment boundary. The highly significant Pearson’s r

correlation (0.63, P, 0.001) and correlation adjusted for

lag-1 autocorrelation (0.54, P , 0.001; Ebisuzaki 1997)

are not higher because of the limitations of ERA-40 in

representing clouds (and hence precipitation events),

especially associated with local convection (Weedon

et al. 2011). The Global Precipitation Climatology

Centre, version 4 (GPCCv4), gridded precipitation

gauge totals incorporate some of the Thames basin

gauge observations. These GPCCv4 totals were used in

monthly bias correction of theWFDprecipitation (Weedon

et al. 2011), so there is an inherent similarity at monthly

and longer time scales between the observed and WFD

precipitation. The consistency of the observed andmodel-

input precipitation series suggests that large biases in

modeled discharge are not attributable to the use of

WFD precipitation data in forcing the models.

The different hydrological models (see Table 1 for

expansions), simulating unmanaged conditions for

1963–2001 (i.e., excluding water abstraction, irrigation,

regulation, and human-related land cover changes),

were either operated at 1) daily time steps for the river

basin model (CLASSIC) and for the global hydrological

models (MPI-HM, WaterGAP, GWAVA, and LPJmL)

or 2) hourly or half-hourly time steps for the land surface

models (MATSIRO, JULES, H08, and ORCHIDEE)

to allow calculation of the diurnal energy balance.

We include all models from WATCH and WaterMIP

that provided daily discharge time series for 1963–2001

(www.eu-watch.org/data_availability). Haddeland et al.

(2011) provide summaries and references to the designs

of the models (excluding CLASSIC) with comparisons of

FIG. 2. (left) Time series for 1963–2001 of observed and WFD daily precipitation (top two) and of observed and

modeled daily discharge (lower twelve) for the Thames basin. (right) Identical data, but for 1972–77 to allow visu-

alization of subannual variability.
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monthly average outputs globally and for selected large

catchments. CLASSIC uses a 20km 3 20km grid, rather

than the WATCH 0.58 grid, with flow paths and runoff

delays represented as a kinematic wave from headwater

grid boxes to the outlet grid box (Crooks andNaden 2007).

The only models calibrated using local measured

streamflow data are CLASSIC and WaterGAP. Within

WATCH, GWAVA was redesigned to run on daily

rather thanmonthly time steps, but daily routing was not

implemented, so daily runoff was rescaled and aggre-

gated to produce the daily discharge values (corrected

and reuploaded since the WaterMIP study, but not

available for 2001). WaterGAP and LPJmL did not

provide discharge values for leap days, so the averages

of values from 28 February and 1 March were used, af-

fecting just 10 out of 14245 days (1963–2001). The dif-

ferences between models illustrated here for the Thames

basin will vary elsewhere sincemodel performance is also

linked to catchment properties and regional meteorology

(Gudmundsson et al. 2012a,b).

In the standard JULES run for WATCH, runoff gen-

eration occurs with Darcian drainage without subgridbox

heterogeneity (Best et al. 2011). JULES was rerun, using

the overall configuration employed in WATCH, to ex-

plore whether implementation of alternative conceptual

runoff generation process methods would improve the

partition between surface and subsurface/groundwater

(important for the Thames basin given the wide range of

bedrock permeability). JULES-TOPMODEL (e.g., Beven

et al. 1984) uses a within-grid probability distribution of

soil saturation and water tables (Gedney and Cox 2003;

Clark and Gedney 2008). JULES-PDM uses the PDM

soil moisture method to account for within-grid soil

heterogeneity and saturation excess runoff via a proba-

bility distribution of soil stores (Moore and Clarke 1981;

Clark and Gedney 2008).

Figure 2 illustrates the observed andmodeled discharge

below the average basinwide precipitation time series.

Figure 2 (right) allows visualization of subannual vari-

ability during 1972–77, including the major hydrological

drought of 1975/76. Table 1 provides a comparison of the

modeled with the observed naturalized daily discharge

using standard metrics ordered by increasing MBE.

MBE indicates the average modeled discharge minus

the average observed discharge divided by average ob-

served discharge, as a percentage. The 95% confidence

interval was derived using a Student’s t value after cal-

culating MBE separately for each calendar year (i.e., 39

values). Negative MBE in Table 1 denotes too little

discharge on average, especially due to too much evap-

oration (vice versa for positive MBE). MBE differences

relate to the way evaporation is calculated and to the

TABLE 1. Metrics comparing modeled and observed daily naturalized discharge for 1963–2001 in the Thames basin. Variable N 5
14 245, except for observed discharge vs GWAVA discharge using 1963–2000, where N 5 13 880. The mean absolute error provides the

average absolute difference (Willmott andMatsuura 2005) of individual modeled daily discharge values from observed values. Pearson’s r

recalculated after prewhitening derived using the values of lag-1 autocorrelation (Ebisuzaki 1997) is given by rAdj. All the correlation and

adjusted correlation values listed are highly significant (P , 0.001)—note the high N.

Observations or model

Mean

(m3 s21)

MBE

(% 6 95% CI)

Std dev

(m3 s21)

MAE

(m3 s21) NSE r r1 rAdj

Observations 82.54 — 66.63 — — — 0.960 —

Minimal Advanced Treatments of Surface

Interaction and Runoff (MATSIRO)

55.34 232.96 6 6.58 50.43 34.20 10.251 10.654 0.957 10.387

Max Planck Institute–Hydrology Model

(MPI-HM)

57.12 230.79 6 2.53 36.90 29.43 10.431 10.797 0.996 10.453

JULES–Topography-Based

Model (JULES-TOPMODEL)

60.21 227.05 6 3.74 55.49 28.26 10.661 10.881 0.986 10.542

Joint UK Land Environment Simulator

(JULES)

68.84 216.60 6 4.02 63.94 30.62 10.530 10.778 0.994 10.430

Water–Global Assessment and Prognosis

(WaterGAP)

79.08 24.20 6 3.44 62.82 19.89 10.722 10.856 0.904 10.278

Hanasaki et al. (2008) model (H08) 83.08 10.65 6 7.88 127.32 48.83 20.544 10.813 0.977 10.474

Organizing Carbon and Hydrology in

Dynamic Ecosystems (ORCHIDEE)

88.69 17.44 6 4.98 76.48 39.05 10.210 10.669 0.974 10.422

JULES–Probability Distributed

Moisture (JULES-PDM)

89.52 18.45 6 4.84 76.26 37.41 10.382 10.744 0.977 10.528

Climate and Land-Use Scenario

Simulation in Catchments (CLASSIC)

91.58 110.95 6 3.92 72.83 18.84 10.804 10.923 0.957 10.565

Global Water Availability

Assessment model (GWAVA)

99.24 121.86 6 4.70 94.29 37.36 20.417 10.601 0.447 20.181

Lund–Potsdam–Jena managed Land

(LPJmL)

105.55 127.87 6 4.55 128.46 56.91 21.049 10.723 0.827 10.483
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factors determining evaporative losses. In this case, the

difference in area of the grid boxes draining to Kingston

and the actual basin is too small to contribute sub-

stantially to the model MBEs. All models remove water

from the soil through bare soil evaporation and/or

evapotranspiration, but the soil is represented differ-

ently in terms of the capacity of stores and the control of

the release of water to underlying levels and into the

channel (i.e., in terms of both the partition between

stores and the delays) and some models include direct

evaporation of water intercepted by the canopy.

Mean absolute error rather than RMSE is provided in

Table 1 given the problems with interpretation of the

latter (Willmott and Matsuura 2005). Selecting metrics

other than MBE would result in a different ordering of

the models. Such potential reordering of models relates

to the different dependency of the alternativemetrics on

mismatches in the amplitude of variation and/or mis-

matches in phase and the different time scales at which

such mismatches occur.

