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ABSTRACT 28 

The WHAM-FTOX model describes cation toxicity to aquatic organisms in terms of (a) 29 

accumulation by the organism of metabolically-active protons and metals at reversible 30 

binding sites, and (b) differing toxic potencies of the bound cations.  Cation accumulation (i 31 

in mol g-1) is estimated through calculations with the WHAM chemical speciation model by 32 

assuming that organism binding sites can be represented by those of humic acid.  Toxicity 33 

coefficients (αi) are combined with i to obtain the variable FTOX ( = Σ αii) which, between 34 

lower and upper thresholds (FTOX,LT, FTOX,UT), is linearly related to toxic effect.  Values of αi, 35 

FTOX,LT and FTOX,LT are obtained by fitting toxicity data.  Reasonable fits (72% of variance in 36 

toxic effect explained overall) were obtained for four large metal mixture acute toxicity 37 

experiments involving daphnids (Cu, Zn, Cd), lettuce (Cu, Zn, Ag) and trout (Zn, Cd, Pb).  38 

Strong non-additive effects, most apparent in results for tests involving Cd, could be 39 

explained approximately by purely chemical competition for metal accumulation.  Tentative 40 

interpretation of parameter values obtained from these and other experimental data suggests 41 

the following order of bound cation toxicity: H < Al < (Cu Zn Pb UO2) < (Cd Ag).  Another 42 

trend is a strong increase in Cd toxicity relative to that of Zn, as organism complexity 43 

increases (from bacteria to fish). 44 

 45 

  46 
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 47 

Note to the editor and reviewers: This is one of 11 manuscripts under consideration for an ET&C Special 48 

Section on Metal Mixtures.  The Section includes an introduction, a technical background, a comparative 49 

evaluation of multiple modeling approaches, a lessons-learned manuscript, and seven manuscripts on 50 

specific modeling and interpretation approaches. While each manuscript should be able to stand alone, 51 

the individual manuscripts are interrelated and cross-reference each other. If another cross-referenced, 52 

submitted manuscript is essential to complete the review of the present manuscript, please request the 53 

other manuscript from the Corresponding Guest Editor, copying the handling editor.  The Corresponding 54 

Guest Editor for the series is Eric Van Genderen (evangenderen@zinc.org). Any unpublished material 55 

provided to assist your review must also be treated in confidence. 56 

 57 

INTRODUCTION 58 

Hitherto, quantification of metal toxicity to aquatic and soil organisms has been based 59 

almost entirely on the results of experiments involving single metals, even when 60 

bioavailability has been taken into account using either the Biotic Ligand Model (BLM) [1] or 61 

simpler pH-dependent descriptions [2].  The information obtained in this way has been used 62 

in environmental risk assessment to define concentrations of individual metals above which 63 

unacceptable toxic effects would be expected in the field.  This approach is pragmatic, 64 

sensibly exploiting a large body of available knowledge, obtained from laboratory toxicity 65 

testing, to protect the natural environment.  When it comes to mixtures, single metal standards 66 

based on conventional toxicity endpoints have been combined using the Cumulative Criterion 67 

Unit [3] to generate combined quality standards.  This approach will give conservative risk 68 

assessments if mixture effects are less-than-additive, but there would be underestimation of 69 

risk if more-than-additive effects occur. 70 

Risk assessment on the basis of laboratory experiments involves the definition of 71 

maximum acceptable concentrations.  It is also desirable to be able to interpret observed field 72 

effects, to test whether effects projected from laboratory data actually occur in the field, to 73 

confirm and justify quality standards, to understand the extents of effects, and to evaluate the 74 

feasibility and success of remediation methods (e.g. clean up of mines and contaminated 75 

land).  This definitely needs models that take into account both environmental chemistry and 76 

mixture toxicity, and has prompted efforts to adapt the BLM for application to mixtures, by 77 

theoretical [4], data fitting [5-7] and field work [8].  Further work with the BLM is reported in 78 

this volume [9-12]. An alternative approach is the WHAM-FTOX model [13,14]. 79 

mailto:evangenderen@zinc.org
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Instead of postulating a specific biotic ligand through which metal toxicity is 80 

mediated, WHAM-FTOX expresses exposure of the organism to toxic metals by the overall, 81 

non-specific, accumulation of cations at the reversible binding sites present within the 82 

organism or on its surface.  Such sites exist due to the presence of weak-acid groups in 83 

different biomolecules (e.g. proteins, polysaccharides, lipids, nucleic acids, fatty acids), and 84 

their occupancy depends upon the competitive interactions of toxic and non-toxic metals and 85 

protons, assuming them to be in equilibrium with the surrounding solution.  The binding 86 

ligands could, in principle, include one or more specific biotic ligands but the majority will 87 

not be associated directly with the toxic response.  The model then assigns a toxicity 88 

coefficient to each cation, which quantifies the extent to which the bound cation is toxic.  89 

