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ABSTRACT  16 

Preservation of biological samples for downstream analysis is important for analytical 17 

methods that measure the biochemical composition of a sample. One such method, Raman 18 

microspectroscopy, is commonly used as a rapid phenotypic technique to measure 19 

biomolecular composition for the purposes of identification and discrimination of species and 20 

strains of bacteria, as well as investigating physiological responses to external stressors and 21 

the uptake of stable isotope-labelled substrates in single cells. This study examines the 22 

influence of a number of common chemical fixation and inactivation methods on the Raman 23 

spectrum of six species of bacteria. Modifications to the Raman-phenotype caused by fixation 24 

were compared to unfixed control samples using difference spectra and Principal 25 

Components Analysis (PCA). Additionally, the effect of fixation on the ability to accurately 26 

classify bacterial species using their Raman phenotype was determined. The results showed 27 

that common fixatives such as glutaraldehyde and ethanol cause significant changes to the 28 

Raman spectra of bacteria, whereas formaldehyde and sodium azide were better at 29 

preserving spectral features.   30 
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INTRODUCTION 31 

Raman microspectroscopy is a method commonly used for the phenotypic measurement of 32 

biological samples, ranging from individual cells to complex structures such as biofilms and 33 

tissues (Huang et al., 2010, Schuster et al., 2000). Measurement of the inelastic scattering of 34 

light (Raman scattering) can be used to non-destructively determine the molecular 35 

composition of a biological sample (Schie and Huser, 2013). The Raman spectrum can provide 36 

a spectroscopic fingerprint that can measure the molecular composition of cells, comprising 37 

major biological molecules including proteins, amino acids, lipids, polysaccharides, nucleic 38 

acids and nucleobases (Huang, Li, Jarvis, Goodacre and Banwart, 2010).  39 

 40 

One of the most frequent applications of Raman spectroscopy in microbiology is to measure 41 

the cellular composition (the phenotype) for the purposes of species/strain identification. 42 

This approach has previously been used to identify and discriminate between species and 43 

strains of fungi (De Gussem et al., 2007), algae (Huang et al., 2010), viruses (Driskell et al., 44 

2010) and most frequently bacteria (Palchaudhuri et al., 2011, Read et al., 2013). As well as a 45 

rapid identification tool, Raman has been used to examine the phenotypic and physiological 46 

changes that occur with exposure to stressors in the form of pollutants such as ionic metals 47 

(Walter et al., 2012), metal nanoparticles (Cherchi et al., 2011), organic pollutants (Daniel et 48 

al., 2008, Singer et al., 2005), antibiotics (Escoriza et al., 2007), and pharmaceuticals (Wharfe 49 

et al., 2010). Raman has also been used to measure the concentration and spatial distribution 50 

of cellular metabolites such as algal lipids (Wu et al., 2011) and pigments such as carotenoids 51 

(Tao et al., 2011) and chlorophyll (Huang, Beal, Cai, Ruoff and Terentjev, 2010). Finally, there 52 

is an emerging application applying Raman microspectroscopy as a tool for stable isotope 53 
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probing (SIP) to monitor substrate utilisation by single bacterial cells (Huang et al., 2004, 54 

Huang et al., 2007).   55 

 56 

As with all analytical techniques that measure phenotypic characteristics (such as proteomics, 57 

metabolomics and lipidomics), methods for sample handling and preservation of samples for 58 

later analysis are of critical importance. As Raman spectroscopy measures the molecular 59 

composition of the cell, it is important to use preservation methods that cause minimal 60 

changes to the composition and arrangement of molecules that make up the Raman 61 

fingerprint. Unless cells are suitably fixed, autolysis by intracellular enzymes can denature 62 

proteins and dephosphorylate mononucleotides, phospholipids and proteins (Gazi et al., 63 

2005), potentially altering the Raman fingerprint.  64 

 65 

Previous work examining the role of sample handling and preservation techniques on the 66 

Raman spectra of eukaryotic tissues have highlighted method-dependant spectral alterations. 67 

