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ABSTRACT 

Glacigenic and fluvial deposits of variable lithological composition underlie many major cities in 

Europe and North America. Traditional geological mapping and 3D modelling techniques rarely 

capture this complexity as they use lithostratigraphic designations which are commonly based on 

genesis and age rather than lithological compositions.  

In urban areas, thousands of boreholes have been, and continue to be, drilled to facilitate the 

planning, design and construction of buildings and infrastructure. While these data may provide the 

basis for geological maps and 3D models based on lithological interpretation, they are too numerous 

for manual correlation to be undertaken efficiently. In this paper we explore the application of 

largely automated stochastic modelling techniques to develop predictive lithology models for glacial 

and fluvial deposits in the city of Glasgow, UK. These techniques are commonly used to assess facies 

variation in oilfield models and are applied here in an urban setting using over 4000 borehole 

records.  

Predictions derived from these methods have been evaluated by removing control data and re-

running the simulations. We demonstrate a moderate improvement in the prediction of lithology 

when using a lithologically-derived stochastic model compared with a conventionally interpolated 



 

 

lithostratigraphic model. It is possible to report uncertainty within the resulting models, either with 

probability maps or through a suite of plausible simulations of the lithologies across the study 

region.  

 

1. Introduction  

The growth and decay of high- and mid-latitude Pleistocene ice sheets has left 8% of the Earth’s land 

surface, including one third of Europe and a quarter of North America, covered by glacigenic and 

fluvial deposits (Ehlers and Gibbard, 2004a, 2004b). These deposits underlie many major cities and 

much of their associated infrastructure networks, and exert a significant influence on the 

groundwater system. Increasing urban development, and its demands (e.g. suitable foundation 

conditions, the need for waste storage, contaminant migration, drainage re-routing) requires that 

information about subsurface glacial deposits, which are often highly lithologically variable across 

short distances, is available for those involved in planning and construction (Campbell et al., 2010). A 

key challenge for the three-dimensional (3D) geological modelling community is therefore to 

represent these subsurface deposits in appropriate ways across large, city-wide areas (Culshaw, 

2005; MacCormack et al., 2005; Kessler et al., 2009).  

In Glasgow, west central Scotland (Figure 1), the British Geological Survey (BGS), in partnership with 

Glasgow City Council and other local authorities, have used extensive borehole datasets to develop 

and successfully apply a suite of 3D Quaternary lithostratigraphic models (Merritt et al., 2007; 

Campbell et al., 2010) (Figure 2).  A key strength of lithostratigraphic modelling is that it brings 

together the expertise of geologists and known geological relationships, enabling a geologically 

realistic representation, even where subsurface data are lacking (Kessler et al., 2009).  However, 

owing to the complex and heterogeneous nature of glacial deposits (Hambrey, 1994; Meriano and 

Eyles, 2009; Benn and Evans, 2010), lithostratigraphic modelling may not always represent the full 

subsurface variability that is of direct relevance to end-users, such as ground engineers or 



 

 

groundwater modellers. Furthermore, this approach is time-consuming.  For example, extending the 

same detailed lithostratigraphic modelling methodology that was used for Glasgow, to all UK cities 

would be highly protracted engaging considerable resources over a number of decades – too long to 

be of use to many current and planned urban redevelopment schemes.  In this paper we explore a 

largely-automated facies-based stochastic modelling approach to investigate lithological variations 

within glacial and postglacial fluvial and marine deposits. Stochastic models can be used to produce 

multiple realisations of the lithological variation across the model domain. Rather than producing a 

single solution, this allows a wide-range of realisations. These multiple solutions can be used to 

generate lithology probability maps, which capture the lithological variation. In this way, stochastic 

simulation, as opposed to interpolation techniques, captures not only the most likely lithology at a 

given location, but also uncertainty within the simulations. This may be particularly beneficial if the 

lithological simulation is to be subsequently used to model the distribution of hydraulic or 

geotechnical parameters, as it allows for different scenarios to be modelled. From a ground 

engineering perspective, it is also useful because it can highlight areas in the model that are data 

poor and require further ground investigation.   

Stochastic geological modelling owes its origins to the hydrocarbons industry, where it is widely used 

to characterise and simulate reservoir heterogeneity (Wach et al., 2004; Yarus and Chambers, 2006, 

Falivene et al., 2007).  Rather than producing sharp boundaries between units, it allows lithologies to 

grade into each other which better captures the inter-fingered nature of heterolithic deposits. 

Central Glasgow is well suited for this type of approach, as more than 4000 geotechnical and 

lithological borehole logs are available to condition the simulation.   

Our motivation is to test whether a lithology-based stochastic modelling approach can produce a 

geologically valid representation of subsurface lithological variation in a complex depositional 

environment affected by glaciation – typical of the Quaternary geology under many cities in North 

America and Northern Europe.  



 

 

 

2. Research Aims  

Few studies have attempted to apply stochastic modelling to the lithology of terrestrial Quaternary 

deposits (c.f. Comunian et al., 2011).  However, the technique has been demonstrated to be a valid 

and potentially successful approach in fluvio-deltaic sediments of the Netherlands (Stafleu et al., 

2011).  To our knowledge, the technique remains untested in a complex formerly glaciated 

environment affected by a combination of ice sheet oscillations, relative sea level changes and post 

glacial fluvial processes, such as occurred in Glasgow (Browne and McMillan, 1989; Finlayson et al., 

2010). In this paper, and for the first time in the UK, we developed and tested a stochastic approach 

to modelling the distribution of complex Quaternary deposits at a city-wide scale.  Our principal 

research goals are listed below.       