Total toxicity is then determined by the sum of the products of amounts bound and the 90 

toxicity coefficients.   91 

To apply this concept quantitatively, it is assumed that metal accumulation by living 92 

organisms can be estimated with a pre-existing chemical speciation model, i.e. WHAM, using 93 

cation binding by humic acid (HA) as a proxy.  In other words, the array of HA binding sites 94 

postulated in WHAM is assumed to provide an acceptable representation of the sites 95 

possessed by organisms, taking into account differences in total site contents per unit dry 96 

weight.  This is at least a reasonable first approximation, given that humic substances are 97 

formed from by the partial decomposition of living tissue, albeit mainly from plants.  Results 98 

showing strong correlations between observed metal contents of living organisms, in both 99 

field and laboratory studies, and predicted metal binding to HA have been reported by 100 

Tipping et al. [15], Stockdale et al. [13] and Tipping & Lofts [14].  These correlations are 101 

taken to justify the modelling approach, although it is recognised that the modelled bound 102 

metals constitute a “metabolically-active body burden”, whereas body burdens determined by 103 

chemical analysis may in some cases also include metal that has been rendered metabolically 104 

inactive, e.g. by strong binding to metallothioneins or incorporation into precipitated granules 105 

[16], which means that precise agreements are not necessarily expected. 106 

We have already applied WHAM-FTOX to 11 published laboratory data sets describing 107 

metal mixture toxicity to aquatic organisms, with promising results [14].  However, those data 108 

sets did not present major difficulties for the model because the solution chemical conditions 109 

were quite limited, and indeed the fits with WHAM-FTOX were only slightly superior to those 110 

with a conventional toxicity model based on total concentrations in solution, and assuming 111 

additive toxic effects.  In the work reported here, we applied WHAM-FTOX and the 112 
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conventional model to four more comprehensive data sets (Table 1) that were anticipated to 113 

provide sterner tests, gathered as part of the “Metal Mixture Modeling Evaluation (MMME) 114 

Project” [Table 2, 17].  In particular, these additional data cover conditions under which 115 

metals would be expected to compete significantly for the postulated reversible binding sites 116 

on the organisms, which we expect to be accounted for by WHAM-FTOX but not by the purely 117 

additive solution-based model. 118 

 119 

 120 

121 
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METHODS 122 

Modelling chemical speciation and accumulation in living organisms 123 

We used WHAM [18] incorporating Humic Ion-Binding Model VII [19].  Model VII 124 

uses a structured formulation of discrete, chemically-plausible, binding sites for protons in 125 

humic and fulvic acids (HA, FA), in order to allow the creation of regular arrays of bidentate 126 

and tridentate binding sites for metals.  Metal aquo ions (Al3+, Cu2+, Cd2+ etc.) and their first 127 

hydrolysis products (AlOH2+, CuOH+, CdOH+ etc.) compete with each other, and with 128 

protons, for binding.  The same intrinsic equilibrium constant (KMA) for binding to carboxyl 129 

or type A groups is assumed to apply to the aquo ion and its first hydrolysis product.  The 130 

constant (KMB) for binding to weaker acid groups is related to KMA, and the contributions of 131 

rarer “soft” ligand atoms are factored in.  The intrinsic equilibrium constants are modified by 132 

empirical electrostatic terms that take into account the attractive or repulsive interactions 133 

between ions and the charged macromolecule.  The humic ion-binding model is combined 134 

with an inorganic speciation model, the species list and constants for which were given by 135 

Tipping [18].  The inorganic reactions in this database are restricted to monomeric complexes 136 

of metals.  The effects of ionic strength on the inorganic reactions are accounted for with the 137 

extended Debye-Hückel equation.  Temperature effects on reactions between inorganic 138 

species are taken into account using published or estimated enthalpy data, but in the absence 139 

of experimental information, reactions involving humic substances are assumed to be 140 

independent of temperature.   141 

If dissolved organic carbon (DOC) was present in the solutions considered here, we 142 

took complexation into account by assuming dissolved organic matter (DOM) to be 50% 143 

carbon, and 65% of the DOM to be active with respect to cation binding, represented by FA 144 

[15].  For example, a DOC concentration of 5 mg L1 corresponds to an FA concentration of 145 

6.5 mg L1 for modelling.  For toxicity experiments in which natural waters were used to 146 

prepare the test solutions, dissolved Fe(III) activities were estimated with the empirical 147 

equation of Lofts et al. [20], re-parameterised for Humic Ion-Binding Model VII. 148 

We calculated the equilibrium binding of protons and metals to HA by assuming it to 149 

be present at a very low concentration, insufficient to affect the bulk speciation, and finding νi 150 

values (mol gHA-1).  The νi are the combined contributions from coordinative binding and  151 

accumulation as counterions in the diffuse layer surrounding the (invariably negatively) 152 

charged humic molecules.  153 
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Fitting toxicity data  154 