These include the effects of ethanol and glycerol on bone samples (Yeni et al., 2006), snap 68 

freezing in liquid nitrogen on porcine prostate tissue (Candefjord et al., 2009), formaldehyde 69 

or methanol fixation in leukaemia cells lines (Chan et al., 2009), formaldehyde, desiccation 70 

and air drying on human cell lines (Mariani et al., 2009), desiccation on human embryonic 71 

stem cells (Konorov et al., 2011) and formalin or Carnoy’s fixative on human cell lines (Meade 72 

et al., 2010). There have been studies examining fixation and inactivation induced effects on 73 

bacterial spectra, but these have focussed specifically on purple non-sulfur bacteria 74 

(Kniggendorf et al., 2011) and endospore forming species (Stockel et al., 2010). 75 

 76 
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The objective of the current study was to investigate the influence of a number of common 77 

chemical fixatives on the Raman spectra of species of bacteria representing a range of 78 

different Raman phenotypes. Here we have examined the effect that each fixative has on the 79 

Raman spectra of six species of bacteria, followed by an examination of the influence of each 80 

fixative on the ability to correctly identify each bacterial species based on their Raman 81 

spectra. 82 

 83 

MATERIALS AND METHODS 84 

Bacterial isolates and culturing 85 

Six bacterial species, selected to represent a range of differing phenotypes, were purchased 86 

from Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures 87 

(Germany). These were; Escherichia coli (ATCC 1775), Bacillus subtilis subsp. subtilis (ATCC 88 

6051), Pseudomonas fluorescens (ATCC 13525), Pseudomonas aeruginosa (ATCC 10145), 89 

Micrococcus luteus (ATCC 4698), and Janthinobacterium lividum (ATCC 12473). All strains 90 

were checked for purity by streaking onto LB agar (Sigma Aldrich, UK) and cultured overnight 91 

at 28 °C. Single colonies were picked and sub cultured in 5 ml of LB broth (Sigma, UK) with 92 

shaking at 180 rpm. Each culture was diluted to an OD600 of 0.5 and used to inoculate 180 ml 93 

of LB broth for each treatment and again grown overnight (16 h) at 28 °C with shaking at 180 94 

rpm. The cell suspension was well mixed, and divided into six aliquots of 30 ml, one for each 95 

of the fixation methods and then further divided into three aliquots of 10 ml to provide 96 

technical fixation replicates. To remove the influence of the culture media on the fixation 97 

methods, each cell suspension was centrifuged for 5 min at 5000 g, the supernatant removed 98 

using a pipette and cells re-suspended in ice cold x1 PBS.  99 

 100 
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Fixation and sample handling 101 

Five methods of chemical cell fixation were compared, including fixation in 70/30 (vol:vol) mix 102 

of ethanol (EtOH) and molecular grade water, a solution of 2.0% neutral buffered 103 

formaldehyde (CH2O) made fresh from paraformaldehyde (adjusted to pH 7.2), a solution of 104 

1.0% glutaraldehyde (CH2(CH2CHO)2), a solution of 1.0% Formaldehyde and 0.05% 105 

glutaraldehyde, and finally a solution of 10% (w/v) Sodium azide (NaN3). All chemicals were 106 

purchased from Sigma-Adrich, UK. Cell pellets were re-suspended in each fixative and allowed 107 

to fix for 1 h at room temperature before the being washed, pelleted and re-suspended in ice 108 

cold MQ H2O three times as before. The supernatant was removed a final time using a pipette 109 

to leave a cell pellet. The control sample consisted of unfixed cells frozen immediately after 110 

washing. The samples were then prepared for analysis by Raman spectroscopy by spotting 10 111 

µl of the cell pellet from each replicate and treatment onto spectroscopy grade CaF2 slide 112 

(Crystran, UK) and dried in a laboratory desiccator at room temperature for 30 minutes. 113 

 114 

Raman microspectroscopy  115 

Raman spectroscopy was conducted on a Horiba LabRAM HR800 Raman microspectrometer 116 

(Horiba Scientific, UK) equipped with an Olympus BX-41 microscope and an Andor 117 

electronically cooled CCD detector. The dried cell mass was visually focused on using a 118 