1. Apply facies-based stochastic modelling methodologies to simulate the distribution of Quaternary 

deposits in central Glasgow. 

2.  Describe the basic characteristics of the model, and highlight the assumptions and the limitations 

of using a stochastic modelling approach. 

3. Compare two different stochastic models with each other and the lithostratigraphic model by: i) 

removing a portion of the input boreholes and re-running the simulation to look at internal variance 

in the model (Hass and Formery 2002, Scheidt and Caers, 2010); ii) Evaluation of the model was also 

done by testing it against boreholes that were not used in the stochastic modelling (Browne and 

McMillan, 1989; Hall et al., 1998). 

4. Offer recommendations as to the future applicability of the technique to other cities built in 

formerly glaciated environments.      

 



 

 

3. Geological Setting  

The Glasgow conurbation, Scotland’s most densely populated area, is located alongside the River 

Clyde in west central Scotland (Figure 1).  In the 19th and early 20th centuries, much activity in 

Glasgow (and surrounding areas) was based around mining and heavy industry (Browne et al., 1986).  

Subsequent industrial decline has left significant areas of dereliction, which have been the targets of 

a major 25-year regeneration plan (Campbell et al., 2010).  It is recognised that future sustainable 

development in Glasgow requires an understanding of the nature and distribution of subsurface 

Quaternary deposits (Glasgow City Council, 2011).  The present study focuses on a 100 km2 area in 

central Glasgow (55.813°N–55.903°N; 4.157°W–4.319°W) (Figure 1).    

The Clyde Basin is thought to have been glaciated at least five times in the last 0.5 Ma (Lee et al., 

2012), most recently during the Main Late Devensian glaciation, when ice advanced into the basin 

sometime after 35 thousand years BP (Brown et al., 2007; Jacobi et al., 2009).  Glacier ice had 

retreated from the Glasgow area by ~15 thousand years BP, at which time the late glacial relative 

sea level had risen locally to almost 40 m above current sea level (Peacock, 2003).  Relative sea level 

fall during the Holocene resulted in a series of raised estuarine flats around the Glasgow area at 

progressively lower elevations from ~12 m to ~3 m above current sea level.   A full description of 

events during and following the last glacial cycle in Glasgow, and associated lithostratigraphic 

variations is described elsewhere (Browne and McMillan, 1989; Finlayson et al., 2010; Finlayson, 

2012).  

The key units relevant to the present study are summarised in Table 1 and Figure 2.  The Wilderness 

Till Formation comprises a massive to locally stratified sandy silty clay diamicton. It has been noted 

to include rare bands of sand and laminated clay; these are generally < 10 cm thick, but one 

temporary section has also revealed metre-scale till interbeds (Browne and McMillan, 1989).  These 

may be the result of glaciotectonic thrusting and hydrofracturing near the former ice margin as it 

advanced into the Clyde basin (Finlayson, 2012).  The Wilderness Till Formation probably rests on 



 

 

bedrock across much of the study area.  However, in bedrock depressions in the northern parts of 

the study area, it may also overlie buried glaciofluvial sands and gravels, buried glaciolacustrine clays 

and a lower till belonging respectively to the Cadder Sand and Gravel Formation, the Broomhill Clay 

Formation and Baillieston Till Formation. The Wilderness Till Formation is overlain by the Bridgeton 

Sand Formation.  It generally comprises an upward-fining sequence of medium- to fine-grained sand, 

with some gravel beds and rare, isolated stones (< 10 cm). The Bridgeton Sand Formation is thought 

to have been deposited in the central Glasgow area as subaqueous (probably glaciomarine) outwash 

fans at the margin of in situ decaying ice (Figure 2, Section 1 and 2). The Bridgeton Sand Member is 

overlain by the Paisley Clay Member of the Clyde Clay Formation, which generally comprises 

laminated silts and clays with isolated bands of sand and dropstones  (Figure 2, Section 1 and 2). The 

Paisley Clay Member was laid down in a glaciomarine environment, shortly after complete ice decay 

in Glasgow, when relative sea level approached 40 m above current sea level. Along the margins of 

the River Clyde, the Paisley Clay Member may be overlain by the Gourock Sand Member (Figure2, 

Section 1 and 2), which generally comprises fine- to coarse-grained sand, but may also include clay, 

silt and gravel beds. In the study area, these deposits are thought to have been deposited in a 

shallow, fluvially influenced, estuarine environment, when relative sea levels were 3 m – 12 m higher 

than today.  

These lithostratigraphic units can be broadly divided into two separate sedimentological facies, 

glacial and post-glacial. The glacial facies includes the Wilderness Till Formation, Cadder Sand and 

Gravel Formation, the Broomhill Clay Formation and Baillieston Till. The post-glacial facies includes 

all units overlying the Wilderness Till Formation (including the  Bridgeton Sand Formation, Paisley 

Clay Member, Gourock Sand Member) that were formed following ice retreat and during subsequent 

sea-level variations. The boundary between these two facies is the top of the Wilderness Till 

Formation which represents a disconformable sequence boundary. There is no interfingering 

between these two facies, although lithologies that belong to a single facies may interfinger.  



 

 

As described previously, all lithostratigraphic units are highly heterolithic. If a single lithology is 

assumed for each lithostratigraphic unit based on the major component in the published 

lithostratigraphic description (Browne & McMillan, 1989, Table 1), there is only a 54% match when 

compared against the borehole data used in this study (see Section 4.1 for description of boreholes).  