4. Methods: Spectral and cross-spectral analysis

A time series is simply a time-ordered sequence of

variable values (e.g., daily discharge). They are most

importantly characterized in terms of the wavelength or

period (i.e., the inverse of frequency) of the oscillations,

the amplitude or deviation of the oscillations from the

mean level, and the phase or timing of maxima and

minima.According to Fourier’s theorem, any time series

containing oscillations, but no infinite values, can be

decomposed into component sine and cosine waves via,

for real data, for example, the discrete Fourier transform

(DFT) to obtain the average amplitudes. The DFT is

obtained by manipulating the data themselves so that

withN data points and a sample rate ofDt, the frequency
range of the spectrum is evaluated at N/2 1 1 locations

between lowest (51/NDt) and highest, or Nyquist, fre-

quency (51/2Dt; appendix A). The periodogram shows

the sum of the squared sine amplitude plus the squared

cosine amplitude at each frequency, but a smoothed

version, the estimated power spectrum, provides a better

approximation to the expected result [for background,

see, e.g., Priestley (1981), von Storch and Zwiers (1999),

and Weedon (2003)].

The estimated power spectrum of a finite time series of

pure random numbers (with zero serial or autocorrela-

tion, white noise) has a horizontal background. An esti-

mated power spectrum sloping down to the Nyquist

frequency derives from red noise. A red noise spectrum

that is linear on a Log(power)–Log(frequency) plot

conforms to a power law, but if curving toward horizon-

tal at the lowest and highest frequencies, it is typically

associated with a lag-1 autocorrelation r1 between zero

and one indicative of first-order autoregression AR(1).

Almost perfectly regular or quasi periodic processes

cause concentrations of variance in narrow bands, creat-

ing power spectral peaks emerging from the background.

For comparing time series of the terrestrial flux of

water out of the basin (output or discharge) with the

flux of water from the atmosphere (input or pre-

cipitation), we use cross-spectral analysis (Padilla and

Pulido-Bosch 1995): specifically, the gain spectrum and,

closely related, the amplitude ratio spectrum, plus the

phase spectrum (appendix A). This corresponds to

analysis of the frequency response function or the

spectral transfer function (Priestley 1981). Graphs of

Log(gain)–Log(frequency) and (linear) phase–Log

(frequency) are known as Bode plots and are used widely

in systems analysis and control (Jenkins andWatts 1969).

A gain or amplitude ratio exceeding one indicates am-

plification and less than one indicates attenuation. Here,

a positive phase indicates that discharge variations lag

precipitation variations (negative phase is physically im-

possible or noncausal).

Strictly, for Bode plots to be a complete description of

the average system behavior, the system should be linear

and time invariant without feedbacks (Jenkins and

Watts 1969; Priestley 1981; Ifeachor and Jervis 1993).

Characteristically, nonlinear systems generate harmonic

spectral peaks at integer multiples of the frequency of

primary input signals and sometimes combination tone

peaks due to intermodulation between pairs of primary

signals. Such frequency interactions require analysis

with generalized frequency response functions rather

than Bode plots (Billings 2013). However, the observed

discharge spectrum of the Thames basin has no harmonic

peaks associated with the annual cycle peak (section 5a);

hence, it can be usefully analyzed with Bode plots (as

implemented for many other basins; Padilla and Pulido-

Bosch 1995; Milly andWetherald 2002). Time invariance

has been assumed; the precipitation and discharge time

series are stationary in mean and variance and all analyses

are for the same interval (1963–2001). Since the Thames

causes, at most, minor inundation, there is essentially no

feedback between discharge and precipitation.

Bode plots are used here to help interpret the pro-

cesses involved in transforming precipitation into dis-

charge variability. However, we evaluate average model

performance by comparing two time series of the same

variable—modeled discharge with observed discharge—by

using amplitude ratio spectra and phase spectra (sec-

tion 6). Unlike Bode plots, this requires no assumptions

about the system being modeled. In this case, negative

phase values are plausible, indicating that model dis-

charge variations lead observed discharge variations.
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5. Spectral characteristics of Thames basin
precipitation, runoff, and discharge

a. Observed discharge versus observed precipitation

To allow spectral comparison of the observed dis-

charge with the observed precipitation data, the latter

were rescaled to discharge units (e.g., the average pre-

cipitation of 1.97mmday21 corresponds to 226.8m3 s21,

while the average observed discharge is 82.5m3 s21).

The power spectrum of the observed precipitation

slopes gently to the right, with a modest spectral peak at

the annual scale (significant at the 99.0% confidence

level; Fig. 3b). The modest size of the annual spectral

peak results from the relatively small seasonal variations

in total observed precipitation (Fig. 2). The near-linear

and low average slope of the observed precipitation

spectrum in Fig. 3b is consistent with a small autocor-

relation (r1 about 0.2) and hence short-term memory

characteristics (Kantelhardt et al. 2006).

The power spectrum of observed discharge (Fig. 3a)

has a pronounced spectral peak reflecting large annual

cycles in discharge (significant at the 99.999% level).

The gain spectrum and amplitude-ratio spectrum in

Fig. 3c show that in generating discharge the Thames

basin attenuates precipitation variations at most fre-

quencies, especially subannually. This contrasts with ba-

sins that are arid or have permafrost and/or substantial

snowmelt when amplification is observed at multiple

spectral background frequencies (Milly and Wetherald

2002). On the other hand, in the Thames basin, the

gain and amplitude ratio exceed unity at the annual

scale (amplitude ratio 695% confidence interval 5
1.37 10.33/20.27; Fig. 3c). In some karst basins, ampli-

fication is restricted to low frequencies (Padilla and

Pulido-Bosch 1995), but amplification of precipitation

variations at the annual scale is common in large humid

midlatitude and tropical basins (Materia et al. 2010).

The phase spectrum shows that at the annual scale, the

observed discharge variations are delayed by 175.68 6
19.08 compared to the observed precipitation variations,

or 75.68/3608 3 365.24 days 5 76.7 days (Fig. 3d). The

significance of the subannual-scale trend in the phase

toward 11808 at the Nyquist frequency is addressed

later [section 5d(2)].

The shape of the background power spectrum of ob-

served discharge is consistent with an AR(1) character

(r1 5 0.96; Table 1) and short-term memory. However,

many studies have inferred a power-law character from

the power spectra of monthly and annual discharge data

from large basins (e.g., Pelletier and Turcotte 1997).

Such an interpretation implies long-term memory as-

sociated with the Hurst phenomenon (Hurst 1951; Mesa

and Poveda 1993; Heneghan and McDarby 2000;

Schepers et al. 1992; Bryce and Sprague 2012; Fleming

2014).

Although there has been a lack of a physical expla-

nation for the Hurst phenomenon (e.g., Mesa and

Poveda 1993), Hoskins (1984) noted that aggregation of

multiple independent short-term memory processes

produces a power law. Mudelsee (2007) demonstrated

via observations and modeling that the Hurst phenom-

enon arises progressively downstream because of the

aggregation of discharge variations from separate

tributaries. Fleming (2014), using annual observations of

Thames discharge for 1883–2011, showed there were

insufficient data to either demonstrate or rule out

a power law. We invoke the explanation of the Hurst

phenomenon by Mudelsee (2007) and interpret the lack

of a power law in Fig. 3a—that extends down to daily

frequencies—as resulting from the modest size of the

Thames basin. The catchment area combines with the

small elevation range and the consistent catchment re-

sponse for different precipitation events (due to the

dominance of the slow hillslope response; Naden 1992)

so that the tributaries produce correlated, rather than

independent, variations in water inputs.

Thus, we interpret the increased slope of the observed

discharge spectrum compared to the observed pre-

cipitation spectrum as reflecting increased short-term

memory (higher autocorrelation) caused by storage and

routing processes (Milly and Wetherald 2002) rather

than long-termmemory processes. Critically, we believe

this is more appropriate than using multiple power-law

approximations for the spectral background (cf. Labat

et al. 2000a).

b. Modeled discharge versus WFD precipitation

The cross-spectral relationship between observed dis-

charge and observed precipitation is well reproduced by

CLASSIC (Figs. 3e–h). Models other than CLASSIC

show much less success with reproducing the amplitude

variations of observed discharge; Figs. 3i–p show exam-

ples from near the extremes of theMBE-orderedmodels.