In WHAM-FTOX, it is assumed that each organism possesses binding sites that have 155 

the same properties as those of HA, and it is the fractional occupancy of these sites that 156 

measures exposure to cations, rather than the absolute amount of metal per unit weight of 157 

organism.  Thus, because only relative binding is needed, the model simply uses the 158 

calculated i values for HA as the measure of exposure.  This means that toxicity parameters 159 

for different organisms are directly comparable.   160 

The toxicity function is defined by the equation;  161 

FTOX = ii       (1) 162 

in which i is the toxicity coefficient of cation i.  Thus the model assumes strictly additive 163 

toxicity, when exposure is expressed in terms of accumulated or bound metal.  The toxic 164 

response (TR), on a scale from zero to unity, depends upon lower and upper thresholds of FTox 165 

according to the following definitions; 166 

FTOX ≤ FTOX,LT  TR = 0       (2) 167 

FTOX,LT < FTOX < FTOX,UT TR = (FTOX - FTOX,LT) / (FTOX,UT - FTOX,LT)  (3) 168 

 FTOX ≥ FTOX,UT TR = 1       (4) 169 

For each data set, the object of the fitting was to minimise the sum of the squared differences 170 

between observed and calculated toxic response.  To fit the model, the values of i,  FTOX,LT 171 

and FTOX,UT could in principle be optimised by fitting the model to the available toxicity data.  172 

Since the toxicity coefficients are only relative numbers, the value of H can be set to the 173 

same value in all cases, and unity is chosen for convenience.  In previous work [14] we 174 

constrained the values of FTOX,LT and FTOX,UT such that their average was the same (4.12) for 175 

each data set, because the data were insufficient to permit both parameters to be estimated.  176 

We continued with this constraint in the present study (see Discussion).  In practice, we 177 

optimised FTOX,LT, so that FTOX,UT is equal to 8.24 - FTOX,LT.  178 

For comparison with the outputs of WHAM-FTOX modelling, a conventional toxic unit 179 

approach was applied to the datasets, assuming additivity of toxic responses. This entailed 180 

fitting the dataset to a standard logistic dose–response curve: 181 

TR = TR0 / (1 + TUβ)     (5) 182 
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where TR is the toxic reponse, TR0 is the control response and β is a slope parameter. The 183 

term TU quantifies the ‘toxic units’ for a given exposure: 184 

TU = Σ[Xi] / EC50(i)     (6) 185 

where [Xi] is the dissolved concentration of toxicant i in the exposure and EC50(i) is the 186 

dissolved concentration of metal i causing a 50% toxic effect. The model, referred to as CTU, 187 

was fitted to each entire dataset by optimisation of the parameters β and EC50(i).   188 

The toxicity calculations were performed with Microsoft Excel, using its SOLVER function 189 

to optimise parameter values. 190 

Data sets 191 

Data for the toxicity of Cu, Zn and Cd to Daphnia magna were from a comprehensive 192 

series of acute toxicity (48 hour survival) tests carried out by Meyer et al. [22], which is Index 193 

4 in Van Genderen et al. [17].  Each experiment comprised 2, 3 or 4 separate dose-response 194 

series (up to 25 data in all), aimed a systematic examination of mixture toxicity effects, and 195 

with an unprecedented degree of replication.  Combination of the chemical speciation outputs 196 

with the solubility products (25oC) given by Grauer [23] indicated oversaturation of some of 197 

the test solutions with respect to the carbonates of both Zn (11% of the solutions) and Cd 198 

(21%), by up to a factor of 10.  This raised the possibility that in some tests the organisms 199 

were exposed to smaller amounts of Zn and Cd than the measured “soluble” concentrations 200 

would suggest.  However, the exact extents of saturation are quite uncertain, because the 201 

solutions are dilute and the times for precipitation to occur are fairly short, so any precipitates 202 

would likely be poorly-crystalline and therefore have higher solubility products than the 203 

better-ordered phases used to obtain the published solubility products.  Therefore we did not 204 

attempt to take into account the possibility that metal precipitation affected toxic responses.        205 

Data for the toxicity of Cu, Zn and Ag to Lactuca sativa (Index 9 in ref. 17) were published 206 

by Le et al. [7, 24], and refer to the effects of single metals and pairs of metals (Cu and Zn, 207 

Cu and Ag) on 96-hour root elongation.  Free-ion metal concentrations were reported, which 208 

meant that WHAM did not have to be used for solution speciation, only to estimate 209 

accumulation by the plant.   210 

Data for the toxicity of Zn, Cd and Pb to trout species (Index 6 in ref. 17) were 211 

published by Mebane et al. [25], and refer to 96-hour survival of juvenile cutthroat 212 

