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A B S T R A C T

Many geological survey organisations have started delivering digital geological models as part of their

role. This article describes the British Geological Survey (BGS) model for London and the Thames Valley

in southeast England. The model covers 4800 km2 and extends to several hundred metres depth. It

includes extensive spreads of Quaternary river terraces and alluvium of the Thames drainage system

resting on faulted and folded Palaeogene and Cretaceous bedrock strata. The model extends to the base of

the Jurassic sedimentary rocks.

The baseline datasets used and the uses and limitations of the model are given. The model has been

used to generate grids for the elevation of the base of the Quaternary, the thickness of Quaternary

deposits, and enabled a reassessment of the subcrop distribution and faulting of the Palaeogene and

Cretaceous bedrock units especially beneath the Quaternary deposits.

Digital outputs from the model include representations of geological surfaces, which can be used in

GIS, CAD and geological modelling software, and also graphic depictions such as a fence diagram of

cross-sections through the model. The model can be viewed as a whole, and be dissected, in the BGS

Lithoframe Viewer. Spatial queries of this and other BGS models, at specific points, along defined lines

or at a specified depth, can be performed with the new BGS Groundhog application, which delivers

template-based reports.

The model should be viewed as a first version that should be improved further, and kept up to date,

as new data and understanding emerges.

� 2014 The Geologists’ Association. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).

Contents lists available at ScienceDirect

Proceedings of the Geologists’ Association

jo ur n al ho m ep ag e: www .e ls evier . c om / lo cat e/p g eo la
1. Background

In recent years many geological survey organisations have
started delivering digital geological models in addition to maps as
part of their primary underpinning national geoscience knowledge
base (Berg et al., 2011). This maps to models migration is well
underway at the British Geological Survey (BGS) and this article
describes a new substantial 3D geological framework model
extending to several hundred metres depth for London and the
Thames Valley in southeast England. This is one of the first
extensive models of the shallow subsurface to be released by BGS;
others are available for the Ipswich-Colchester area of East Anglia,
and parts of York and Greater Manchester (Mathers, 2012, 2013;
Burke and Price, 2013; Bridge et al., 2010).

Digital geological framework models are representations that
convey the three dimensional arrangement of the geological units
present, they are capped by a surface geological map at a
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corresponding scale, draped onto a digital terrain model. The
models (also called 3D maps) are built by assembling all the types
of available data (boreholes, maps, sections, geophysics, etc.) in
their correct spatial positions to enable an interpretation or
understanding of the 3D distribution of the units to be reached.
This facility to visualise the interplay of complex spatial datasets
that otherwise the human brain could not resolve with ease is one
of the advantages of the application of modern digital technology
to geological data.

Unlike a 2D digital geological map with a cross-section,
geological framework models contain knowledge at any point in
x, y and z dimensions. This means that they can be interrogated
to provide a geological answer anywhere, for example at a point,
along a defined alignment or at a specified depth; outputs from
such queries include synthetic borehole or section prognoses. In
addition geological models define the subsurface distribution of
all the geological units, thereby enabling subcrop limits of all
units to be established and the geology to be uncovered layer by
layer. More advanced outputs include isopach maps for
individual or combined units and contours on all buried
surfaces.
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Table 1
Stratigraphy of the Palaeogene bedrock units. The units modelled are shown in bold.

Group Formation Member

Bracklesham Group Camberley Sand
Formation
Windlesham
Formation

Stanners Hill Pebble Bed
St Anne’s Hill Pebble Bed

Bagshot Formation Swinley Clay Member

Thames Group London Clay Formation Claygate Member
Harwich Formation

Lambeth Group Reading, Woolwich

and Upnor Formations

Thanet Sand Formation
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Perhaps most importantly the finished model is a very powerful
way of visualising and communicating the geological understand-
ing to an expert, a decision maker, a geoscience student or
the general public alike, whilst also helping develop solutions to
real-life geological and environmental problems.