Lack of variability in MPI-HM discharge (Fig. 2) leads

to low gain and low-amplitude ratios compared to ob-

servations at all frequencies (Fig. 3k). Conversely,

LPJmL has too much variability at most frequencies

plus a drop or roll off in power near the Nyquist fre-

quency not seen for the observations. The better per-

formance of CLASSIC compared to the other models is

likely to be the result of several factors, including that it

is a river basin model, selected as appropriate for the

basin being modeled, rather than a generic global

model; it is calibrated; it is run at a higher resolution than

the other models; and, uniquely to this study, it uses

a kinematic wave approach to routing.
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FIG. 3. (a) Power spectrumof observed daily discharge in the Thames basin. Dashed lines on the power spectra

show the 99.0%and 99.999% confidence levels for detecting significant power spectral peaks. (b) Power spectrum

of observed precipitation rescaled tom3 s21. (c) Gain spectrum (gray) and amplitude ratio spectrum (black). The

95% confidence interval of amplitude ratio at the annual scale is shown using vertical black bar. (d) Phase

spectrum, where the 95%confidence intervals are indicated by vertical gray bars. Phase values are only illustrated

at frequencies where coherency exceeds to 95% level (i.e., 0.78), limiting phase 95% confidence intervals to

,6518. (e)–(h) As in (a)–(d), but for CLASSIC-modeled discharge and the WFD precipitation basinwide data.

(i),(j) Power spectra for MPI-HM–modeled discharge and WFD precipitation with (k),(l) corresponding gain,

amplitude ratio, and phase spectra. (m)–(p) As in (i)–(l), but for discharge from LPJml.
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The spectral peak at the half-annual scale in the spec-

trum of CLASSIC discharge represents a harmonic of the

annual cycles, indicating slight nonlinearity in the model.

CLASSIC simulates recession processes (or emptying of

stores) a little too slowly and recharge processes (filling of

stores) a little too quickly. This generates, by comparison

with observations, a prolonged interval of low base flow

centered on the summer and too short an interval of high

base flow centered on thewinter. The spectra of discharge

from H08 and JULES (but not JULES-TOPMODEL,

JULES-PDM, or the other models) also exhibit spectral

peaks at the half-annual scale.

The phase spectrum of CLASSIC discharge versus pre-

cipitation is very similar to that of observations (Fig. 3h).

MPI-HM shows phase values that are too large at the

annual scale; that is, the annual cycles in MPI-HM dis-

charge are delayed compared to observations (Fig. 3l),

while at higher frequencies the phase spectrum does not

follow that of the observations particularly well. LPJmL

has a phase spectrum with a similar overall shape to the

observations, but between the annual scale and 100 cy-

cles per year (i.e., 3.65-day scale), the phase is less than

that observed.

c. Modeled runoff versus modeled discharge

The modeled discharge outputs for the Thames basin

generally show a high lag-1 autocorrelation similar to

that of the observed discharge (Table 1). Figure 4 shows

the power spectra of modeled runoff for the Kingston

grid box (gray) together with the spectra of modeled

discharge (black). The average levels of the runoff

spectra are far lower than for the discharge spectra

simply because they relate to runoff variability from

a single grid box rather than the variability of discharge

from the whole basin. The background spectra of mod-

eled runoff aremuchmore similar to those of precipitation

than the spectra of modeled discharge. Therefore, the

modeling of routing introduces the majority of the in-

creased autocorrelation and attenuation of the subannual

variability. The clear exception is provided by GWAVA

(Fig. 4) because the discharge time series was created by

rescaling the runoff variations (i.e., without routing; sec-

tion 2). Hence, the lag-1 autocorrelation for GWAVA is

correspondingly anomalously low compared to that ob-

served and for other models (Table 1).

An important additional feature of the discharge

power spectra in Fig. 4, already noted for LPJmL

(Fig. 3m; section 5b), is the presence of a rapid roll off in

power at the SCR scale adjacent to the Nyquist fre-

quency, also shown by MATSIRO, JULES, JULES-

TOPMODEL, and JULES-PDM. This roll off is not

seen in the power spectrum of observed discharge or in

the spectra of modeled runoff and is therefore a model

artifact introduced during routing. The roll-off shape of

these high-frequency power spectral backgrounds is

typical of an AR(1) time series that has been subjected

to smoothing via weighted or unweighted averaging of

data points that are adjacent in time [e.g., Figs. 3.32 and

5.13 of Weedon (2003)].

d. Simulating the spectral characteristics of modeled
runoff and discharge

We have simulated the range of spectral characteris-

tics of the model outputs obtained in order to clarify

interpretations used later in the evaluations (section 6).

1) POWER SPECTRA

Simple numerical manipulation of the Kingston grid-

box precipitation was used to simulate how the models

transform the average precipitation variability into dis-

charge variability (appendix B). To allow inspection of

FIG. 4. Power spectra of surface plus subsurface runoff in the King-

ston grid box (KGB; gray) and power spectra of modeled discharge

(black). The values in parentheses are the lag-1 autocorrelations.
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the examples of model power spectra (gray) separately

from the simulation spectra (black), the former are

offset vertically in Fig. 5a. Runoff was simulated by

multiplying the Kingston gridbox precipitation (m3 s21)

by a sinusoid to mimic the effects of the annual cycle in

evapotranspiration. This suppresses variability across

the spectrum except at the annual scale, producing

a power spectrum that looks similar to that of LPJmL

runoff for example (Fig. 5a).

Suppression of the high-frequency runoff variability,

due to the effects of subsurface storage and water

transfer across the basin (sections 5a and 5b; Milly and

Wetherald 2002), was simulated by applying a first-order

autoregression (appendix B). The specific lag-1 autocor-

relation was chosen so that the resulting power spectrum

approximately matches that of WaterGAP (Discharge 1;

Fig. 5a). The WaterGAP discharge spectrum was illus-

trated since it is a good match to the observed discharge

spectrum (Table 1). Note that, unlike the LPJmL runoff

spectrum illustrated in Fig. 5a, most models actually

increase autocorrelation substantially during runoff

generation, followed by larger increases during routing

(Fig. 4).

For all models in Fig. 4, the average levels of the power

spectra of runoff from the Kingston grid box alone are far

below the average levels for discharge. This simply in-

dicates that routing aggregates basinwide runoff vari-

ability at the discharge point. The increased average

variability of the discharge compared to gridbox runoff

was simulated by multiplying the discharge simulation

series by 10.0 (appendix B), thereby approximately re-

producing the offsets of runoff and discharge spectra in

Fig. 4. This increased level of the simulated discharge

spectrum results in greater power than for basinwide

WFD precipitation solely at the annual scale (i.e., am-

plification; Fig. 5a), as noted earlier for the Thames basin

observations (section 5a).

Finally, applying a two-point moving average to the

simulation series resulted in the roll off in power near the

Nyquist frequency exemplified by JULES-TOPMODEL

(Discharge 2; Fig. 5a). For JULES, runoff generation was

half hourly, but the routing was calculated in daily steps.

Potentially, the spurious attenuation of discharge vari-

ability at the SCR scale could be alleviated for JULES by

using a much shorter time step for the routing calcula-

tions (i.e., increasing the Nyquist frequency). However,

this solution is not available for models that exhibit the

high-frequency roll off but are run entirely at daily steps.

2) PHASE SPECTRA

In theory, modeled routing might generate discharge

series that have the wrong phase delays compared to the

observed discharge. Offsets of modeled versus observed

discharge time series, or delays in discharge variations

compared to precipitation variations, produce trends on

the phase spectra background described by a simple

equation (appendix A; Padilla and Pulido-Bosch 1995).