(Oncorhynchus clarkii lewisi) and rainbow (Oncorhynchus mykiss) trout.  The test media 213 
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were natural waters from the South Fork Coeur d’Alene River watershed, Idaho, USA, 214 

amended with metals.  We assumed dissolved Al to be present at a concentration of 0.25 μM 215 

(based on data of Balistrieri & Blank [27] and Mebane et al.[25]).  Combination of the 216 

chemical speciation outputs with the solubility products (25oC) given by Grauer [23] 217 

indicated oversaturation with respect to PbCO3(s) of 6% of the cutthroat trout test solutions 218 

and 7% of the rainbow trout solutions, by up to a factor of 10.  However, for the reasons given 219 

above in relation to the results for D. magna, we did not attempt to take into account the 220 

possibility that metal precipitation affected toxic responses.  221 

222 
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RESULTS 223 

All the results presented here refer to chemical speciation modelling conducted with 224 

Model VII, but very similar results were obtained with Model VI [21].  The toxicity data sets 225 

and fitted toxicity parameters are summarised in Table 1. 226 

Toxicity of Cu, Zn and Cd to Daphnia magna 227 

Firstly we fitted the entire data set (870 data points) with optimisation of a single 228 

parameter set (FTOX,LT, Cu, Zn, Cd).  The model was able to explain 57% of the variance in 229 

% survival with an RMSD (root-mean-squared deviation) between observed and calculated 230 

survival of 29%.  Comparison of observed and predicted values revealed that the greatest 231 

discrepancies arose in experiments involving cadmium, whereas the single parameter set gave 232 

consistent results for the copper-zinc experiments.  Therefore, we next fitted all the data with 233 

universal values of FTOX,LT, Cu and Zn, but with Cd optimised for each experiment.  The use 234 

of the experiment-specific values of Cd appreciably improved the overall fit (r2 = 0.74, 235 

RMSD = 22%), but produced considerable variation in Cd with values as low as zero and as 236 

high as 1200. 237 

To progress further, i.e. to consider interactions between metals in individual 238 

experiments, we restricted the modelling analysis to the experiments that yielded the middle 239 

50% of individual Cd values, thereby reducing the total number of data points to 542. When 240 

these data were fitted with four adjustable parameters (FTOX,LT, Cu, Zn, Cd), the values of r2 241 

and RMSD were 0.65 and 25% respectively.  Analysis of the same data with the CTU model 242 

yielded a poorer fit (Table 1). 243 

To illustrate metal mixture effects, plots were made comparing the experimental data 244 

with predictions made by WHAM-FTOX and CTU, both parameterised on the entire 542-point 245 

data set, i.e. the model predictions are not the best fits of individual experiments.  Figures 2 246 

and 3 show that the effects of Cu and Zn on each other’s toxicity approximately follow the 247 

expectations of the WHAM-FTOX model, which postulates interference via competitive 248 

chemical binding reactions.  However, the calculated competition effects are minor, and 249 

consequently the CTU model, which ignores any effects of one metal on another, provides 250 

results that are nearly as good as those from WHAM-FTOX.  More extreme situations are 251 

found with Cu-Cd and Zn-Cd pairings (Figures 4 and 5), in which the less toxic metals (Cu 252 

and Zn) are observed to reduce Cd toxicity.  Thus in several cases, increases in the 253 
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concentrations of Cu or Zn actually decrease the toxicity of the mixture over a substantial 254 

portion of the experimental range (bottom two panels of Figures 4 and 5).  This phenomenon 255 

is approximately reproduced by WHAM-FTOX because the chemical speciation model predicts 256 

that Cu and Zn can displace the more toxic Cd from organism binding sites.  However, the 257 

CTU model cannot simulate this phenomenon. 258 

WHAM-FTOX outputs (νi and FTOX) for two of the mixture toxicity experiments are 259 

shown in Figure 6, and compared with expected effects were there no competition.  260 

Considering the left-hand panels, it is seen that competition by Cu decreases the binding of Zn 261 

by about one-third, and of course the binding of Cu must be less than would occur in the 262 

absence of Zn.  These competition effects diminish the total FTOX by a modest amount, and so 263 

the predicted mixture toxicity differs relatively little from additive behaviour. The right-hand 264 

panels of Figure 6 show how the addition of only 0.25 mg L-1 Zn severely reduces Cd 265 

binding, sufficient to decrease the total FTOX.  Subsequent additions of Zn then cause total 266 