For individual lithostratigraphic units this figure varies between 3% and 68% (Table 1). This suggests 

that a simple lithostratigraphic approach can only predict the lithologies in a borehole about half the 

time, and that the minor lithologies occurring within the lithostratigraphic units represent a 

significant proportion of the total volume of these units.  

 

4. Materials and Methodology  

The methodology used in this work combines: (i) borehole data collected from site investigations 

and other geotechnical applications, which were prepared for input into GOCAD® software; (ii) the 

creation of stochastic models in GOCAD® software, and (iii) the comparison of this model against 

previously published data and analysis of the results.  

4.1. Input data 

The dataset (Figure 3) includes the geological logs of 4391 geotechnical boreholes, collected over 

several decades for a variety of purposes by different ground investigation contractors. These 

borehole logs are digitally stored in a database and are recalled as tab-separated ASCII files for use in 

modelling workflows (see Kessler et al., 2009 for more details). The boreholes have a maximum 

depth of 79 m and a minimum depth of 3m, with a median depth of 6 m. Collectively, the dataset 

includes 21320 individual descriptions of the lithology at particular locations and depths that were 

described in accordance with British Standard BS930:1990 (British Standards Institution, 1999). 

BS5930 standard descriptions systematically describe the relative density or consistency, structure, 

colour, size, and relative proportions of composite particles.  Within the dataset, each record had 



 

 

been assigned a code by BGS, based on the borehole log description; this code represents the major 

lithology at that position as described in the textural lithological description (e.g. sand and gravel), 

using an internal BGS classification scheme defined by Cooper et al. (2006). Because the original core 

from these 4391 geotechnical boreholes no longer exists it is impossible to do any independent 

validation of the borehole log descriptions, a situation that is common in all urban settings. Initial 

processing of the data indicated that 185 different lithological codes have been used to describe the 

Quaternary deposits recovered from these boreholes, which is too many to include in a modelling 

exercise. Further examination of the data showed that of these 185 codes, 21 of them account for 

over 87% of the records in the study area. Accordingly, these 21 codes were simplified and 

automatically assigned into nine main categories, based on the dominant observed lithology (or 

lithologies) and consistency that were described in each record. The nine categories are: ‘organic’, 

‘soft clay’, ‘soft clay and sand’, ‘stiff clay diamicton’, ‘silt,’ ‘silt and sand’, ‘sand’, ‘sand and gravel’, 

‘gravel.’ Records with lithological codes not ascribed to the 21 lithology codes (approximately 2,500 

lithology descriptions) were manually assigned to a category based on available descriptive 

information. 

 

Particle size distribution data were available for 3196 of the lithology records, and were used to 

compare and validate the nine categories (Williams and Dobbs, 2012). This analysis revealed that the 

‘clay and sand’ and ‘clay’ categories have similar particle size distributions, and so the two categories 

were combined into a ‘soft clay’ category. This was also true of the ‘silt and sand’ and ‘sand’ 

categories, as well as the ‘sand and gravel’, and ‘gravel’ categories, so these pairs were combined 

respectively into a ‘silt’ and ‘sand and gravel’ category. The ‘stiff clay diamicton’ category was 

defined using criteria of lithological description and consistency. The ‘stiff clay diamicton’ category 

has a consistency of ‘firm to very stiff’, as compared to the ‘soft clay’ category, which has a 

consistency of ‘soft to firm’. This difference reflects the fact that, in Glasgow, clay-diamicton was 



 

 

generally, though not exclusively, deposited beneath glaciers as till, and has been shown to have a 

significantly stiffer consistency than the post-glacial clays, caused by ice compaction rather than 

other factors such as depth from surface and water content (Entwistle et al 2008). The distinction of 

‘stiff clay diamicton’ and ‘soft clay’ also addresses a specific geotechnical problem relevant to the 

Glasgow area. The end result of reclassification using textural analysis of borehole log descriptions 

and particle size analysis was to reduce the number of lithological categories to six : ‘organic’, ‘soft 

clay’, ‘stiff clay diamicton’, ‘silt’, ‘sand’, and ‘sand and gravel’. 

4.2. Three-dimensional model construction  

The base of the model domain was defined by using a surface representing rock-head (the boundary 

between the bedrock deposits and overlying superficial deposits) that was taken from the existing 

lithostratigraphic model of the study area (Figure 2, Merritt et al., 2007). The top (or capping) 

surface was based on the NEXTMap™ Britain digital elevation model (© Intermap technologies). 

However, man-made deposits at the land surface were excluded from the modelling domain, 

thereby incorporating the base of the artificial ground layer, which had been identified during earlier 

lithostratigraphic modelling (Figure 2, Merritt et al., 2007), into the capping surface. Artificial ground 

was excluded because it does not conform with the glacial and postglacial sediments and was too 

variable in description to be able to interpolate between points. Stochastic modelling could be 

applied to modelling the variability of artificial ground. However, it would require an understanding 

of the factors that control the occurrence of different manmade deposits such as positions of former 

industrial sites and remediation and thus falls outside the scope of this study. The surfaces 

representing rock-head and the digital elevation model, modified to remove artificial ground, were 

imported into GOCAD® and used to define the base and top of the model domain. The modelling 

volume is 10 km x 10 km wide and 80 m thick, and comprises a regular grid of discrete cellular 

volumes, each 50 m x 50 m x 0.5 m in size. The vertical thickness of the grid was defined by being 

half the median thickness of the lithological unit observed in the borehole data (median 1 m, min 0.1 



 

 

m, max 34 m). The horizontal grid resolution was defined as a compromise between ensuring 

reasonable computational performance and the city-wide scale of the modelling program. This grid 

was subdivided into two separate regions, representing glacial and post-glacial facies, using a surface 

from the existing lithostratigraphic model that represents the top of the Wilderness Till (Figure 2, 

Merritt et al., 2007). This was done as the top of the Wilderness Till defines the sequence boundary 

between these two facies.  