2. Geology of the model area

The area modelled comprises 4800 km2 covering London and
the Thames Valley extending westwards as far as Newbury and
eastwards to the inner Thames Estuary (Fig. 1). It stretches from
easting 450 000 to 570 000 and from northing 160 000 to 200 000
and extends to a variable depth of several hundred metres, the
precise depth being defined by the geology. The model has been
built in stages since 2006 using funding from the BGS National
Capability budget. Although the region is heavily studied, as Aldiss
(2013), and Aldiss et al. (2014) have pointed out much remains to
be discovered about the deeper geological structure, distribution of
faulting, and neotectonics of this important region.

An overview of the regional geology is provided by Sumbler
(1996), whilst the ‘London Memoir’ (Ellison et al., 2004) describes
the four 1:50 000 scale mapsheets covering London and environs
that form the eastern half of the model area. More recently, Royse
et al. (2012) have also reviewed aspects of the geology of London.
The western parts of the modelled area have been recently
geologically surveyed, including the districts around Reading
(Mathers and Smith, 2000), Windsor (Ellison and Williamson,
1999), Newbury (Aldiss et al., 2006), and Beaconsfield (Morigi et
al., 2005).

The major bedrock structure of London and the Thames Valley
is the northeast to southwest trending London Basin synclinorium
(Sumbler, 1996; Ellison et al., 2004). This structure formed in
Palaeogene times and terminated during the Oligocene to mid-
Miocene regional compression that in southeastern England
represents the main Alpine orogenic event. Onshore, the outcrop
of the Late Cretaceous Chalk Group forms a rim around the younger
strata of the London Basin. The Chalk, which is over 200 m thick
beneath London, is the region’s principal aquifer. It is famous
historically for its artesian flow from water wells sunk near the
Fig. 1. The bedrock geology of the London Basin and location of the modelled area. Ge

Ordnance Survey data � Crown Copyright and database rights 2014.
centre of the Basin and for its susceptibility to collapse due to
dissolution. In the model the Chalk is undivided although in some
parts of the area formation level classification has been modelled in
separate studies (Royse, 2010; Royse et al., 2010). Beneath the
Chalk the Upper Greensand locally overlies the Gault Formation
which present across the whole area comprising stiff grey clay, the
two units are grouped within the model. They rest on the Lower
Greensand Group, the Wealden Group and Jurassic sedimentary
rocks, these latter units are only present in the southern, western
and northwestern parts of the model.

Overlying the Chalk, the oldest Palaeogene deposit is the Thanet
Sand Formation (Table 1). This consists of a coarsening-upwards
sequence of glauconitic fine-grained sands and silts, with a basal
bed of flint cobbles and of nodular flints derived from the Chalk.
The Thanet Sand Formation reaches a maximum thickness of
around 40 m in the east of the area but thins rapidly westwards to
where it is overlapped by the Palaeocene to Eocene Lambeth Group
beneath western London. This lithologically variable group is up to
30 m thick in the area, consisting of variable proportions of sands,
silts, clays and gravels (Ellison, 1983). The overlying Eocene
sediments, the Thames Group, consists of the London Clay
Formation, underlain in much of the eastern part of London by
the Harwich Formation. This has only been differentiated in the
ological linework from DigMap 250K bedrock version 4.11 BGS � NERC. Contains
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model where it consistently exceeds 2 m in thickness; thinner
occurrences are reported farther west but due to the practicalities
of modelling at the current resolution these are included within the
overlying London Clay. The Harwich Formation consists predomi-
nantly of sand and pebble beds, which, in southeast London, are
locally up to 12 m thick. The London Clay Formation comprises up
to 150 m of grey to blue-grey, bioturbated, silty clay, with sandy or
pebbly beds at some levels. It includes the alternating sand-clay
sequence of the Claygate Member at the top, which has been
modelled as a separate unit (Table 1). The London Clay sequence
contains more sand and sand interbeds in the westernmost parts of
the area although this distinction has not been modelled. Younger
Eocene sediments include the sandy Bagshot, Windlesham and
Camberley Sand formations, with the three units locally reaching a
total thickness of around 70 m. These units tend to occur as
outliers, capping some of the highest hills within the central
London Basin. Thin units within the sequence comprising the St
Anne’s Hill and Stanners Hill Pebble Beds, and the Swinley Clay
Member have been modelled as separate units although each has
an extremely restricted geographical distribution (Ellison and
Williamson, 1999). An isolated patch of Neogene Lenham Beds is
also present just west of Rochester, in Kent.