100x/0.9 numerical-aperture Olympus M Plan air objective and a CCD camera, viewed on 119 

LabSpec v5. The samples were illuminated with a 532-nm Nd:YAG laser and the incident laser 120 

power was adjusted to 5-8 mW. The signal was optimized by adjusting the laser focus using 121 

the real-time readout of the Raman signal, before acquiring the spectrum between 211 cm-1 122 

and 1894 cm-1, with 1,022 data points (~1.5 cm-1 per point). Each spectrum consisted of two 123 

averaged 30 s exposures. Cosmic spikes were automatically removed using LabSpec v5 124 
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software (Horiba Scientific, UK). Raman spectra were collected from 4-8 spatially offset points 125 

within each dried bacterial spot for each replicate, to give a total of 12-24 spectra per 126 

treatment. 127 

 128 

Data analysis 129 

Raw spectra were concatenated to between 400 cm-1 and 1800 cm-1 wavenumbers, and the 130 

data normalized (area under spectra to 100 units) using LabSpec V5. The data analysis had 131 

two main objectives; firstly to examine the relative influence of fixation on the Raman spectra 132 

of the different bacterial species. Difference spectra were generated by subtracting the 133 

average spectra of each treatment from the average control spectra. Differences in the 134 

structure and shape of the treatment vs. the control are highlighted in deviations from the 135 

zero line. To further explore fixation-induced changes in spectral composition, Principle 136 

Components Analysis (PCA) was used to examine the relationships of all the treatments for 137 

each spectrum. PCA was conducted in the R programming environment (R Core Team, 2013) 138 

using the package “ChemometricsWithR” (Wehrens, 2012). The second objective was to 139 

examine the influence of fixation on the ability to accurately discriminate between bacterial 140 

species using their Raman spectra. Hierarchical Cluster Analysis (HCA) in R was used to create 141 

a dendrogram for each treatment, showing unsupervised clustering of the spectra replicates 142 

for each strain. Additionally, the accuracy of species discrimination was assessed using Linear 143 

Discriminant Analysis (LDA) in the R package “MASS” (Venables and Ripley, 2002) and the 144 

apparent error rate visualized and assessed using the KlaR package (Weihs et al., 2005). 145 

 146 

RESULTS AND DISCUSSION 147 
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Due to very high levels of autoflorescence, it was not possible to collect a spectrum from J. 148 

lividum fixed with a formaldehyde and glutaraldehyde solution, so these data were excluded 149 

from further analysis. Figure 1 shows representative Raman spectra from unfixed samples of 150 

each of the six species. Whilst the overall structure and composition of the spectra are broadly 151 

similar, there are some differences caused by variation in the fluorescence background for 152 

each species. Although there was a concordance in terms of the presence/absence of specific 153 

peaks found across species, some Raman peaks were found to be unique to particular species 154 

and not others (Supplementary Table 1). In particular M. luteus had peaks associated with 155 

carotene–like pigments at 1157 and 1527 cm-1 that are absent in the other species. The peaks 156 

identified in this study are in agreement with previous studies (Huang, Li, Jarvis, Goodacre 157 

and Banwart, 2010) and represent the major biomolecules found in bacterial cells, including 158 

proteins, amino acids, lipids, carbohydrates, nucleic acids and nucleobases (Supplementary 159 

Table 1). 160 

 161 

Fixation with EtOH (and other solvents) are used for denaturing fixation and cause rapid 162 

dehydration of the cells and additionally may solubilize membrane lipids (Woods and Ellis, 163 

1994). Ethanol fixation caused large changes in the overall composition of the bacterial 164 

Raman spectra compared to the unfixed control, with an increase in peak height relative to 165 

unfixed controls. This change is possibly due to a reduction in background fluorescence 166 

caused by soluble fluorescent biomolecules being washed away during fixation. A mix of 167 

0.25% ammonia and 70% ethanol has previously been shown to reduce autofluorescence in 168 

archival bone marrow sections, possibly through the dissolution of negatively charged lipid 169 

derivatives, phenols or polypenols and degradation of weak esters by hydrolysis (Baschong et 170 

al., 2001). The Raman peak at 749 cm-1 assigned to cytochrome c was generally reduced in 171 