For example, we consider the phase spectrum obtained

when the time series of observed discharge is shifted one

day later (i.e., a lag of 11) and then compared cross

spectrally to the unshifted data. As expected, in Fig. 5b

the theoretical trend (black line) using Eq. (A10) passes

FIG. 5. Simulation of power spectral shapes and phase spectrum

trends. (a) Modification of the Kingston gridbox WFD pre-

cipitation is used to simulate modeled runoff and discharge. The

power spectra of the Kingston WFD precipitation and simulation

series are shown in black. Power spectra of model time series

outputs are shown in gray but offset vertically from the simulation

spectra. Under Discharge 2, the power spectrum of the basinwide

WFD precipitation is shown in light gray. (b) Estimated phase

spectrum of observed discharge delayed by 1 day vs observed dis-

charge (gray plus symbols). The theoretical phase spectrum due to

a lag of 1 day is shown as a black line. Phase spectrum of Water-

GAP discharge vs observed discharge is compared to theoretical

phase spectra for leads of 0.5 day (upper dashed line), 1 day (lower

dashed line), and 0.75 day (full line).
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through the phase estimates (gray crosses). Figure 5b

also illustrates the phase spectrum of WaterGAP dis-

charge versus observed discharge. The negative trend is

well described by fitting a phase shift that corresponds to

the modeled discharge leading observed discharge by an

average of 0.75 day.

Given this fitting of phase spectrum trends, we infer

for the phase spectrum of observed discharge versus

observed precipitation (Fig. 3d; section 5a) that the

high-frequency trend is at least partly explained by

a simple delay. Hence, the Thames basin as observed

generates a shift or delay of one day between the dis-

charge output and precipitation input variations as well

as phase differences within specific lower-frequency

ranges—most obviously at the annual scale. The delay

at the annual scale of about 77 days results from sub-

stantial delays of the runoff variations caused by the

subsurface movement of base flow into the channel.

The subsurface movement of water in the Thames

basin is also associated with the increase in autocorre-

lation (short-term memory) related to attenuation of

high-frequency precipitation variability (section 5a).

Hence, the observed phase delay at the annual scale is

probably linked to the attenuation of variability and

associated increased autocorrelation. Modeling of these

processes might then be expected to mean that phase

delay at the annual scale would occur during both runoff

generation (due to within-gridbox subsurface flow) and

routing between grid boxes. Table 2 shows the phase at

the annual scale of Kingston gridbox runoff compared to

the gridboxWFD precipitation as well as the final phase

of model discharge compared to the basinwide WFD

precipitation. Gridbox runoff data were not available

for CLASSIC nor for H08. The table shows that three

models (WaterGAP, JULES, and MPI-HM) increase

phase delay during both runoff generation and routing

as expected. However, allowing for the confidence

intervals, three models introduce phase delays solely at

the runoff generation stage (MATSIRO and LPJmL plus

GWAVA, which did not use routing). This is surprising

considering that MATSIRO and LPJmL increased the

autocorrelation at both stages (Fig. 4). Conversely,

ORCHIDEEonly introduces phase delays during routing.

6. Evaluating model performance using modeled
versus observed discharge

In this section, we evaluate model performance via

amplitude ratio and phase spectra comparing modeled

with observed discharge using the inferences from sec-

tion 5. Modeled discharge is considered to exhibit sig-

nificant differences to the observations at frequencies

where the 95% confidence intervals for amplitude ratios

or phase (differences) do not overlap with 1.0 or 08, re-
spectively. Figure 6 illustrates example cross spectra

from the MBE extremes and for JULES and reruns of

JULES. Results for all models at the annual scale and

averages for the slow response scale, the quick response

scale, and the surface runoff and channel routing scale

(defined in section 2) are shown in Fig. 7.

Observed daily discharge values in the Thames basin

are skewed, with few very high values and many low

values. Reanalyzing the data but using Log(modeled

discharge) against Log(observed discharge) produced

similar biases in amplitude ratios, as shown in Fig. 7 (i.e.,

mostly overlapping confidence intervals), and virtually

identical phase differences. Hence, the skew of the data

does not significantly influence the results and inter-

pretations.We also evaluatedmore variable data from the

winter half years (October–March) separately from the

less variable summer half years (April–September; Fig. 2).

This showed no significant differences in phase biases,

and only two models (WaterGAP and H08) have differ-

ent directions of amplitude bias (i.e., above versus below

unity) between the half years.

In the discussion that follows, we seek to identify

issues for particular models that could be addressed

to improve average performance. However, fully di-

agnosing the specific causes of the range of issues dis-

cussed typically requires detailed knowledge of model

structure and parameters.

CLASSIC has slightly too much evaporation, as in-

dicated by the MBE (111% 6 4%; Table 1), and the

overall variability, as indicated by the standard deviation

(s 5 73m3 s21), is relatively close to observations (s 5
67m3 s21; Table 1). It has very good agreement with

observations in terms of amplitude and phase at the SR,

QR, and SCR scales with slightly too much variation at

the annual scale, though good timing. There is a slight

deviation from sinusoidal variations of discharge at the

TABLE 2. Phase delays at the annual scale. Kingston gridbox

modeled runoff vs gridbox WFD precipitation and observed dis-

charge vs observed basinwideprecipitation andmodeled discharge vs

basinwide WFD precipitation; 95% CI 5 95% confidence interval.

Observations

or model

Kingston gridbox runoff

vs Kingston gridbox

WFD precipitation

(695% CI)

Discharge vs

basinwide

precipitation

(695% CI)

Observations — 175.68 6 19.08
GWAVA 157.78 6 13.18 167.08 6 18.38
LPJmL 164.78 6 16.88 172.68 6 20.98
MATSIRO 1106.28 6 16.88 1114.88 6 21.18
WaterGAP 167.98 6 16.08 181.48 6 19.78
JULES 174.78 6 15.38 195.68 6 22.38
MPI-HM 159.58 6 14.48 1108.68 6 23.78
ORCHIDEE 17.58 6 15.78 141.68 6 12.98
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annual scale (long, low base flow intervals and short,

high base flow intervals) generating a spectral peak at

the half-annual scale (Fig. 3e). The good overall per-

formance in cross-spectral terms is expected given that

themodel is catchment based and calibrated (though not

calibrated with the WFD).

WaterGAP is also calibrated so the water balance is

closed (MBE 5 24% 6 3%), suggesting an accurate

estimation of the amount of evaporation and an average

variability across all scales similar to that for the ob-

servations (s 5 63m3 s21). There is slightly too little

variationat the annual scale (amplitude ratio5 0.886 0.02),

good agreement with observations at the SR and

QR scales, and too much variation at the SCR scale with

associated early phase. Fitting the subannual part of the

phase spectrum indicates that the modeled discharge

arrives, on average, about three-quarters of a day earlier

than observed discharge (Figs. 4, 5). These average re-

sults mask the fact, revealed from analyzing the half

years of data separately, that at the QR scale there is too

much variability in the winter (i.e., high base flow) half

years and too little variability in the summer half years

(cf. Fig. 2). Hence, the direction of model bias in the

amplitude ratio for WaterGAP depends on the average

flow conditions, as observed for some lumped models

(Herman et al. 2013). This demonstrates that finding

amplitude ratios close to 1.0 and phase differences in-

distinguishable from 08 when studying the whole time

series does not guarantee correct model behavior.

Although H08 has very good average evaporation

(MBE 511%6 8%), it shows far too much variability

in discharge (s 5 127m3 s21). The annual scale ampli-

tude is far too large (amplitude ratio5 1.946 0.08) and

too early (phase 5 223.68 6 3.28), and there is a very

pronounced harmonic spectral peak at the half-annual

scale, denoting strongly nonsinusoidal annual-scale

variations (too long intervals of low base flow, too

short intervals of high base flow). At the SR and QR

scales, the phase is reasonable, but again the amplitude

ratio is above 1.0 (Fig. 7). At the SCR scale, both the

FIG. 6. Cross-spectral results (amplitude-ratio spectra and phase spectra) comparing modeled with observed daily

naturalized discharge for the Thames basin (1963–2001). The 95% confidence intervals are indicated in gray. Hor-

izontal bars indicate named frequency bands (with period ranges): SR is 182.5–60 days, QR is 21–7 days, and SCR is

4–2 days. Theoretical phase spectra for offsets (leads) of themodeled vs observed discharge time series are shown for

selected cases using light gray lines.
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variability and phase are reasonable. As forWaterGAP,

at the QR scale the amplitude is too large in the winter

half year, but too small in the summer half year. Unlike

WaterGAP, this is also true at the SR and annual scales.