In total, 64 superficial and artificial units were modelled. These
include substantial flights of river terrace deposits in each of the
major elements of the drainage network (Thames, Loddon,
Kennett, Lea, Mole, Wey, etc.) and mainly follow the classification
on the corresponding BGS 1:50 000 scale mapsheets. Locally,
patches of fine grained overbank silts and clays are preserved on
these terrace aggradations (e.g. Langley Silt). These may, in some
cases, also contain an aeolian or loessic component. The extensive
terrace flights attest to the substantial downcutting of the Thames
system during the Pliocene and Quaternary probably in response to
gradual uplift onshore and subsidence in the southern North Sea
Basin (Gibbard, 1988; Mathers and Zalasiewicz, 1988). Major
syntheses of the evolution of the Thames drainage system and its
terraces are given by Gibbard (1985, 1994) and Bridgland (1994).

On the published 1:50 000 scale BGS maps of the region small
patches of till relating to the Anglian glaciation occur in north
London and polycyclic Head and Clay-with-flints deposits are
widespread. The term Head encompasses slope or colluvial
deposits of diverse character, the Clay-with-flints is present
resting on Chalk bedrock, it is probably derived from remnants of
Palaeogene deposits and its genesis probably dates back to the
Neogene. Holocene deposits mainly comprise alluvium along
the current river valleys and the intertidal silts and clays of the
Thames Estuary. The boundary between the two is likely to
interdigitate. Artificially modified ground (AMG) follows the
classification of the DigMapGB-50 dataset (see Fig. 4); however
the distribution has been substantially upgraded in the
modelling as described below.
Fig. 2. Location of borehole logs
3. Building the model

A detailed account of the data used and methodology employed
in constructing the model is contained in Burke et al. (2014).
Here we offer a brief summary of these aspects and consider the
wider impacts of the model.

3.1. Baseline data

With the abundance of shallow borehole data held by BGS for
the model area it is simply impractical from a resource point of
view to consider encoding the dataset with the stratigraphical
classification needed for modelling. In total BGS holds about
100 000 borehole records for the modelled area, the vast majority
are shallow boreholes occurring in clusters due to site investiga-
tion or along linear routes. The borehole information considered
includes that encoded by the earlier studies of Ellison et al. (1993),
Strange et al. (1998) and deeper boreholes with detailed records to
help constrain the deeper geological units. A GIS was then used to
ensure an even distribution of boreholes wherever the data made
this possible. Where available additional boreholes were then
selected for classification to infill the data poor areas. Selection
criteria were drilled depth, borehole location and level of detail
in the borehole log.

In total, 7174 encoded borehole logs were considered in the
construction of the GSI3D cross-sections (Fig. 2). These data were
downloaded from the BGS corporate databases, which automati-
cally generates model-ready files. The retrieval captures every
entry in the BGS Borehole Geology database. Some individual
borehole records have been encoded for different purposes at
different times, and so the database contains multiple interpreta-
tions for some boreholes. These multiple entries were then filtered
on a priority basis in terms of their reliability and the detail
recorded.

Geological map linework (as ESRI shape files) was selected from
the BGS DiGMapGB-50 dataset. This extract was checked for
inconsistencies at the 1:50 000 mapsheet boundaries, and the
linework was rationalised wherever possible with precedence
usually given to the more recent survey and nomenclature.

The model is capped and fitted to a BGS-produced ‘Bald Earth’
Digital Terrain Model (DTM) with a 100 m cell size. This DTM is
based on the BGS licenced NextMap DTM but has Ordnance Survey
Landform Profile data inserted for extensive wooded areas where
this was found to provide a better representation of the actual
ground surface.

Existing BGS models, memoirs and reports together with
published literature guided the modelling throughout and
included the extensive use of georeferenced scans of sections
and maps from Ellison et al. (2004) and Sumbler (1996). There is
limited seismic data for the area, and this, together with regional
 used to inform the model.