 

The borehole information were imported to GOCAD® with each of the six lithological categories 

attributed as a discrete property. Lithologies were then stochastically modelled (simulated) across 

the grid using Indicator Kriging (IK) and Sequential Indicator Simulation (SIS) methods, conditioned to 

the input borehole dataset (Deutsch and Journel, 1992). Indicator Kriging (IK) takes the input 

borehole data and, where the borehole is present in the grid, assigns a value of one where that 

lithology is present while assigning all other lithologies a value of zero. It then interpolates the 

results obtained for all indicator variables (lithology) for each cell in the grid and the lithology to 

obtain maps of the probabilities of each lithology occurring at that cell. A map of the most likely 

lithology in each cell can be inferred from the probability maps for the individual lithologies (Falivene 

et al. 2007).  

 

Sequential Indicator Simulation (SIS) works in a similar way to IK, but begins at a random cell in the 

grid. IK is used to determine the probability of each lithology occurring at that cell. The realised 

lithology for the cell is selected at random according to these probabilities. It then moves randomly 

through the remaining grid cells and performs the same calculation, using the values realised in 

previous cells as conditioning data for subsequent cells (Falivene et al., 2007). By this method, SIS 

takes account of both the input data and the other values in the grid, which produces more 



 

 

gradational contacts between different lithologies. The results of indicator simulations such as SIS 

are dependent on a randomly selected seed number, that determines the cell in which the algorithm 

begins and the random selection of the lithology in each cell. Use of different initial seed numbers 

results in different realisations of the same property, generating multiple realisations and enabling 

an understanding of the variability of the modelling results and of the inherent uncertainty involved. 

The SIS algorithm was used to produce 500 realisations using different seed numbers, and therefore 

the probability that any one lithology will occur at any specified site in the grid could be estimated. 

Whilst the precision of these estimated probabilities could be increased by increasing the number of 

simulated realisations, this would have required more computation time. For example, if a particular 

lithology occurs in a particular cell with probability 0.3 and we treat the realisations in that cell as a 

set of independent binomial trials, then the 500 realisations would lead to a standard error of 0.02 in 

estimating the probability of occurrence. We judge this level of precision to be sufficient. 

 

The probability of each lithology occurring at any particular cell can also be extracted from the IK 

methodology without the need for the use of SIS. However, the advantage of SIS is that within each 

realisation it is possible to see the shapes of lithological bodies that are likely to occur (both 

horizontally and vertically). This information is lost in a simple probability model since it is not clear 

to what extent the lithology in one cell is correlated with the lithologies in adjacent cells. 

 

The IK and SIS algorithms require three inputs. The first is the set of conditioning observations of 

lithology. These were derived from the borehole data. However, the interpolation algorithms require 

that the observations are expressed at the same spatial scale as the cells within which the lithology 

will be modelled. Therefore the borehole data were up-scaled to 50 m x 50 m x 0.5 m cells. There are 

two options as to how to do this in GOCAD®: 1) by calculating which of the borehole observed 



 

 

lithologies has the largest proportion in each cell intersected by boreholes in the grid; 2) calculating 

which of the lithologies was closest to the centre of each cell in the grid intersected by a borehole. 

We selected the first option since we required that the observations were representative of the 

entire volume rather than just the centre. It is clear that the up-scaling process removes some of the 

fine-scale variability seen in the original input data, which will be detrimental if the model results are 

to be explored at the fine-scale. As the individual grid cells are 50 m x 50 m x 0.5 m this should be 

seen as the maximum scalar resolution of the model. A finer resolution grid would be preferable; 

however, the grid size was limited by the computational power available to this study. 

 

The second set of inputs for the modelling algorithms is the proportion of each separate lithology 

throughout the study region (the global proportions of each lithology) (Figure 4). The IK 

methodology assumes that in a cell that is a long distance from any conditioning data that the 

modelled probability of a particular lithology will be equal to the global proportions of this lithology. 

In cells close to conditioning data the modelled probability will be largely controlled by these 

conditioning data. We determine the global proportions from the observed lithologies scaled up to 

the cell scale. It should be noted that if the boreholes are clustered then certain areas of the study 

region will be over-represented and the proportion of boreholes with a particular lithology will be a 

biased estimate of the proportion of the study region with this lithology. The up-scaling of input 

observations will remove the effect of clustering at the within-cell scale.  Thus the influence of the 

effects of clustered data will be largely confined to cells that are distant from the conditioning data. 