There is far too little evaporation in LPJmL (MBE 5
128%6 5%) with too much variability (s5 128m3 s21).

Amplitudes are too high from the annual to the SCR

scale, although the phase is generally reasonable. Since

the excess amplitude is found across the annual and

higher-frequency part of the spectrum, it is reasonable to

infer for this model that the excess variability is due to the

lack of evaporation (determining MBE) combined with

too little subsurface storage. The lack of subsurface stor-

age limits the amount of modeled high-frequency atten-

uation leading to too little autocorrelation. The delay in

phase at the annual scale is entirely introduced during

runoff generation rather than, as expected, partly during

routing [section 5d(2), Table 2]. The roll off in power at

the SCR scale (not seen in the spectrum of observed dis-

charge; Fig. 3a) indicates attenuation due to a moving-

average process introduced during routing [section 5d(1)].

GWAVA also has too little evaporation (MBE 5
122%6 5%) and too much variability (s 5 94m3 s21).

However, the amplitude and phase of GWAVA dis-

charge are among the best modeled at the annual and

SR scales (Fig. 7). The excessive variability and early

phase at theQR and SCR scales are readily explained by

the lack of routing (section 2; Fig. 4).

MPI-HM has too much evaporation (MBE 5
231% 6 3%) and too little variability (s 5 37m3 s21).

The low amplitudes compared to observations are seen

from the annual to the SCR scale with phase ranging

from too late at the annual scale to too early at the

SCR scale. The lack of variability across the spectrum is

apparently explicable simply as due to the excessive

evaporation. The late (positive) phases at the annual to

SR scales might be associated with modeled response

times that are too long within the subsurface stores.

MATSIRO also has too much evaporation (MBE 5
233% 6 7%) and too little average variability (s 5
50m3 s21). However, the amplitude ratio is well below

unity only at the annual and SR scales. The phase is far too

late at the annual scale, but otherwise consistent (within

error) with the observations at higher frequencies. The

phase delay at the annual scale is entirely introduced at

the runoff generation stage (Table 2), and routing includes

FIG. 7. Cross-spectral results from comparing modeled with observed discharge at the annual scale and averaged over different fre-

quency bands. Negative phase indicates that, on average, the modeled discharge variations are too early compared to observed discharge

variations. Vertical bars denote the 95% confidence intervals for themean amplitude ratio and for themean phase difference in each case.

Within the frequency bands, the average phase is calculated at frequencies where the coherency exceeds the 95% significance level.
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spurious attenuation at the SCR scale in association with

a moving average process [Fig. 4, section 5d(1)].

The overall performance of JULES depends on the

configuration used (section 3). JULES-TOPMODEL and

JULES exhibit too much evaporation (MBE 5 227% 6
4% and 217% 6 4%, respectively) and less, and slightly

less, average variance than the observations (s5 56 and

64m3 s21), while JULES-PDM shows opposite charac-

teristics (MBE 5 19% 6 5%, s 5 76m3 s21). All con-

figurations have the roll off in power at the SCR scale

associated with excessive high-frequency attenuation

due to averaging the discharge values from successive

time steps during the routing calculations. This pro-

cessing probably also explains the high-frequency trend

in phase toward the SCR scale that can be modeled as

due to discharge variations being an average of 0.25 days

early compared to observations (Fig. 6).

Discharge from JULES has amplitude variations that

are consistent with observations at the annual and SR

scales but with phase that is too late (positive). Slightly

nonsinusoidal annual cycles produce a harmonic spec-

tral peak at the half-annual scale (low-flow base flow

intervals too long, high base flow intervals too short).

There is too little variability at the QR scale, but the

phase is reasonable. The late phase at the SR and annual

scales may indicate residence times that are too long in

the slow subsurface stores.

When TOPMODEL is implemented, a proportion of

the precipitation is retained in the surface soil stores that

would otherwise have been transferred into the sub-

surface during the JULES run. This means that from the

SR to QR scales, the variability of discharge from

JULES-TOPMODEL agrees with the observations

better than the JULES run. The phases at the annual

and SR scales are also improved compared to observa-

tions and the JULES output. However, the extra water

available in the soil stores allows more evaporation and

transpiration, so the MBE becomes more negative than

for JULES. At the annual scale, the variability is too

small (unlike the JULES run), probably because of the

extra water evaporated over subannual time scales.

When PDM is implemented in JULES, more water is

diverted to surface runoff, reducing the overall evapo-

rative losses from the (shallow) soil stores, so theMBE is

positive (rather than negative for JULES and JULES-

TOPMODEL). At the QR scale, the amplitude and

phase agree within error with the observations, an im-

provement compared to JULES. At the SR scale, the

discharge variations are too large, though of the right

phase. Additionally, the excess variability at the SR scale

means that annual-scale variations in discharge are too

small and occur too early, representing a worse result at

this scale compared to the JULES run. Note that

JULES-PDM was run using default values of 1.0m for

the soil depth parameter and b 5 1.0 for the shape pa-

rameter (Moore and Clarke 1981): there was no attempt

to improve the results by calibrating the parameters to

suit the Thames basin (cf. Clark and Gedney 2008).

ORCHIDEE has a similar performance to JULES-

PDM (MBE 5 17% 6 5%, s 5 77m3 s21). At the an-

nual SR andQR scales, the cross-spectral results are very

similar to JULES-PDM, and indeed the time series ap-

pear very similar (Fig. 2).However,ORCHIDEEdoes not

introduce the excessive high-frequency amplitude sup-

pression during routing seen for JULES (and MATSIRO

and LPJmL). On the other hand, at the annual scale, the

phase delay, which is too small (phase negative), is in-

troduced entirely during routing (Table 2).

7. Conclusions

The simulation of discharge rates in the distributed

models applied to the Thames basin requires accurate

modeling of evaporative losses that can be assessed us-

ing MBE. We have demonstrated that the cross-spectral

methods used are appropriate for assessing the relative

variability and timing of modeled versus observed dis-

charge. MBE needs to be assessed alongside the cross-

spectral results because the overall water balance cannot

be determined by the spectral methods because of the

subtraction of the mean from each time series during

preprocessing (i.e., linear detrending; appendix A). Note

that observing amplitude ratios close to 1.0 and phase

differences indistinguishable from 08 when studying the

whole time series does not guarantee correct model be-

havior (seeWaterGAP results in section 6).Nevertheless,

significant deviations from these reference levels can be

used to focus attention on problems with the represen-

tation of specific physical processes by a model.

The evaluations of model performance in section 6,

based on amplitude ratio and phase spectra comparing

modeled with observed discharge, was predicated on the

simulations of model spectral properties in section 5.

Rerunning JULES using TOPMODEL or PDM for

improving subgrid heterogeneity does help with the

amplitude and phase of discharge at between half-year

to 7-day periods. However, the cross spectra show how

these reconfigurations compromise the otherwise good

amplitude performance at the annual scale.

The evaluations showed that, in addition to the effects

on discharge variability of too little or too much evap-

oration, the capacity of surface and/or subsurface stores

and time constants are not appropriate in some models.