 
 

9 
 

intensity by EtOH fixation across all species other than E. coli. However the effects of fixation 172 

are inconsistent; both P. aeruginosa and B. subtilis show an increase in intensity in the second 173 

half of the spectra when fixed with ethanol, whereas E. coli, J. lividum, M. luteus and P. 174 

fluorescens were largely reduced in intensity. Over all, EtOH fixation caused significant 175 

changes in the bacterial phenotype as none of the fixed samples clustered in close proximity 176 

to the control (Figure 3). 177 

 178 

Fixation with glutaraldehyde resulted in major changes to the structure of the Raman spectra 179 

in all species, shown by the deviation of the treatment spectra from the control line in Figure 180 

2. This was caused by increased levels of background fluorescence, obscuring the appearance 181 

of informative Raman peaks. Both glutaraldehyde and formaldehyde are additive fixation 182 

solutions (also called cross-linking fixations) (St-Laurent et al., 2006), and work by forming 183 

covalent cross-links between amine residues in proteins (Meade, Clarke, Draux, Sockalingum, 184 

Manfait, Lyng and Byrne, 2010). The generation of high levels of autofluorescence in 185 

glutaraldehyde fixed tissues has been observed previously, and is has been postulated that 186 

this is caused by the presence of dialdehyde groups (Lee et al., 2013). The mix of 187 

formaldehyde and glutaraldehyde caused inconsistent results, where in some species it 188 

resulted in high levels of autofluorescence (E. coli, J. lividum, and P. aeruginosa) and in others 189 

(B. subtilis, M. luteus and P. fluorescens) relatively small changes. This was confirmed in the 190 

PCA plots, where gluteraldehyde was shown to cause significant changes to the Raman 191 

spectrum of all the species tested when compared to the control (Figure 3). This was also the 192 

case for the NBF + glutaraldehyde mix, except for B. subtilis where the points were the close 193 

to the control spectra (Figure 3). 194 

 195 
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Unlike fixation with gluteraldehyde, cells preserved with formaldehyde alone appeared to be 196 

relatively conserved in terms of spectral/phenotypic modifications, with the main changes 197 

being associated with a reduction in the intensity of the peak at 749 cm-1, assigned to 198 

cytochrome c. The largest changes caused by fixation with formaldehyde were observed in 199 

M. luteus where a small increase in peak intensity across the spectral range was observed 200 

when compared to the control (Figure 2), and B. subtilis, where the overall shape of the 201 

spectra was changed, possibly by increased autofluorescence. Points associated with 202 

formaldehyde fixed samples generally clustered in close proximity to the control samples in 203 

the PCA plots (Figure 3). 204 

 205 

Finally, fixation with Sodium azide (NaN3) resulted in conserved phenotypic changes when 206 

compared to the unfixed control, as shown by the relatively small deviation from the zero line 207 

in the subtraction plots (Figure 2). This is true for all species except M. luteus, which showed 208 

reductions in the intensity of peaks at 1154 cm-1 and 1527 cm-1 which have previously been 209 

assigned to the vibration modes of carotene (Scholtes-Timmerman et al., 2009). NaN3 binds 210 

to heme-iron found in cytochrome oxidase and catalase, effectively leading to chemical 211 

asphyxiation (Lichstein and Soule, 1944). Similar to the formaldehyde fixed samples, points 212 

associated with NaN3 fixed samples generally clustered in close proximity to the control 213 

samples in the PCA plots (Figure 3).  214 

 215 

Hierarchical Cluster Analysis (HCA) and Linear Discriminant Analysis (LDA) were used to assess 216 

the overall performance of the fixatives when used in Raman spectroscopy-based 217 

classification studies. Changes in the bacterial phenotype upon fixation may alter the ability 218 

to correctly classify different species of bacteria using Raman spectroscopy. For the unfixed 219 



 
 