Fig. 3. Framework of cross-sections used to construct the GSI3D model.
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geophysical surveys are useful to inform the structure of the older
strata and basement mainly at depths greater than the base of
the present model.

3.2. Modelling the geology

The Quaternary and Palaeogene bedrock geology were initially
modelled in GSI3D following the standard methodology (Kessler
and Mathers, 2004; Kessler et al., 2009). This involves the drawing
of numerous cross-sections to form a framework and then
mapping out the extents of each of the geological units present
using their map outcrops together with their subcrop extents as
defined in the sections. The calculation of the surfaces of the
geological units is by interpolation between cross-sections and the
unit extents. The framework of 922 cross-sections constructed is
shown in Fig. 3, the regular spacing between sections is 1–2 km
with a maximum of about 3 km.

Although the DiGMapGB-50 dataset formed the initial surface
geology for the modelling process the final model has slightly
modified and updated this geological interpretation. These
changes however have not yet been incorporated into the current
version of the DiGMapGB-50 dataset.

Because of the varied dates of the surveys in the modelled area a
variable approach to the representation of AMG is apparent in the
DiGMapGB-50 dataset. Some sheets record AMG, others do not. To
try and address this inconsistency a GIS-based desk study was
carried out to identify instances of AMG that were not present in
the DiGMapGB-50 data. This involved examining modern 1:10 000
scale topographic maps for areas where the ground surface has
been modified, such as in embankments and cuttings along
transport routes, reservoirs, and other evidently man-made
features. The revised distribution is presented in Fig. 4 for the
whole model area and as an example of the level of detail an inset
map for the Dartford area is included with all the five main
categories of AMG occurring in juxtaposition. To date this updated
information has not been incorporated into the current released
version of DiGMapGB-50.

However, despite this enhancement the AMG still remains
poorly represented in both DiGMapGB and in this model dataset
due to the difficulty of defining the extensive areas of it that are not
associated with specific landforms. Mapping this ‘urban blanket’
still needs to be achieved and will involve examining very large
numbers of borehole records.

Discontinuous thin superficial deposits such as Clay-with-flints
and Head, and all AMG units are represented in the model as 2D
polygons (extents) and are drawn in the cross-sections. However
their complex shapes and discontinuous nature would require
extensive construction of additional short cross-sections in order to
provide sufficient geometric control with which to calculate reliable
3D volumes.

The fault network resolved at the intended model resolution
was initially established in GSI3D by 3D visualisation of the data to
detect significant offsets of the strata (Ford et al., 2008, 2010). In
order to create the faulted surfaces of the bedrock geological units,
the interpreted sections, the unit extents and the faults were then
exported to GOCAD1, where a standard workflow for model
construction was used to generate the faulted surfaces. To cap the
GOCAD1 model, the rockhead (base Quaternary) surface was
exported from GSI3D as an ASCII grid with a cell size of 100 m.

Gridded surfaces defining the bases of four additional older
geological units were finally added to the model to ensure that
model coverage to a minimum depth of several hundred metres
was achieved throughout. These additional surfaces were gener-
ated from a lower resolution unfaulted model of the whole London
Basin developed in GOCAD1 and based on deep boreholes and the
sections in the GB3D national bedrock model (Mathers et al.,
2014). The surfaces comprise the base of the Chalk Group, the base
of the combined Gault and Upper Greensand, the base of the
Lower Greensand and the base of Jurassic strata. The interval
between the lowest two bases (Lower Greensand and Jurassic)
contains both Lower Cretaceous Wealden strata and Jurassic
sedimentary rocks. These lower resolution deeper surfaces were
adjusted bearing in mind their controlling borehole data to ensure
an overall structural conformity with the interpretation reached
for the overlying strata.

The base of the model is always defined by the oldest modelled
geological surface present, rather than the model base being
defined at a constant depth. In the northeastern parts of the model
the lowest modelled unit present (usually the Gault and Upper
Greensand) rests directly on the Palaeozoic basement rocks of
the London Platform whereas in the south and western parts of
the model older Mesozoic sedimentary rocks generally underlie
the modelled stack.