As well as the need for implementation of daily routing

for GWAVA, specific model performance could be

improved by also tackling a variety of issues. These
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issues are 1) nonsinusoidal annual cycles of discharge

(CLASSIC, JULES, and H08), 2) excessive attenuation

of highest-frequency variability (MATSIRO, LPJmL,

and JULES in all three configurations), 3) excessive

variability in discharge during winter half years but too

little variability in summer half years (WaterGAP and

H08), and 4) introduction of annual phase delays only

during runoff generation (MATSIRO, GWAVA, and

LPJmL) or only during routing (ORCHIDEE).
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APPENDIX A

Spectral and Cross-Spectral Estimation

To avoid power leakage from the zero-frequency

component (Percival and Walden 1993, 504–506), all

time series were initially detrended linearly, removing

any trend in the mean and leaving the data mean cen-

tered. Split cosine tapering of the first and last 10% of

the centered data was used to suppress periodogram

leakage (Priestley 1981; von Storch and Zwiers 1999).

Weedon (2003) compares methods of spectral estima-

tion and provides sources of algorithms for standard

time series methods in the appendix.

For a mean-centered, tapered, finite time series X(t)

consisting ofN values at discrete time steps twith a fixed

time-step interval ofDt, the power spectrum is evaluated

at the discrete Fourier frequencies f defined in terms

of the proportion of the full dataset length (Percival and

Walden 1993) with f 5 i/N. The integer i provides the

frequency index or harmonic number and runs from 0 to

N/2. For plotting results, the absolute frequency F is

related to the Fourier frequency using F 5 f/Dt. In this

case, for values at daily time steps and absolute fre-

quency expressed in units of cycles per year, the sample

interval Dt, allowing for leap days, is 1.0/365.24.

Amean-centered time series canbe represented (Percival

and Walden 1993) in terms of the Fourier frequencies as

X(t)5 �
1/2

f51/N

[A( f ) cos(2pft)1B( f ) sin(2pft)] , (A1)

for t5 1, 2, 3, . . . ,N, whereA( f) is the cosine amplitude

and B( f) is the sine amplitude. Note that here the

time-step and frequency indices indicate discrete se-

quences, not continuous functions.

In the periodogram approach, the cosine and sine

amplitudes are estimated (Ifeachor and Jervis 1993;

Percival and Walden 1993) using

A( f )5
2

N
�
N

t51

[X(t) cos(2pft)] (A2)

and

B( f )5
2

N
�
N

t51

[X(t) sin(2pft)] . (A3)

The periodogram power estimates I( f) indicating the

power or variance at the Fourier frequencies are ob-

tained using

I( f )5A( f )21B( f )2 . (A4)

To allow analysis of data from winter half years sep-

arately from summer half years (i.e., nonuniform time

steps between data points; section 6), we used the

Lomb–Scargle periodogram spectral estimates from the

program PERIOD of Press et al. (1992). Periodogram

estimates, with just 2 degrees of freedom, are distributed

erratically around any theoretical spectral background

noise level. The Tukey–Hanning spectral window

(Priestley 1981) was applied three times to the perio-

dogram to yield power spectral estimates Gxx( f) with

8 degrees of freedom.

One-sided power spectral confidence levels were

obtained using a standard chi-squared distribution

allowing for the degrees of freedom (Priestley 1981;

Percival andWalden 1993). Quasi-periodic components,

especially at the scale of the annual cycle, were identi-

fied as power-spectral peaks emerging above the 99.0%

and the 99.999% confidence levels relative to the locally

defined spectral background (estimated via moving

window averaging; Press et al. 1992). The higher confi-

dence level quoted corresponds to the false alarm

probability a0 (by applying the �Sidák correction to the
target probability levela—this is analogous to aBonferroni

correction for multiple tests; Abdi 2007).

The first step in generation of the coherency spectrum

for comparing two time series [X(t) and Y(t)] is esti-

mation of the coperiodogram CIxy( f) and quadrature

periodogram QIxy( f) (Priestley 1981) via

CIxy( f )5Ax( f )Ay( f )1Bx( f )By( f ) (A5)

and

QIxy( f )5Bx( f )Ay( f )2Ax( f )By( f ) . (A6)
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The coperiodogram and quadrature periodogram were

smoothed using a Tukey–Hanning spectral window as for

the power spectra, producing the estimated cospectrum

Cxy(f) and estimated quadratic spectrum Qxy(f). The

estimated cross-amplitude spectrum Gxy( f) is obtained

using (Priestley 1981; von Storch and Zwiers 1999)

Gxy( f )5 [Cxy( f )2 1Qxy( f )2]1/2 . (A7)

The estimated coherency spectrum Coh( f) is then de-

rived (Priestley 1981) as

Coh(f )5
Gxy( f )

[Gxx( f )Gyy( f )]1/2
. (A8)

The phase spectrum F( f) indicates, for each fre-

quency, the relative difference in timing of oscillations

in paired time series. In terms of radians, it is derived as

F( f )5 tan221[2Qxy( f )/Cxy( f )] . (A9)

The inverse arctangent (or computational function

ATAN2) limits the phase differences to between 1p

and 2p radians. Phase (difference) in degrees equals

F( f) 3 360.0/2p radians, so the central estimates are

restricted to between 21808 and 11808. The 95% con-

fidence interval for phase expands rapidly at low co-

herency (von Storch and Zwiers 1999), so phase is only

illustrated and used in the frequency band averages of

Fig. 7, where coherency exceeds the 95% coherency

significance level (0.78 here). This limits the phase un-

certainty for the central estimates plotted to #6518.
As discussed in the text [section 5d(2)], we explore the

phase shift DF( f) (radians) due to an offset, positive or

negative between a time series and itself l (from 2N to

N in time-step units). The phase shift (Priestley 1981)

simply depends on the frequency index i (5fN) multi-

plied by the proportion of the full time series repre-

sented by the offset (i.e., l/N):

DF( f )5 tan221[sin( fN2pl/N)/cos(fN2pl/N)]. (A10)

The power at each frequency from windowed perio-

dogram estimates is derived from squared amplitude

values (note that for some estimation methods the

power is given by the area under the power spectrum;

Priestley 1981). Hence, the amplitude-ratio spectraR( f)

were derived as

R( f )5Gxx( f )1/2/Gyy( f )1/2 . (A11)

In comparing the amplitudes of input time series and

output time series via the spectral transfer function, the

gain spectrum Gain( f) is obtained [section 9.2 of

Priestley (1981)] using

Gain( f )5Gxy( f )/Gyy( f ) . (A12)

The gain at each frequency expresses the change in

amplitude of the output from a system (e.g., discharge)

compared to the amplitude of the input (e.g., pre-

cipitation).Multiplying the right-hand sides of Eqs. (A8)

and (A11) yields

R( f )Coh( f )5Gain( f ) . (A13)

APPENDIX B

Simulating Modeled Runoff and Discharge Power
Spectral Characteristics

The WFD Kingston gridbox precipitation PNKing(t)

was rescaled from millimeters per day to cubic meters

per second. A cosine wave time series with an absolute

frequency of 1 cycle per year was generated, multiplied

by 0.25, and then10.25 was added to all time steps. The

resulting series ranges from 10.5 in midwinter to 0.0 in

midsummer. Multiplication of the rescaled precipitation

data by the cosine series (imposed amplitude modula-

tion) partly suppresses midwinter precipitation but se-

verely attenuates midsummer precipitation variations,

yielding surface plus subsurface runoff:

RO(t)5PNKing(t)3 f0:251 [0:25 cos(2pf1t)]g . (B1)

The Fourier frequency f1 within Eq. (B1) is calculated

via the absolute frequency F (51.0 cycle per year) and

sample rate Dt:

f15DtF5 1:0(1:0/365:24). (B2)

Discharge was simulated by imposing first-order

autoregression to mimic the attenuation of high-

frequency variations due to subsurface storage and

transport across the basin during routing. The lag-1 au-

tocorrelation (r1 5 0.7) was selected so that the power

spectrum of the simulated discharge provided a reason-

ablematch to that ofWaterGAP—itself a goodmatch to

the spectrum of observed discharge. Routing of the

runoff to the discharge point increases average vari-

ability (Fig. 4). Increased variability due to routing was

simulated by multiplying the autoregressed series by

10.0 to approximate the offset in levels of the runoff and

discharge spectra in Fig. 4:

Q(t)5 10:0fRO(t)1 [0:7RO(t2 1)]g . (B3)

Some models analyzed apparently partially represent

routing by accumulating water from adjacent grid boxes
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from different time steps. The effect of such processing

on the simulated discharge was applied using a simple

(unweighted or boxcar) moving average:

Q0(t)5 [Q(t)1Q(t2 1)]/2. (B4)

REFERENCES

Abdi, H., 2007: The Bonferroni and �Sidák corrections for multiple
comparisons. Encyclopedia of Measurement and Statistics,

N. Salkind, Ed., Sage, 103–107.

Best, M. J., and Coauthors, 2011: The Joint UK Land Environment

Simulator (JULES) model description—Part 1: Energy and

water fluxes. Geosci. Model Dev., 4, 677–699, doi:10.5194/
gmd-4-677-2011.