FTOX to increase, but the predicted mixture toxicity is now substantially lower than expected 267 

for the case with no competition.   268 

Toxicity of Cu, Zn and Ag to Lactuca sativa 269 

The WHAM-FTOX fit (Figure 7) gave r2 = 0.78 and an RMSD of 14%.  The derived 270 

values of Cu, Zn  and Ag  are 12.2, 3.5 and 2090 respectively, showing the very high 271 

toxicity of bound Ag. 272 

Figure 8 compares observed and modelled results for some of the individual 273 

experiments.  The model deals reasonably well with Cu-Zn mixtures (panels a and b), and 274 

predicts that bound Cu protects somewhat too strongly against Ag toxicity (panel c).  The 275 

model predicts that Cu should cause an appreciable reduction in toxicity when added to 276 

solutions containing fixed free-ion concentrations of Ag, but the data are equivocal in this 277 

respect.  This, and the fact that the CTU model gives a slightly better overall fit than WHAM-278 

FTOX for this data set (Table 1), suggests that any competition effects generated in the 279 

experimental data are fairly minor.   280 

These data were also analysed by Le et al. [7, 24], using both the BLM and an 281 

extended empirical concentration-addition toxicity model.  To apply the BLM, they assumed 282 

that Cu and Zn compete for binding to their respective biotic ligands, whereas Cu and Ag do 283 

not.  The fitted BLM gave an r2 of 0.65 for Cu-Zn mixtures and 0.69 for Cu-Ag mixtures.  284 

Their extended concentration-addition toxicity model included adjustable parameters 285 
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accounting for interactions among metals.  For Cu-Zn mixtures they achieved r2 = 0.92, and 286 

for Cu-Ag r2 = 0.80.    287 

Toxicity of Zn, Cd and Pb to trout species 288 

We fixed the value of Al at 2.1, the value obtained for rainbow trout from the data of 289 

Hickie et al. [27] by Tipping & Lofts [14].  However, contributions of Al to FTOX were small.  290 

Some competition by Fe(III) (which is assumed not to be toxic) for metal binding was 291 

evident, most importantly towards Cd.  The fitted WHAM-FTOX model gave RMSD = 16% 292 

and r2 = 0.81 for the cutthroat trout, but a poorer fit (RMSD = 24%,  r2 = 0.64) for the rainbow 293 

trout.  The parameter values were similar for the two species (Table1), with particularly high 294 

values of Cd.  Figure 9 shows WHAM-FTOX fits to the two data sets. 295 

The experiments were carried out less systematically then those for D. magna and L. 296 

sativa, and consequently lend themselves less well to plotting.  However, Figure 10 compares 297 

calculated and observed survival as a function of Cd concentration for low and high Zn 298 

concentrations for the two trout species.  The data show that Zn reduces toxicity for both 299 

species, and this is correctly forecast by WHAM-FTOX, but not by the CTU model, which 300 

predicts greater toxicity at high Zn, because it cannot deal with competitive effects.   301 

Compilation of data 302 

Table 2 combines the four new parameter sets derived in the present work with data 303 

previously reported for laboratory toxicity data by Tipping & Lofts [14].  The derived 304 

parameters indicate that the toxicities ( values) of bound Zn and Pb do not vary greatly 305 

among test species, Cu varies by a factor of ten, and Cd varies over more than two orders of 306 

magnitude.  The ratio Cd/Zn is not much more than unity for bacteria, about 10 for 307 

invertebrates, and about 100 for fish, which means that the relative toxicity of the two metals 308 

diverges with organism complexity.  Overall, we can propose a tentative order of toxicity H < 309 

Al < (Cu Zn Pb UO2) < (Cd  Ag). 310 

Tipping & Lofts [14] found that when exposure to toxic cations was expressed by 311 

FTOX (i.e. accumulated cations) the overall range of values over which toxic effects change 312 

from 5% to 95% was 2.2-fold.  Because the mean value of FTOX,LT and FTOX,UT is fixed, this 313 

range is effectively normalised.  After normalising the CTU model results, the comparable 314 

range was much higher, 22-fold.  The fact that the range depends upon the variable chosen to 315 
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express exposure was taken to indicate that variation among individual organisms in toxicity 316 

tests is actually much less than might have been supposed.  Tipping & Lofts [14] explained 317 

this in terms of the variation of bound metal with solution concentration.  The present results 318 

are consistent with the previous ones, the combined data yielding a 5-95% toxic response 319 

range of 3.7-fold with FTOX, but 59-fold with the normalised CTU model.    320 

  321 
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DISCUSSION 322 

The WHAM-FTOX model explains diverse data fairly successfully using a simple 323 

structure with few adjustable parameters.  On average, the model explained 72% of the 324 

variance in the data considered here, with an average RMSD between observed and calculated 325 

toxic response of 20%.  Some of the discrepancy must be due to the model’s approximation of 326 

metal accumulation though its use of humic acid as a surrogate, and some perhaps to 327 

oversimplification of the relationship between organism-accumulated cations and toxic 328 

response.  But the fitting of the four data sets of the present work was less than that obtained 329 

by Tipping & Lofts [14] for 11 different data sets (average RMSD 13%, average r2 0.85).  The 330 

poorer precision may partly reflect the greater ranges of experimental conditions covered by 331 

the present data sets, but must also result from noise in the experimental toxicity data.  This is 332 

especially seen in the results of Meyer et al. [22] for D. magna (Index 4 in ref. 23) which were 333 

obtained by many replications or near-replications, show considerable variation in the 334 

apparent toxicity of Cd, and led us to remove a substantial part of the data set (328 points, 335 