 

The final inputs to the IK and SIS methodologies are models, referred to as variograms, of the spatial 

dependence of the data (Cressie, 1993). These variograms quantify the extent to which the 

probability of observing the same lithology at two different sites increases as the separation 



 

 

between these sites decreases. GOCAD® calculates point estimates of the variograms for each 

lithology. These point estimates consist of plots of half the average squared difference between the 

values of the indicator variables at a pair of locations against the distance separating the pair of 

locations. The user then fits a different parametric variogram model to the point estimates for each 

lithology.  One parameter of each variogram describes the range of spatial correlation. Beyond this 

separation distance the observed lithologies can be considered to be independent of each other.  In 

this way, varying the variogram range parameters between different lithologies allows for some 

control over the shapes of the stochastically generated litho-bodies (Table 2). Exploratory analysis of 

the point estimates of the variogram suggested that the spatial variance of the ‘stiff clay diamicton’ 

exhibits an isotropic spatial dependence, which is different from the fluvially derived ‘soft clay’ 

which exhibits a stronger degree of spatial dependence in the mean direction of sediment transport 

along the present Clyde Valley. The remaining lithologies were assigned a common isotropic 

variogram which has a shorter variogram range than the ‘soft clay’ category, because there was little 

difference in the point variogram estimates for each category. Vertical range values for all categories 

were set to 1 m, which is the median thickness of the lithology observed in the borehole data. 

 

In common with any modelling methodology, this approach makes a number of assumptions about 

the nature of the spatial variation of the lithological categories. For instance, it assumes that the 

variograms and global proportions of each lithology have been reliably estimated and that the same 

variogram models apply throughout the study region. Given the large number of data used to 

calculate our models we anticipate that deviations from these assumptions will have little effect on 

the final outputs. The effects are likely to be largest at sites that are distant from any conditioning 

data, where the uncertainty about the lithology is largest. 

 



 

 

4.3. Validation Tests 

It is not possible to directly compare stochastic models and traditional lithostratigraphic maps or 

models because the results of a stochastic model are best displayed in terms of the relative 

probabilities of the presence of a certain lithology rather than as a definitive map.   

Therefore, the predictive ability of both the IK and SIS models was investigated by testing them 

against two BGS boreholes that contributed to defining the published lithostratigraphy of the area 

(Browne and McMillan, 1989). Also, the stochastic models were tested by randomly excluding 50% 

of the input boreholes from the conditioning data, re-running the simulation and then comparing 

the result to the 50% boreholes that were removed. This technique is commonly used in the oil 

industry and is sometimes referred to as bootstrapping (Haas and Formery, 2002; Scheidt and Caers, 

2010). We used these bootstrapping tests to quantify the reliability of our predictions of lithology 

and to confirm whether our spatial modelling methodology performs better than simpler non-spatial 

models. 

 

5. Results of simulations 

5.1. SIS and IK results 

The modelling domain contains ~9.5 x 105 individual cells. The SIS was run 500 times using different 

seed numbers. From these different realisations it is possible to calculate the number of times that 

any given lithology occurs at any one cell in the model. This can be expressed as a range of 

probabilities, from 0 (never occurs) to 1 (always present), that any of the lithologies occurs in any 

given cell over the 500 simulations (see Figures 5, 6 and 7). Those cells containing conditioning data 

(boreholes) will return a probability of 1. The simulations can be used to generate a 3D map of the 

most probable lithology at every point in the study region. In Figure 5 (a) and (b), the IK and SIS 

predictions of the most likely lithology at each surface location are compared. The maps are very 



 

 

similar except isolated predictions of soft clay occur in the SIS map that are not evident in the IK 

map. These clay features tend to occur in areas where borehole data are sparse and we expect they 

are an artefact of the simulation method, occurring as a consequence of the estimated probabilities 

of clay and sand being very similar in these areas since the global proportion of clay is only slightly 

less than the global proportion of sand (Figure 4).     

We do not recommend that these maps of most likely lithology are viewed in isolation since they say 

nothing about the uncertainty in the model.  The magnitude of this uncertainty will vary across the 

study region and it will be smallest in regions where the density of boreholes is highest. The 

magnitude of the uncertainty at a site is reflected in probability maps shown in Figure 5 (c).  Similar 

probability maps could also be produced by using IK. These maps fully reflect our uncertain 

knowledge of the lithology in each cell but they say nothing about how the lithology in a cell is 

correlated to the lithologies in adjacent cells and hence the shape of lithological bodies that are 

likely to occur. This information is contained in the individual realisations of the SIS. 

Comparing the IK and SIS most frequently occurring models (Figure 5, 6 and 7) to the 

lithostratigraphic model (Figure 2), the broad geometries of the units appear to agree. For example, 

‘stiff clay diamicton’ is preferentially distributed across the higher ground on either side of the Clyde 

Valley. Lithologies such as ‘soft clay’ and ‘sand’ are preferentially distributed on the low ground 

along the present Clyde Valley axis. However, there is disagreement with the lithostratigraphic 

model as to the extent of units such as the Paisley Clay if it is assumed to comprise only clay. Both 

the IK and SIS suggest that along the valley axis the clays are cut by areas of ‘sand’ or ‘silt’ (Figures 2 

and 6).  

 

Both techniques suggest that there is no visible lithological division between units such as the 

Gourock and Bridgeton Sand Members (Figure 2 and 6). 



 

 

 

5.2. Validation tests   

To test the predictive ability of both the IK and SIS, 50% of the boreholes were randomly excluded 

and the simulations re-run to compare the new models against the known removed values. To allow 

like-with-like comparison, the up-scaled boreholes were removed from the grid rather than the raw 

boreholes. 

The IK results generated the observed lithology for the up-scaled boreholes that had been removed 

from the grid in 10695 cells out of 18019, meaning the IK methodology predicted the known 

lithology 59.35% of the time.  

To test the SIS the most frequently occurring lithology per cell over all the 500 simulations was 

compared. This generated the correct answer for the up-scaled boreholes that had been removed 

from the grid in 10735 cells out of 18019, which meant the SIS simulation predicted the correct 

lithology 59.58% of the time. For comparison, had the predicted lithology been selected at random, 

the expected agreement would have been 15%.  Had sand, generally the most abundant lithology, 

been predicted everywhere, the expected agreement would have been 30%. 