Beven, K. J., M. J. Kirkby, N. Schofield, andA. F. Tagg, 1984: Testing

a physically-based flood forecasting model (TOPMODEL)

for three UK catchments. J. Hydrol., 69, 119–143, doi:10.1016/
0022-1694(84)90159-8.

Billings, S. A., 2013: Nonlinear System Identification: NARMAX

methods in the Time, Frequency, and Spatio–Temporal Domains.

Wiley, 555 pp.

Bryce, R. M., and K. B. Sprague, 2012: Revisiting detrended fluc-

tuation analysis. Sci. Rep., 2, 315, doi:10.1038/srep00315.

Clark, D. B., and N. Gedney, 2008: Representing the effects of

subgrid variability of soil moisture on runoff generation in

a land surface model. J. Geophys. Res., 113, D10111,

doi:10.1029/2007JD008940.

Crooks, S. M., and P. S. Naden, 2007: CLASSIC: A semi-

distributed rainfall–runoff modelling system. Hydrol. Earth

Syst. Sci., 11, 516–531, doi:10.5194/hess-11-516-2007.

Döll, P., and B. Lehner, 2002: Validation of a new global 30-min

drainage direction map. J. Hydrol., 258, 214–231, doi:10.1016/

S0022-1694(01)00565-0.

Ebisuzaki, W., 1997: A method to estimate the statistical signifi-

cance of a correlation when data are serially correlated.

J. Climate, 10, 2147–2153, doi:10.1175/1520-0442(1997)010,2147:

AMTETS.2.0.CO;2.

Fleming, S. W., 2014: A non-uniqueness problem in the identifica-

tion of power-law spectral scaling for hydroclimatic time series.

Hydrol. Sci. J., 59, 73–84, doi:10.1080/02626667.2013.851384.

Gedney, N., and P. M. Cox, 2003: The sensitivity of global climate

model simulations to the representation of soil moisture

heterogeneity. J. Hydrometeor., 4, 1265–1275, doi:10.1175/

1525-7541(2003)004,1265:TSOGCM.2.0.CO;2.

Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance

metrics for climate models. J. Geophys. Res., 113, D06104,

doi:10.1029/2007JD008972.

Gudmundsson, L., and Coauthors, 2012a: Comparing large-scale

hydrological model simulations to observed runoff percen-

tiles in Europe. J. Hydrometeor., 13, 604–620, doi:10.1175/

JHM-D-11-083.1.

——, T. Wagner, L. M. Tallaksen, and K. Engeland, 2012b: Eval-

uation of nine large-scale hydrological models with respect to

the seasonal runoff climatology in Europe.Water Resour. Res.,

48, W11504, doi:10.1029/2011WR010911.

Haddeland, I., and Coauthors, 2011:Multimodel estimate of global

terrestrial water balance: Setup and first results. J. Hydrome-

teor., 12, 869–884, doi:10.1175/2011JHM1324.1.

Hanasaki, N., S.Kanae, T.Oki,K.Masuda,K.Motoya,N. Shirakawa,

Y. Shen, and K. Tanaka, 2008: An integrated model for the

assessment of global water resources—Part 1: Model de-

scription and input meteorological forcing.Hydrol. Earth Syst.

Sci., 12, 1007–1025, doi:10.5194/hess-12-1007-2008.

Heneghan, C., and G. McDarby, 2000: Establishing the relation be-

tween detrended fluctuation analysis and power spectral density

analysis for stochastic processes. Phys. Rev. E, 62, 6103–6110.

Herman, J. D., P. M. Reed, and T. Wagener, 2013: Time-varying

sensitivity analysis clarifies the effects of watershed model

formulation on model behavior.Water Resour. Res., 49, 1400–

1414, doi:10.1002/wrcr.20124.

Hoskins, J. R. M., 1984: Modeling persistence in hydrological time

series using fractional differencing. Water Resour. Res., 20,

1898–1908, doi:10.1029/WR020i012p01898.

Hurst, H. E., 1951: Long-term storage capacity of reservoirs.Trans.

Amer. Soc. Civ. Eng., 116, 770–808.

Ifeachor, E. C., and B.W. Jervis, 1993:Digital Signal Processing: A

Practical Approach. Addison-Wesley, 760 pp.

Jenkins, G. M., and D. G. Watts, 1969: Spectral Analysis and Its

Applications. Holden Day, 525 pp.

Jones, S. B., 1983: The estimation of catchment average point rainfall

profiles. IHRep. 87, Institute of Hydrology,Wallingford, United

Kingdom, 34 pp. [Available online at www.ceh.ac.uk/products/

publications/documents/ihreportno87lo-res.pdf.]

Kantelhardt, J. W., E. Koscielny-Bunde, D. Ryski, P. Braun,

A. Bunde, and S. Havlin, 2006: Long-term persistence and

multifractality of precipitation and river runoff records.

J. Geophys. Res., 111, D01106, doi:10.1029/2005JD005881.

Labat, D., 2010: Cross wavelet analyses of annual continental

freshwater discharge and selected climate indices. J. Hydrol.,

385, 269–278, doi:10.1016/j.jhydrol.2010.02.029.
——, R. Ababou, and A. Mangin, 2000a: Rainfall–runoff relations

for karstic springs. Part I: Convolution and spectral analysis.

J. Hydrol., 238, 123–148, doi:10.1016/S0022-1694(00)00321-8.

——, ——, and ——, 2000b: Rainfall–runoff relations for karstic

springs. Part II: Continuous wavelet transform and multi-

resolution analyses. J. Hydrol., 238, 149–178, doi:10.1016/

S0022-1694(00)00322-X.

Lane, S. N., 2007: Assessment of rainfall–runoff models based upon

wavelet analysis. Hydrol. Processes, 21, 586–607, doi:10.1002/

hyp.6249.

Liu, Y., J. Brown, J. Demargne, andD.-J. Seo, 2011: A wavelet-based

approach to assessing timing errors in hydrologic predictions.

J. Hydrol., 397, 210–224, doi:10.1016/j.jhydrol.2010.11.040.
Marsh, T. J., and J. Hannaford, 2008: UK Hydrometric Register.

Hydrological Data UK Series, Centre for Ecology and Hy-

drology, 210 pp.

Materia, S., P. A. Dirmeyer, Z. Guo, A.Alessandri, andA. Navarra,

2010: The sensitivity of simulated river discharge to land surface

representation and meteorological forcings. J. Hydrometeor.,

11, 334–351, doi:10.1175/2009JHM1162.1.

Mesa, O. J., and G. Poveda, 1993: The Hurst effect: The scale

fluctuation approach. Water Resour. Res., 29, 3995–4002,

doi:10.1029/93WR01686.

Milly, P. C. D., and R. T. Wetherald, 2002: Macroscale water fluxes 3.

Effects of land processes on variability ofmonthly river discharge.

Water Resour. Res., 38, 1235, doi:10.1029/2001WR000761.