4. New understanding from the model

The modelling process involves the assembly of a workspace
containing all the relevant geoscience datasets in their correct
spatial positions. This enables the modeller(s) to comprehend and
visualise the complex spatial relationships between multiple
datasets in order to arrive at an interpretation.

The model outputs include a revised rockhead surface (Base of
Quaternary) depicted in Fig. 5. Where Quaternary deposits are
absent the rockhead surface lies at the ground surface as defined by
the digital terrain model. The highest elevations are in shades of
red along the Chiltern Hills in the northwest, and the North Downs



Fig. 4. Artificially modified ground coverage for the whole model area and below for the small inset area straddling the Thames at Dartford. Extensively modified from

DigMapGB-50 artificial version 7.22 BGS � NERC.

S.J. Mathers et al. / Proceedings of the Geologists’ Association 125 (2014) 373–382 377
in the southeast of the model area. The channels beneath the
modern river floodplains form the lowest elevations descending to
�25 m OD and are shown in dark blue.

A related output is the production of a revised grid of the
thickness of the Quaternary deposits shown here in Fig. 6. It shows
that most of the thickest deposits in shades of red underlie the
lower reaches of the Thames channel and also occur as isolated
anomalies farther west perhaps relating to large scour hollows or
depressions. The white areas indicate the absence of mapped
Quaternary deposits.
Fig. 5. The Rockhead (base Quaternary) su
The new rockhead model has in turn enabled a reassessment
of the subcrop pattern of the bedrock units including a revised
fault network for the Greenwich Fault Belt and adjacent areas
(Ford et al., 2008, 2010, and Fig. 7). More recent work suggests
the presence of considerably more faults under London than
those shown at present (Aldiss, 2013) and this and other studies
will need to be assessed and incorporated into future versions of
the model.

In addition the model can be used to generate contoured
surfaces for the top and base of individual river terrace deposits, or
rface grid calculated from the model.



Fig. 6. A calculated thickness grid of the modelled Quaternary deposits.

Fig. 7. Revision of bedrock geology in the London area. Left, the interpretation from the current DigMapGB-50 bedrock version 7.22 BGS � NERC. Right, revision following 3D

visualisation and modelling featuring the new pattern of faults reported by Ford et al. (2008, 2010) and further changes to the bedrock unit croplines.

Fig. 8. A fence diagram of auto generated cross-sections through the model with a

10 km spacing viewed from the southwest. The Vertical Exaggeration is �10. The

colour scheme for the Palaeogene and Chalk bedrock units is as shown in Figs. 7 and

10. Beneath the Chalk shown in light green are the Lower Cretaceous deposits in

shades of blue and the lowest unit is the Jurassic sedimentary rocks in brown.
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of any other unit, and so it has the potential for testing the validity
of proposed terrace classifications and correlations within the
Thames system. A further advantage is this data can be viewed in
the 3D window of any modelling software or viewer at any vertical
exaggeration and from any angle rather than using the traditional
2D plots of elevation along the thalweg.

Fig. 8 shows a fence diagram of synthetic sections with a 10 km
spacing calculated from the completed model. This fence diagram
is available as a 3D PDF from the BGS website (see Section 6). It
illustrates the broad regional structure and the level of strati-
graphic detail found in this model. The thickening of the bedrock
sequence into the Wealden and Wessex basins is shown in the
southeastern and southwestern corners respectively. Fig. 9 shows
the calculated model down to the base of the Cretaceous viewed
from the southwest.

5. Uses and limitations of the model

Here we list guidance on the appropriate use and limitations
of the model. Existing and potential applications of the model
are many and varied and the model is intended to be fit for
any purpose so long as the use is at an appropriate resolution.
Here we review existing applications and outline other possible
uses.

5.1. Uses

Appropriate uses of the model include the following:
� General and geoscience education to illustrate the regional
geology of London and the Thames Valley centred around a
resolution of 1:50 000 and within the intended range of
1:25 000 to 1:100 000.
� Genesis of borehole, cross-section and depth slice prognoses

from the model delivered via the BGS Groundhog application
(see below).
� Use as a framework for the construction of higher resolution, more

detailed geological models for site-specific and local studies.