However, the most frequently occurring lithology over the 500 simulations may not be the best way 

to assess the accuracy of the SIS simulation. This is because there may be only one simulation 

separating the most frequently occurring lithology and the next most frequently occurring lithology. 

Additionally, less frequently occurring lithologies (such as ‘organic’ and ‘sand and gravel’), which 

have a major impact on ground conditions where they occur, tend to be under-represented if the 

most likely lithology is selected at each site.  Although there may only be a relatively low probability 

that these lithologies may occur at any one specified site, they might occur a sizable number of 

times across a large study region. We therefore considered how well the modelled probabilities at 

each of the randomly removed boreholes reflected our uncertain knowledge of the observed 



 

 

lithologies and whether our approach performed better than a non-spatial model. The non-spatial 

model assumes that the probability of a particular lithology occurring is the same everywhere in the 

study region. Also that it is equal to the proportion of the input data at the cell scale to realise this 

lithology throughout the study region. Using this model we find that the average probability of the 

observed lithology at the validation sites is 0.25. In contrast, the average probability according to our 

spatial model is 0.51, indicating that the SIS probability methodology leads to substantially more 

informative probabilistic models.  

 

5.3 BGS Borehole Comparisons 

The BGS Bridgeton and Broomhill Park boreholes contributed to the original development of a 

lithostratigraphy for the superficial deposits in the Glasgow area (Browne and McMillan, 1989; Hall 

et al., 1998 Figure 3). However, neither borehole was used as input data for the stochastic model. 

Therefore, these boreholes provide a useful test of the representativeness of the stochastic model at 

point localities. The Bridgeton and Broomhill Park boreholes are 80 m and 192 m respectively from 

the nearest conditioning boreholes. 

Broadly both the IK and SIS models predict similar overall proportions of lithologies present in the 

Bridgeton Borehole (Figure 8).  However, both models appear to underestimate the amount of clay 

present in the borehole. Both the IK and SIS models fail to accurately predict the depth of the major 

changes in lithology seen in the borehole. The individual lithology probabilities are slightly more 

predictive as there is an increased probability of (0.4–0.6) of the occurrence of ‘sand and gravel’ 

within 1 m of the vertical position of the sandy gravel of Gourock Sand Member seen in the borehole 

(Figure 8).  However, the vertical thickness suggested by either the IK or SIS models is much greater 

than observed in the borehole. Equally there is an over prediction of the amount and thickness of 



 

 

sand at this precise locality, which may be due to the fact that the model becomes homogenous with 

depth due to lack of data. 

The comparison between the Broomhill Park Borehole and the stochastic model shows a similar 

result (Figure 9). The stochastic model predicts high probabilities of ‘clay diamicton’, which is the 

lithology most often seen in the Wilderness Till Formation, throughout the depth of the borehole. 

However, laminated clays of the Broomhill Clay Formation were observed in the lower eight metres 

of this borehole; although these were not captured by the stochastic modelling.  

 

5.4  Investigating whether model accuracy varies with depth 

The stochastic model broadly captured the observed composition of the Bridgeton and Broomhill 

Park boreholes. Given that lithology can vary over short distances it is unsurprising that some 

discrepancies between the observed and modelled lithology were evident. However, these 

discrepancies increased with depth in both boreholes. Therefore we looked further at the deletion 

tests to explore whether the model generally became less accurate with depth. The results from the 

deletion tests were plotted against depth from surface (Figure 10). This showed that although there 

is a decrease in accuracy with depth from surface across the model as a whole it only starts to show 

a prolonged decrease in accuracy below 32 metres from surface. Only 0.8% of the entire model is 

deeper than 32 metres from the surface. 

 

6. Discussion  

Our deletion tests have shown that our modelling methodologies are slightly more accurate at 

predicting the lithology within the cells containing boreholes than the lithostratigraphic model 

(assuming the dominant lithology is the only lithology present in each lithostratigraphic unit). The IK 



 

 

and SIS methodologies predicted the actual lithology at 59.35% and 59.58% of the locations 

respectively in comparison to the 54% correct predictions from the lithostratigraphic model. 

However, it should be noted that the boreholes are clustered and these results do not necessarily 

reflect the reliability of the methodologies in areas where boreholes are sparse. However, borehole 

clustering is an inherent source of bias in both stochastic and lithostratigraphic models (see Merritt 

et al. 2007) as both approaches use the geotechnical boreholes as their main source of subsurface 

data. The deletion tests also confirm that our models are more accurate than simpler stochastic 

models that do not account for spatial correlation in the observed lithologies.  

The clustering in the data can create problems in applying the IK and SIS methodologies. It can lead 

to biased estimates of the global proportion of each lithology (Deutsch and Journel, 2009). When 

producing a 3D lithological model, it would be ideal if the boreholes were evenly distributed across 

the study region (van Groenigen et al., 1999) but in reality boreholes are likely to be clustered in 

areas of specific interest. The biases in the global proportions of each lithology will have little effect 

on the lithological model where boreholes are plentiful but the modelled results in areas that are 

distant from boreholes should be treated with some caution (MacCormack & Eyles, 2012). The 

elevated uncertainty in regions where boreholes are sparse is also observed with the BGS boreholes 

(Figure 8 and 9) as they are only 80 m and 192 m away from the nearest control data and only 

predict the observed lithology in the broadest terms.  