Montanari, A., and E. Toth, 2007: Calibration of hydrological

models in the spectral domain: An opportunity for scarcely

gauged basins? Water Resour. Res., 43, W05434, doi:10.1029/

2006WR005184.

Moore, R. J., and R. T. Clarke, 1981: A distribution function ap-

proach to rainfall runoff modelling. Water Resour. Res., 17,

1367–1382, doi:10.1029/WR017i005p01367.

230 JOURNAL OF HYDROMETEOROLOGY VOLUME 16

http://dx.doi.org/10.5194/gmd-4-677-2011
http://dx.doi.org/10.5194/gmd-4-677-2011
http://dx.doi.org/10.1016/0022-1694(84)90159-8
http://dx.doi.org/10.1016/0022-1694(84)90159-8
http://dx.doi.org/10.1038/srep00315
http://dx.doi.org/10.1029/2007JD008940
http://dx.doi.org/10.5194/hess-11-516-2007
http://dx.doi.org/10.1016/S0022-1694(01)00565-0
http://dx.doi.org/10.1016/S0022-1694(01)00565-0
http://dx.doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2
http://dx.doi.org/10.1080/02626667.2013.851384
http://dx.doi.org/10.1175/1525-7541(2003)004<1265:TSOGCM>2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2003)004<1265:TSOGCM>2.0.CO;2
http://dx.doi.org/10.1029/2007JD008972
http://dx.doi.org/10.1175/JHM-D-11-083.1
http://dx.doi.org/10.1175/JHM-D-11-083.1
http://dx.doi.org/10.1029/2011WR010911
http://dx.doi.org/10.1175/2011JHM1324.1
http://dx.doi.org/10.5194/hess-12-1007-2008
http://dx.doi.org/10.1002/wrcr.20124
http://dx.doi.org/10.1029/WR020i012p01898
http://www.ceh.ac.uk/products/publications/documents/ihreportno87lo-res.pdf
http://www.ceh.ac.uk/products/publications/documents/ihreportno87lo-res.pdf
http://dx.doi.org/10.1029/2005JD005881
http://dx.doi.org/10.1016/j.jhydrol.2010.02.029
http://dx.doi.org/10.1016/S0022-1694(00)00321-8
http://dx.doi.org/10.1016/S0022-1694(00)00322-X
http://dx.doi.org/10.1016/S0022-1694(00)00322-X
http://dx.doi.org/10.1002/hyp.6249
http://dx.doi.org/10.1002/hyp.6249
http://dx.doi.org/10.1016/j.jhydrol.2010.11.040
http://dx.doi.org/10.1175/2009JHM1162.1
http://dx.doi.org/10.1029/93WR01686
http://dx.doi.org/10.1029/2001WR000761
http://dx.doi.org/10.1029/2006WR005184
http://dx.doi.org/10.1029/2006WR005184
http://dx.doi.org/10.1029/WR017i005p01367


Moussu, F., L. Oudin, V. Plagnes, A. Mangin, and H. Bedjoudi,

2011: A multi-objective calibration framework for rainfall–

discharge models applied to karst systems. J. Hydrol., 400,

364–376, doi:10.1016/j.jhydrol.2011.01.047.

Mudelsee, M., 2007: Long memory of rivers from spatial aggregation.

Water Resour. Res., 43, W01202, doi:10.1029/2006WR005721.

Naden, P. S., 1992: Spatial variability in flood estimation for large

catchments: The exploitation of channel network structure.

Hydrol. Sci. J., 37, 53–71, doi:10.1080/02626669209492561.

Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through

conceptual models part I—A discussion of principles. J. Hy-

drol., 10, 282–290, doi:10.1016/0022-1694(70)90255-6.
Padilla,A., andA. Pulido-Bosch, 1995: Study of hydrographs of karstic

aquifers by means of correlation and cross-spectral analysis.

J. Hydrol., 168, 73–89, doi:10.1016/0022-1694(94)02648-U.

Pauwels, V. R. N., and J. M. De Lannoy, 2011: Multivariate cali-

bration of a water and energy balance model in the spectral

domain. Water Resour. Res., 47, W07523, doi:10.1029/

2010WR010292.

Pelletier, J. D., and D. L. Turcotte, 1997: Long-range persistence in

climatological and hydrological time series: Analysis, model-

ling and application to drought hazard assessment. J. Hydrol.,

203, 198–208, doi:10.1016/S0022-1694(97)00102-9.
Percival, D. B., and A. T. Walden, 1993: Spectral Analysis for

Physical Applications: Multitaper and Conventional Univari-

ate Techniques. Cambridge University Press, 583 pp.

Press,W. H., S. A. Teukolsky,W. T. Vetterling, and B. P. Flannery,

1992: Numerical Recipes in Fortran: The Art of Scientific

Computing. Cambridge University Press, 963 pp.

Priestley,M. B., 1981: Spectral Analysis and Time Series.Academic

Press, 890 pp.

Quets, J. J., G. J. M. De Lannoy, and V. R. N. Pauwels, 2010:

Comparison of spectral and time domain calibration methods

for precipitation–discharge processes. Hydrol. Processes, 24,

1048–1062, doi:10.1002/hyp.7546.

Schaefli, B., and E. Zehe, 2009: Hydrological model performance

and parameter estimation in the wavelet-domain. Hydrol.

Earth Syst. Sci., 13, 1921–1936, doi:10.5194/hess-13-1921-2009.

Schepers, H. E., J. H. G. M. van Beek, and J. B. Bassingthwaighte,

1992: Four methods to estimate the fractal dimension of self-

affine signals. IEEEEng.Med.Biol.Mag., 11, 57–64, doi:10.1109/

51.139038.

Smith, L. C., D. L. Turcotte, and B. L. Isacks, 1998: Stream flow

characterization and feature detection using a discrete

wavelet transform.Hydrol. Processes, 12, 233–249, doi:10.1002/

(SICI)1099-1085(199802)12:2,233::AID-HYP573.3.0.CO;2-3.

Taylor, K. E., 2001: Summarizing multiple model performance in a

single diagram. J. Geophys. Res., 106, 7183–7192, doi:10.1029/

2000JD900719.

von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Cli-

mate Research. Cambridge University Press, 484 pp.

Weedon, G. P., 2003: Time-Series Analysis and Cyclostratigraphy:

Examining Stratigraphic Records of Environmental Cycles.

Cambridge University Press, 259 pp.

——, and Coauthors, 2011: Creation of the WATCH forcing data

and its use to assess global and regional reference crop evap-

oration over land during the twentieth century. J. Hydrome-

teor., 12, 823–848, doi:10.1175/2011JHM1369.1.

Willmott, C. J., and K. Matsuura, 2005: Advantages of the mean

absolute error (MAE) over the root mean square error

(RMSE) in assessing average model performance. Climate

Res., 30, 79–82, doi:10.3354/cr030079.

FEBRUARY 2015 WEEDON ET AL . 231

http://dx.doi.org/10.1016/j.jhydrol.2011.01.047
http://dx.doi.org/10.1029/2006WR005721
http://dx.doi.org/10.1080/02626669209492561
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/0022-1694(94)02648-U
http://dx.doi.org/10.1029/2010WR010292
http://dx.doi.org/10.1029/2010WR010292
http://dx.doi.org/10.1016/S0022-1694(97)00102-9
http://dx.doi.org/10.1002/hyp.7546
http://dx.doi.org/10.5194/hess-13-1921-2009
http://dx.doi.org/10.1109/51.139038
http://dx.doi.org/10.1109/51.139038
http://dx.doi.org/10.1002/(SICI)1099-1085(199802)12:2<233::AID-HYP573>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1099-1085(199802)12:2<233::AID-HYP573>3.0.CO;2-3
http://dx.doi.org/10.1029/2000JD900719
http://dx.doi.org/10.1029/2000JD900719
http://dx.doi.org/10.1175/2011JHM1369.1
http://dx.doi.org/10.3354/cr030079

	N509577Copyright
	N509577Text