38% of the total) in order to conduct our analysis.  The variation demonstrated by Meyer et al. 336 

[22] highlights the difficulties in obtaining reproducible results, which should be borne in 337 

mind when considering the results of the more usual, smaller scale, experiments.  This means 338 

that parameters derived from the results of a single limited study cannot be taken as 339 

representative for that organism and the metals involved; they may better be regarded as a 340 

sample from a population of toxicity outcomes.  Understanding the variability in toxicity 341 

experiment results is thus a pressing need. 342 

A major motivation for carrying out this work within the MMME project was to 343 

ascertain the extents to which metals, or more generally cations, influence one another’s 344 

toxicities.  In WHAM-FTOX, the postulated mechanism by which this occurs is chemical 345 

competition for the non-specific binding sites.  The contribution of cations to the toxic effect 346 

is strictly additive, being based on bound cations, i.e. the “metabolically active body burden”.   347 

Thus any interference among metals, toxic or non-toxic, is attributed to purely chemical 348 

effects.  We recognise that this is likely an over-simplification, but in the absence of 349 

information about actual toxic receptor sites within organisms (see also below) it provides an 350 

approach that is readily implemented using available information about the chemical 351 

composition of the aquatic medium to which the organisms are exposed.  How interference 352 

between metals can come about is illustrated in the simulations for Zn and Cd toxicity 353 

towards D. magna in Figure 6, which show how competition between metals with similar 354 
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chemical affinities but widely differing toxicities ( values), can lead to strong deviations 355 

from additivity.  The same effect is also evident for the pairing of Cu and Cd (Figure 4), in the 356 

trout results of Figure 10, and is forecast for Ag-Cu competition in L. sativa, although less 357 

well supported by the experimental data (Figure 8, bottom right panel).  For the present data, 358 

the superiority of WHAM-FTOX over the CTU model arises chiefly from the inability of the 359 

latter to deal with these competitive effects.  It is worth pointing out that, in general, the 360 

WHAM-FTOX model does not recognise true single-metal toxicity because H+ is ever-present 361 

so that even tests with a single added metal involve cation competition.   362 

Even though WHAM-FTOX has few adjustable parameters, it has not proved possible 363 

to define them very well with the data sets available thus far, since various combinations of 364 

parameter values yield similarly good fits.  Therefore to constrain the fitting we resorted to 365 

fixing the average value of FTOX,LT and FTOX,UT.  The need to do this might be avoided if new 366 

data sets become available that cover ranges of pH, since this would constrain the relative i 367 

values, reducing the compensatory co-variance of i, FTOX,LT and FTOX,UT.  Although 368 

formally, the adjustable or potentially-adjustable parameters i,  FTOX,LT and FTOX,UT are 369 

separate from the binding model (i.e. WHAM/Model VII), it must be borne in mind that the 370 

adjustments may compensate for inaccurate representation of exposure (accumulation by the 371 

organism) through the speciation calculations.   372 

The above considerations demand circumspection in the interpretation of parameter 373 

values derived by the application of WHAM-FTOX (Table 2), and the following discussion is 374 

offered with this in mind.  Consideration of the i values suggests an approximate order of 375 

toxicity (see above), with bound Cd and Ag being especially toxic.  Although the model does 376 

not specify how bound metals exert their toxic effect, the general picture is that the pool of 377 

non-specifically bound metal controls the supply of that metal to one or more key toxicity 378 

receptors, not in equilibrium or steady-state with the external solution.   The high toxicities of 379 

accumulated Cd and Ag might therefore depend upon the presence of sulphur ligands in those 380 

receptors, since the two metals have appreciably higher affinities for S in organic compounds 381 

than do the other metals considered here [28].  If so, we would expect Cu(I), Hg(II) and 382 

CH3Hg also to have high  values.  However, relative binding affinities to S-containing 383 

example ligands would not readily explain the toxic mechanisms of Al, Cu, Zn, Pb and UO2, 384 

since several metals usually considered non-toxic (Mg, Ca, Fe) have similar or higher 385 

affinities for S [28].  Therefore, from the WHAM-FTOX results we can hypothesise that more 386 

than one type of receptor for metal toxicity must exist.    The second implication of the 387 
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derived values of i is an apparent relationship of Cd toxicity to organism complexity, given 388 

that the relative toxicity of Cd compared to Zn increases with order (see Results), and this 389 

may prove to be informative in deciphering the chemical properties of toxic receptors.   390 