The comparison with the BGS boreholes (Figure 8 and 9) seems to indicate that the model can only 

accurately predict lithology to a depth of approximately 10 metres. However, when results from the 

deletion tests were plotted against depth from surface (Figure 10) there is no sustained decrease in 

accuracy of the model until below 32 metres below the surface. Given that lithology can vary over 

short distances it is unsurprising that some discrepancies between the observed and modelled 

lithology were evident.  For a site-specific model a finer-scale grids would be more appropriate and 



 

 

give a better correlation with individual boreholes. However, the grid size in the study was limited by 

computational power. 

One important attribute of the IK and SIS methodologies is that they can calculate the uncertainty 

associated with the lithological model. Both approaches can express the probability of each lithology 

occurring in a particular cell and hence areas where the model is unreliable can be quickly identified. 

In addition the individual SIS realisations reflect the actual shapes of lithological bodies and their 

relationships that we might expect to occur (compare the IK and SIS models Figure 6–7).    

Previous stochastic studies have recommended sub-dividing the model volume into 

lithostratigraphic packages prior to stochastic modelling, so that stratigraphically separated 

lithologies cannot interact (Comunian et al., 2011; Stafleu et al., 2011). To test this assertion we used 

the full lithostratigraphic model to divide the grid and ran an IK interpolation within the individual 

lithostratigraphic units (Figure 11). Using the same 50% deletion test on this model, the correct 

answer was generated 11017 times out of 18093 (60.89%). This is only a slight improvement on the 

facies-based approach we advocate in this paper. 

Using a facies-based approach can also highlight areas of possible error in the lithostratigraphic 

model, especially where units are heterolithic and it can be difficult to accurately locate 

lithostratigraphic boundaries (Booth and Lee, 2005). In Section 2, the Paisley Clay Member plots in a 

similar position to the highest probability of clay in the stochastic model (Figures 2 and 6). In Section 

1 the lithostratigraphic model suggests that the Paisley Clay Member forms a continuous layer in the 

south eastern part of the Clyde Valley (Figure 2). However, all the simulations suggest that it may not 

be a continuous layer of clay (Figure 6). Such observations are crucial in understanding how 

groundwater and contaminants migrate through the sub-surface.  

Finally, the simulations of probability for individual lithologies and the individual realisations of the 

SIS algorithm may be used to condition further simulations of various properties, the aim being to 



 

 

produce multiple possible distributions of the property of interest.  The equivalent process in the 

petroleum industry would be the simulation of reservoir properties such as porosity, permeability, 

shale volume, net-to-gross and the saturation of oil or gas within the facies framework of a 

hydrocarbon reservoir. Such models provide critical input to fluid-flow simulation models used to 

understand the performance of hydrocarbon fields (Garden et al., 2005; Sumner et al. 2005). Other 

stochastic modelling applications include quantifying the spatial distribution of geological risk and 

uncertainty in the mining industry (Benndorf and Dimitrakopoulos, 2005; Li et al., 2005), and 

simulating the distribution of hydraulic conductivity (Lemke et al., 2004) for a host of 

hydrogeological applications. Additionally, the distribution of geotechnical properties relevant to 

ground engineering may be studied by use of stochastic modelling; this may be particularly 

beneficial for the identification of problematic ground. An understanding of the lithological 

heterogeneity gleaned from the stochastic simulation outlined here, will allow for improved 

distributions of physical properties on a regional basis across the Glasgow conurbation. 

7. Conclusions 

In this study, our motivation has been to test whether a stochastic modelling approach could better 

capture the variation in lithology in highly heterolithic lithostratigraphic units than simply assuming 

the dominant lithology in each lithostratigraphic unit. Both stochastic methods used in the study 

show a slight increase in the predictive ability of the model over assuming the major component 

lithology. However, due to the highly clustered nature of urban datasets, the predictive ability 

appears to decrease with distance from the areas with a high density of control data. A more regular 

dataset may relieve these problems but this is rarely available in urban areas. Equally, it appears that 

a finer grid may more accurately be able to predict lithology at a single location, but this requires 

further study.  

Lithostratigraphic models tend only to provide a single realisation of the geology, and it is often 

difficult to distinguish between those locations where the interpretation is controlled by many 



 

 

observations and those where it is extrapolated. Stochastic simulation has the advantage that it 

produces both probabilities for each lithology and a series of plausible simulations of lithology across 

the study region. This can help visualise both the lithological variation and the distribution of control 

data. As such, it is of potentially great use to hydrogeologists attempting to understand hydraulic 

connectivity between units. Such probability maps and simulations are also of use to those making 

city-scale assessments for site investigation where large numbers (>1000) of boreholes have been 

drilled (e.g. large area regeneration projects) as it easily identifies areas of the model that are data 

poor, or very complex, that may require further investigation.  

These models, however, do not give good site-specific results and will not capture stratigraphically 

constrained units or localised units. More detailed site-scale models could be produced for areas 

where large numbers of boreholes are situated.  However, given the data generally available in 

urban environments, it is likely that there will be substantial areas with insufficient boreholes to 

predict lithology accurately in such heterolithic deposits.   
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Table 1 Lithostratigraphic superficial units in Central Glasgow (Browne and McMillan1989; McMillan 

et al., 2005). The assumed dominant lithology is highlighted in bold. 

Age Lithostratigraphic unit Lithology 

Thickness % correct when 
dominant 
lithology is 
compared to 
lithology 
observed on 
borehole 

Fl
an

d
ri

an
 Clyde Valley 

Formation 
Law Sand and 

Gravel Member 

Fine to coarse grained SAND with some silt and fine 
gravel. Bedded silt units with thin peat and organic 
layers. 