11 
 

samples using both HCA and LDA all six species were assigned to separate clusters, with no 220 

misclassifications (Figure 4 and Figure S1). Fixation with NaN3 was the only other method able 221 

to achieve this, with all species clearly located in different clusters. All other fixation methods 222 

failed to produce a perfect classification, with varying degrees of misclassification (Figure S1). 223 

However, fixation with NaN3 caused considerable changes in the relationships between the 224 

groups as shown by the positioning of the cluster branches (Figure 4).  For example, where 225 

the E. coli spectra formed a distinct outgroup on the unfixed cluster plot, this was joined by 226 

B. subtilis spectra in the NaN3 fixed plot. This reordering of spectral similarity is not of great 227 

importance if the only aim it to assign spectra to the correct group. However, if the intention 228 

is to infer something about the similarity of the bacterial phenotypes, great care needs to be 229 

taken when using any fixation method. 230 

 231 

CONCLUSIONS 232 

All fixatives investigated caused changes to the Raman spectroscopy measured phenotype of 233 

the six bacterial species used in this study. However, fixation with NaN3 appeared to be the 234 

most conserved in terms of deviation of the spectra from the control samples and the ability 235 

to retain a high degree of classification success. One aspect not investigated in this study was 236 

the potential effects of longer term storage of samples when unfixed or fixed, both at room 237 

temperature and frozen. The main aim of fixation is to prevent cellular processes and cell 238 

replication from continuing during storage. It is possible that in cases where inactivation of 239 

cells and fixation is not needed, freezing samples at -80 °C or colder will be appropriate. 240 

However, further work is needed to determine the impact of freezing on the preservation of 241 

cells, especially over longer term storage. For pathogenic species of bacteria, preservation 242 

and inactivation using a fixative may be necessary from a safety point of view (Stockel, 243 
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Schumacher, Meisel, Elschner, Rosch and Popp, 2010). If this is the case, Sodium azide is an 244 

appropriate fixative in terms of preserving Raman phenotypic characteristics. 245 

 246 
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FIGURE LEGENDS 352 

 353 

Figure 1. Representative Raman spectra for each species of bacteria used in this study; 354 

Escherichia coli (Ec), Janthinobacterium lividum (Jl), Pseudomonas aeruginosa (Pa), Bacillus 355 

subtilis (Bs), Micrococcus luteus (Ml) and Pseudomonas fluorescens (Pf). Major peaks are 356 

highlighted with grey bars. 357 

 358 

Figure 2. Difference spectra (average control spectra minus the average treatment spectra) 359 

for each species of bacteria used in this study; Escherichia coli (Ec); Janthinobacterium lividum 360 

(Jl), Pseudomonas aeruginosa (Pa), Bacillus subtilis (Bs), Micrococcus luteus (Ml) and 361 

Pseudomonas fluorescens (Pf) for each of the five fixation treatments used; 70% ethanol 362 

(EtOH), Glutaraldehyde (Glut), Sodium azide (NaN3), Formaldehyde (Form), Formaldehyde 363 

and Glutaraldehyde (Form+Glut). 364 

 365 

Figure 3. Principle Component Analysis (PCA) plots showing the relationship between the 366 

control and fixation treatment spectra for each of the six species of bacteria used in this study; 367 

Escherichia coli (A), Janthinobacterium lividum (B), Pseudomonas aeruginosa (C), Bacillus 368 

subtilis (D), Micrococcus luteus (E), Pseudomonas fluorescens (F). 369 

 370 

Figure 4. Hierarchical Cluster Analysis (HCA) plots showing the relationship between Raman 371 

derived phenotypes from each fixation treatment; Unfixed (A), 70% Ethanol (B), 372 

Glutaraldehyde (C), Sodium azide (D), Formaldehyde (E), Formaldehyde and Glutaraldehyde 373 

(F). Colors represent species of bacteria used in this study, including Escherichia coli (Ec - blue), 374 
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Janthinobacterium lividum (Jl – green), Pseudomonas aeruginosa (Pa - yellow), Bacillus subtilis 375 

(Bs - red), Micrococcus luteus (Ml - orange), Pseudomonas fluorescens (Pf - purple). 376 

 377 
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