These and our previous results [14], together with those reported by others in 391 

connection with the MMME project [9-12, 22, 25, 29-31], have improved our understanding 392 

of mixture effects with cations, but further measurements and modelling are needed to 393 

provide a full picture.  Data on a wider range of metals, and at different pH values, are 394 

desirable, and there is a need to follow the approach of Meyer et al. [22] in designing metal 395 

mixture experiments to challenge the models.  In turn, the models might productively be used 396 

to design such experiments.  In addition, there is a large body of single-metal toxicity data, for 397 

example those compiled in the ECOTOX database [32] which could fruitfully be analysed to 398 

help establish patterns and trends among metals and toxicity test species, including durations 399 

of exposure.  The relatively sparse empirical data base on mixture effects, and the 400 

complexities of both chemical speciation and mechanisms of toxicity, mean that more 401 

research is required before we can confidently predict mixture toxicity in the field. 402 

 403 

  404 

405 
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CONCLUSIONS 406 

The WHAM-FTOX model was able to provide reasonable fits of four large and challenging 407 

data sets for metal toxicity to a daphnid, lettuce, and fish.  In three cases the fit was clearly 408 

superior to that obtained using a conventional additive model based on solution exposure.  409 

Lack of precision in fitting must partly be due to the over-simplifications of the model, but a 410 

major factor is noise in the experimental data. 411 

Strong non-additive effects of metal mixtures were apparent in the data for tests involving 412 

Cd, the toxicity of which could be markedly reduced by Cu and, particularly, Zn.  WHAM-413 

FTOX could explain this effect approximately, on the basis of purely chemical competition for 414 

the accumulation of metals by the organisms.      415 

Tentative interpretation of parameter values obtained from these and other data suggests 416 

the following order of bound cation toxicity: H < Al < (Cu Zn Pb UO2) < (Cd Ag).  Another 417 

trend is a strong increase in Cd toxicity relative to that of Zn, as organism complexity 418 

increases (from bacteria to fish). 419 

 420 

 421 

 422 

 423 

 424 

425 
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Table 1.  Summary of data and fitting results.  Italicised alpha values for H and Al were fixed 518 

or assumed.  RMSD is the root-mean-squared deviation between observed and calculated 519 

values, and the r2 refers to comparison of observed and calculated values.   520 

 Daphnia 

magna 
Lactuca  

sativa 
Oncorhynchus 

clarkii lewisi 
Oncorhynchus 

mykiss 
Index (ref. 17) 

4 9 6 6 

End point 
48 hr survival 96 hr root 

elongation 

96 hr survival 96 hr survival 

n 
542 238 162 207 

temperature oC 18.9 – 25.4 15 8.1 – 12.1 6.8 – 11.1 

pH 7.0 – 8.7 7.0 6.6 – 7.6 6.0 – 7.6 

metals Cu, Zn, Cd Cu, Zn, Ag Zn, Cd, Pb Zn, Cd, Pb 

DOC    mg L-1 0.2 – 4.2 0.5 0.2 – 0.7 0.6 

Ca        mg L-1 12 – 16 115 3 - 26 2 - 20 

WHAM-FTOX parameters and fits   

FTOX,LT 1.85 1.40 2.39 2.13 

FTOX,UT 6.39 6.84 5.85 6.11 

H 1.0 1.0 1.0 1.0 

Al - - 2.1 2.1 

Cu 21.9 12.2 - - 

Zn 8.4 3.5 6.7 10.3 

Cd 320 - 1790 2070 

Ag - 2090 - - 

Pb - - 6.7 4.6 

RMSD (%) 
25 14 17 24 

r2 0.65 0.78 0.81 0.64 

CTU fits     

RMSD 26 14 25 26 

r2 0.59 0.80 0.56 0.58 

 521 
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Table 2.  Summary of parameter values from this study and Tipping & Lofts [14].   522 

 523 

 524 

 525 

test organism toxic response F Tox,LT F Tox,UT H Al Cu Zn Cd Ag Pb UO2

Escherichia coli luminescence inhibition 15 min 3.57 4.67 1.0 3.2 13.9 18.6

Pseudomonas fluorescens luminescence inhibition 15 min 3.29 4.95 1.0 4.0 14.0 23.3