Min = 0m 
Med = 0.02m 
Max=15.93m 

3% 

Clydebank 
Clay 

Formation 

Gourock Sand 
Member 

Grey, fine to coarse SAND with some silt, clay and 
locally gravel  

Min = 0m 
Med = 4.22m 
Max=29.97m 

30% 

La
te

 D
ev

en
si

an
 

Clyde Clay 
Formation 

Paisley Clay 
Member 

Finely layered CLAY and some silts often orange to 
red-brown in colour 

Min = 0m 
Med = 2.63m 
Max=36.51m 

59% 

Killearn Sand 
and Gravel 
Member 

Fine to medium SAND with some silt and clay layers 
and some gravel. Reddish-brown to orange in 
colour 

Min = 0m 
Med = 0.20m 
Max=14.69m 

60% 

Bridgeton Sand 
Member 

Fine to medium massive SAND; locally fine to 
coarse gravel and boulders occur in a sandy matrix 

Min = 0m 
Med = 6.25m 
Max=35.14m 

68% 

Broomhouse 
Sand and 

Gravel 
Formation 

Ross Sand 
Member 

Flat and ripple laminated fine-medium SAND and 
sandy-silt with clays and locally thin gravel layers at 
the base. 

Min = 0m 
Med =2.54m 
Max=25.06m 

6% 

Broomhouse 
Sand and 

Gravel Member 

SAND AND GRAVEL deposit; mostly sand with 
planar and trough cross-bedsmripple and horizontal 
laminae,  gravels typically massive or crudely 
bedded 

Min = 0m 
Med = 0.03m 
Max=27.13m 

52% 

Wilderness Till Formation 
CLAY DIAMICTON, boulders, gravels and pebbles in 
a sandy, silty to clayey matrix.  

Min = 0m 
Med = 5.75m 
Max=56.37m 

62% 

Cadder Sand and Gravel 
Formation 

Dense SAND or silty-sand with gravel and some 
cobbles  

Min = 0m 
Med = 0.01m 
Max=20.84m 

20% 

Broomhill Clay Formation Laminated clayey SILT with sandy partings 
Min = 0m 
Med = 0.01m 
Max=10.45m 

Not intersected 
by borehole 

Pre-Late 
Devensian 

Baillieston Till 
Stiff CLAY DIAMICTON, cobbles boulders, gravels 
and pebbles in a sandy, silty to clayey matrix. 

Min = 0m 
Med = 0.01m 
Max=8.08m 

Not intersected 
by borehole 

 

 

  



 

 

Table 2 Lithology dependant correlation range parameters used in the stochastic modelling. The 

azimuth refers to the orientation of the maximum range. 

Lithology  
Max 
Range (m) 

Min Range 
(m) 

Vertical Range 
(m) 

Azimuth (deg) 

soft clay 

 

 
 

500 300 1 130 

stiff clay diamicton 

 

250 250 1 0 

organic, silt, sand, 
sand and gravel 

 

 
 

260 260 1 0 

 

 

  



 

 

 

Fig. 1. Map of central Glasgow with area of this study. Grid show in British National grid (m) 

Contains Ordnance Survey data © Crown copyright and database right 2014. 



 

 

Fig. 2. Lithostratigraphic model for Glasgow (Merritt et al., 2007) showing stratigraphic 

relationships in Central Glasgow. 



 

 

 

Fig. 3. Map showing the distribution of boreholes used in this study. The geotechnical boreholes 

were used to create the model and the BGS boreholes were used to test it. The section lines are 

those used to compare the deterministic and stochastic models.  The histogram shows the 

depth distribution of the geotechnical boreholes. Contains Ordnance Survey data © Crown 

copyright and database right 2014. 

 

Fig. 4. Global proportions of lithologies in the two facies in the model from the borehole data. 



 

 

 

Fig. 5. Maps showing the upper surface of A) The IK model B) the SIS model most frequently 

occurring lithology C) the probability of the presence of separate lithologies from the SIS stochastic 

model. The black crosses mark the positions of the geotechnical boreholes used to create the 

model. The white areas are where there are superficial units and the bedrock is at surface. 

 



 

 

 

  Fig. 6.  Cross sections along the line of section 1 showing the IK model, the SIS model most 

frequently occurring lithology and the probability of the presence of separate lithologies from the 

stochastic model. The black lines mark the positions of the geotechnical boreholes used to create 

the model.  



 

 

 

  Fig. 7. Cross sections along the line of section 2 showing the IK model, the SIS model most 

frequently occurring lithology and the probability of the presence of separate lithologies from the 

stochastic model. The black lines mark the positions of the geotechnical boreholes used to create 

the model.  



 

 

 

Fig. 8. Comparison of the record of what was drilled at the Bridgeton Borehole and the prediction 

from the stochastic models (N.B. made ground was excluded from the stochastic model).   



 

 

 

Fig. 9. Comparison of the record of what was drilled at the Broomhill Borehole and the prediction 

from the stochastic model (N.B. made ground was excluded from the stochastic model). 

  



 

 

 

 

Fig. 10. The ability of the model to predict the right answer for those 50% of boreholes that were 

randomly deleted from the model plotted against depth from ground surface. The panel on the right 

shows the number of cells in the model per each depth from surface bin.  



 

 

 

Fig. 11 A single IK realisation in a grid which has been fully divided up in to the full individual 

lithostratigraphic units. 

 

 

 