Fig. 9. The model of bedrock and superficial deposits to the base of the Cretaceous strata, viewed from the south-southwest. The vertical exaggeration is �10. The colour

scheme for the Palaeogene and Chalk bedrock units is as shown in Figs. 7 and 10.
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� Catchment and regional scale assessments for hydrogeology,
planning and mineral resource estimation.
� Derivation of themed outputs and bulk attribution of the

geological units in the model with geological properties.

5.2. Limitations

Limitations inherent in the model include:

� Any representation or use outside the intended resolution range
(1:25 000 to 1:100 000).
� Use for site-specific assessments of any kind (the model is likely

to provide a useful guide or starting point for such studies but
outputs from the model are not a substitute for them).
� Mineral reserve quantification of any kind. (This involves

detailed quantification of the deposit volumes and grades and
is beyond the capacity and detail of the current model.)
� The vast majority of the model accepts the available DiGMapGB-

50 surface geology, with only minor amendments. However the
standard of the DiGMapGB-50 dataset is variable relating to
surveys carried out at various points over the last 100 years. A
consideration of all the available borehole data would result in
substantial revision of the data especially with regard to AMG.
� Discontinuous thin superficial deposits such as Clay-with-flints,

Head, and all AMG units are included in the model as 2D
polygons and in the cross-sections. Volumes cannot at present be
calculated for these units as discussed above so they will be
absent from any borehole prognoses or synthetic sections
generated from the model by the BGS Groundhog application
(see Section 6.3).
� Not every available borehole record was considered in the

construction of the model. Some variation may therefore occur
between the depth of units modelled and depths recorded in the
boreholes that were not used.
� Very localised geological phenomena such as small scour

hollows, relict pingo and allied periglacial structures and small
channel infills cannot be easily shown at the intended resolution
of the model unless a borehole proving the structure is included
in a cross-section. For more information on such structures, their
genesis and locations see Berry (1979), Ellison et al. (2004, Fig.
35), and Banks et al. (in press).

5.3. Existing applications for the model

The scale of the model could be said to be 1:50 000 as it is
consistent with the surface geological linework at that scale.
However with digital data the facility to zoom in and out makes it
very important to convey the sensible limits to which such zooming
can be performed for the data. The term resolution rather than scale
is preferred for digital geospatial datasets. So as noted above the
intended (safe) resolution range for use of this model is 1:25 000 to
1:100 000. Hence the model cannot provide sufficiently detailed
solutions for site- and route-based studies but provides a useful
guide or starting point for such studies. Three examples of cases
where the model and methodology have already provided a useful
framework within which a more detailed or site-specific model was
developed in the London area are as follows.

The new underground Farringdon Station in east London is part
of a project to build the east–west Crossrail system linking central
London with the Channel Tunnel rail link, and Heathrow Airport
(Gakis et al., 2014). The station is scheduled for completion in
2016, and comprises two parallel 300 m long platform tunnels
c. 11 m wide and up to 37 m apart, connected by cross-passages.
To assist with the design and project development a detailed
Farringdon geological model was built in 2009–10 based on
existing ground investigation undertaken by Crossrail and
on third party borehole records (Aldiss et al., 2012). Adjacent
cross-sections from the London and Thames Valley model
provided the broad stratigraphic framework within which the
more detailed Farringdon model was constructed. The Farringdon
model included a facies-level subdivision of the Lambeth Group
and apparent offsets of this detailed sequence indicated the
presence of several faults.

More recently in 2012 a 1:10 000 scale route model was
commissioned by HS2 Ltd for the proposed route from Euston
north-westwards. This model utilised the London and Thames
Valley model as a starting point. An extract of the regional model
was densified with extra cross-sections added along the HS2
corridor. These were subsequently incorporated back into the
regional model. The HS2 model conveys greater detail in
the Anthropogenic deposits and bedrock stratigraphy than the
regional model or the DigMapGB-50 dataset for this area.

A detailed model of the Chalk Group under central London
divided it into six component formations; this was developed for
the Environment Agency of England and Wales (Royse, 2010;
Royse et al., 2010). This model is consistent with the present
London and Thames Valley model utilising the same bounding top
and base surfaces for the Chalk Group. Further faulting within the
Chalk Group was indicated by offsets in the elevation of the various
formations in the detailed model.