Vibrio fischeri luminescence inhibition 5 min 2.45 5.79 1.0 3.8 4.1

Lemna aequinoctialis growth rate 96 hr 2.24 6.00 1.0 20.8 16.0

Lemna paucicostata growth rate 96 hr 1.73 6.51 1.0 2.7 7.6

Lactuca  sativa root elongation 96 hr 1.40 6.84 1.0 12.2 3.5 2091

Ceriodaphnia dubia survival 96 hr 1.90 6.34 1.0 5.8 65.3

Daphnia ambigua survival 96 hr 2.04 6.20 1.0 5.5 133.7

Daphnia magna survival 96 hr 3.03 5.21 1.0 4.6 27.0

survival 48 hr 1.94 6.30 1.0 21.2 9.0 314.4

Daphnia pulex survival 96 hr 1.79 6.45 1.0 6.5 63.8

Dreissena polymorpha filtration rate 48 hr 1.84 6.40 1.0 30.3 6.0 85.8

Oncorhynchus mykiss survival 144 hr 2.39 5.85 1.0 2.1 11.9 4.6

survival 96 hr 2.13 6.11 1.0 10.3 2070 4.6

Oncorhynchus clarkii lewisi survival 96 hr 2.39 5.85 1.0 6.7 1790 6.7
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Figure captions 526 

Figure 1.  WHAM-FTOX fit of selected D. magna toxicity data (542 points; see the text 527 

for explanation). 528 

Figure 2.  Effects of Cu on Zn toxicity towards D. magna, pH 7.6 – 7.9, [DOC] 2.9 – 529 

3.3 mg L-1 [22].   The top left panel shows the effect of Zn alone, the other three show 530 

the effects of Cu at fixed concentrations of Zn (mg L-1).  Solid and dashed lines are 531 

WHAM-FTOX and CTU fits respectively to the entire data set.  Note that the lines 532 

simply join discrete predicted points. 533 

Figure 3.  Effects of Zn on Cu toxicity towards D. magna, pH 7.4 – 7.9, [DOC] 3.0 – 534 

3.1 mg L-1 [22].  The top left panel shows the effect of Cu alone, the other three show 535 

the effects of Zn at fixed concentrations of Cu (mg L-1).  Solid and dashed lines are 536 

WHAM-FTOX and CTU fits respectively to the entire data set.  Note that the lines 537 

simply join discrete predicted points. 538 

Figure 4.  Effects of Cu on Cd toxicity towards D. magna, pH 7.9 – 8.2, [DOC] 3.3 – 539 

3.5 mg L-1 [22].  The top panels show the effect of Cd alone, the remainder show the 540 

effects of Cu at fixed concentrations of Cd (mg L-1).  Solid and dashed lines are 541 

WHAM-FTOX and CTU fits respectively to the entire data set.  Note that the lines 542 

simply join discrete predicted points. 543 

Figure 5.  Effects of Zn on Cd toxicity towards D. magna, pH 8.0 – 8.4, [DOC] 2.9 – 544 

3.3 mg L-1 [22].  The top panels show the effect of Cd alone, the remainder show the 545 

effects of Zn at fixed concentrations of Cd (mg L-1).  Solid and dashed lines are 546 

WHAM-FTOX and CTU fits respectively to the entire data set.  Note that the lines 547 

simply join discrete predicted points. 548 

Figure 6. WHAM-FTOX outputs (i and FTOX) for Cu-Zn and Zn-Cd toxicity 549 

experiments with D. magna [22].  The left panels refer to experiments with 0.33 mg 550 

Zn L-1 and varying Cu concentration, pH 7.9 and [DOC] 3.2 mg L-1.  The right panels 551 

refer to 0.023 mg Cd L-1 and varying Zn concentration, pH 8.3 and [DOC] = 3.2 mg 552 

L-1.  In the bottom panel, the values of total FTOX include the contribution form H+, 553 

and the horizontal lines show  FTOX-LT and FTOX-UT. 554 
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Figure 7.  WHAM-FTOX fit of the data of Le et al. [24,25] for Cu, Zn and Ag toxicity 555 

to Lactuca sativa. 556 

Figure 8.  Observed (points) and fitted metal mixture toxicity to Lactuca sativa., data 557 

of Le et al [7, 24].  In each case the (constant) free-ion concentration of one of the 558 

metals increases in the order open circles < closed circles < open squares.  Panel (a), 559 

fixed metal Cu, free-ion concentrations 1.3, 37, 190 nM.  Panel (b), fixed metal Zn, 560 

free-ion concentrations 1.0, 42, 120 μM.  Panel (c), fixed metal Cu, free-ion 561 

concentrations 0.12, 100, 400 nM.  Panel (d), fixed metal Ag, free-ion concentrations 562 

18, 150, 210 nM.   563 

Figure 9.  WHAM-FTOX fits of the data of Mebane et al. [25] for Zn, Cd and Pb 564 

toxicity to trout species. 565 

Figure 10.  Variation of toxic response by trout species towards Cd, at low (open 566 

symbols, solid lines) and high (filled symbols, dashed lines) concentrations of Zn.  567 

The fits refer to the entire Mebane et al. [25] datasets.  For cutthroat trout, the high Zn 568 

concentration ranged from 49 to 905 μg L-1, for rainbow trout it was 83.5 μg L-1.  569 

Concentrations of Pb were at or near the limits of detection in all cases. 570 

 571 

  572 
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Figure 9.    710 
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Figure 10.  722 
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