All these models have successfully developed a more refined
lithostratigraphy that keys into the lower resolution units of the
regional model; in addition they have also indicated the presence
of faults at a resolution that is too high to incorporate satisfactorily
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into the overall London and Thames Valley model. This again
emphasizes the importance of scale or resolution and fitness for
purpose in all aspects of the spatial representation of geological
units in maps and model outputs.

5.4. Future enhancement of the model

The model described should be considered as Version 1; as such
it marks a significant step for BGS in the migration from the
provision of 2D to 3D geological data for London and the Thames
Valley. However, the limitations of the existing model are spelt out
above; these identify aspects where the model could now be
enhanced to provide greater accuracy and reliability.

The chief tasks could include:

� Assessment of available borehole records to ensure revision of
the existing surface geology of the area (DiGMapGB-10 and -50)
Fig. 10. Auto generated section and borehole from the BGS Groundhog application. NEXT

data � Crown Copyright and database rights 2014.
and especially the distribution of Quaternary deposits and the
AMG layer.
� Further assessment of the evidence for faulting across the region

and the need for an integrated structural interpretation taking
account of all available sources.
� Deployment of software tools to better facilitate the generation

of modelled unit volumes for discontinuous superficial deposits
such as Head and Clay-with-flints.
� Population of the model with more stratigraphic detail; in

particular the division of the Jurassic sedimentary rocks, and
further division of the Chalk Group into its component
formations and the Lambeth Group into facies.
� Establish editing of the model by continuous revision as new

data is acquired involving the participation of users and
stakeholders.
� Expanding the coverage of the model to adjacent parts of the

London Basin.
Map Britain elevation data from Intermap Technologies. Contains Ordnance Survey



S.J. Mathers et al. / Proceedings of the Geologists’ Association 125 (2014) 373–382 381
6. Availability of the model data

A fence diagram of cross-sections through the model is
available from the BGS website.

Other digital data such as surfaces from the model are available
for use in GIS and geological modelling software under licence. In
addition BGS has also developed the BGS Groundhog application
for the delivery of spatial information from the model.

6.1. Free data

Automatically generated sections from the model are made
available in PDF format for anyone to view and download
from the BGS Open Geoscience webpages under the Open
Government Licence at http://www.bgs.ac.uk/opengeoscience/
home.html?src=topNav. The cross-section lines are at 10 km
intervals, aligned to the British National Grid and running both
north-south and east-west (Fig. 8). The sections are available
individually and as the complete fence diagram. The spacing is
both adequate for stakeholders to understand what the overall
geology is, and the level of geological detail contained in the
model.

6.2. Licensed data

Geological model data can be supplied in a wide range of
generic 2D and 3D formats. Individual surfaces can be supplied as
TINS (triangular irregular networks), DXF files for BIM/CAD
software and as ASCII grids; and 3D geometries can be supplied
for example as ESRI multipatches, or GOCAD1 shells. The model
can also be exported as 3D grids at a user-defined cell spacing. In
addition, models can be delivered in a standalone BGS Lithoframe
Viewer that allows the user to interact with and perform spatial
queries on the model. This viewer is available at: http://
www.bgs.ac.uk/research/ukgeology/nationalGeologicalModel/
GB3D. html.

6.3. BGS Groundhog georeports

The London and Thames Valley model is also sufficiently
detailed to allow automated prognoses of the general geological
conditions that might be expected at a site, along a route, or at a
specified depth. Whilst these prognoses can be used to plan
investigations, they cannot be used as substitute for the actual
site investigations. BGS has developed the BGS Groundhog
application for this purpose; it provides clients with bespoke
auto-generated borehole logs, cross-sections along specified
alignments and horizontal cuts at either a specified level,
relative to OD, or beneath the ground surface. Each is
accompanied by a map, descriptive text listing the geological
units present and a colour legend. An illustration of some of the
basic outputs elements is given in Fig. 10 and an image of the
report output using the standardised BGS template is included
as a supplementary source. These outputs are suitable for
stand-alone use and for incorporation into reports and other
documents.
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