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Synopsis 

 

Development of a regional geological interpretation for the Southern Uplands Terrane 

has been driven historically by advances in graptolite biostratigraphy, sandstone 

petrography and turbidite sedimentology (particularly the recognition of reliable way-

up criteria), then, more recently, by a growing appreciation of the nature of 

accretionary processes at active plate margins. The latter has led to the widely held 

view of the terrane as an archetypal fossil accretionary prism, built up by the accretion 

at the margin of Laurentia of the sedimentary cover of Iapetus oceanic crust, the cover 

being stripped from the oceanic crust during its subduction beneath Laurentia. The 

achievement of this broad consensus has not been without controversy, which still 

persists in respect of some aspects of the overall model. Suggestions that the 

northernmost (Ordovician) part of the terrane might have originated in a back-arc 

basin have been disproved by a combination of mineral dating and basin thermal 

history analysis utilising clay mineralogy. Nevertheless, it remains possible for that 

part of the terrane to have a continental margin, fore-arc depositional history. The 

southernmost (mid-Silurian) part of the terrane most probably developed in a foreland 

basin setting, as a fold and thrust belt over-riding Avalonia, following the closure of 

the Iapetus Ocean. Progress in understanding the origins of the Southern Uplands 

Terrane has only been achieved by the collaborative application of multidisciplinary 

techniques – biostratigraphic, sedimentary, structural, geochemical and geophysical. 

This review is a tribute to all those who have contributed. 

 

Introduction 
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The Southern Uplands Terrane is arguably the World’s best-preserved ancient 

accretionary complex. It occupies about 10 000 km2 of southern Scotland and about 6 

000 km2 in the Down-Longford region of Ireland and is the southernmost of the 

exposed Laurentian terranes of the British Isles. The Terrane is characterised by 

Ordovician and Silurian turbidite successions of sandstone, siltstone and mudstone 

that have been deformed such that bedding dip commonly approaches the vertical or 

is overturned. A superficial uniformity of lithology and structure camouflages the 

terrane’s complexity, and its understanding has only been achieved by the integration 

of a range of geological techniques. Although widely advertised as a controversy, 

following McKerrow (1987), the cooperative and amicable teasing-out of the region’s 

geological problems should rather be seen as an exemplary illustration of 

collaborative scientific methodology. This review will attempt to explore the ways in 

which the particular issues raised by Southern Uplands geology have been addressed, 

drawing principally on research in the terrane’s Scottish sector. There is no pretence 

that it is a comprehensive review of all aspects of the regional geology. A different 

reviewer may well have selected a radically different path through the Southern 

Uplands geological historiography.  

 

The geological framework, essential background for what follows hereinafter, is 

summarised in Figures 1 & 2. Figure 1a shows the outline geology which is 

dominated by a series of large-scale, strike-parallel faults, extending NE-SW, that 

separate successions of Ordovician and Silurian, mainly turbidite strata. The currently 

defined arrangement of these fault-bounded units, described in the Southern Uplands 

literature as structural tracts and commonly assigned lithostratigraphical status as 

formations, is summarised in Figure 1b. Coloured versions of both Figure 1 maps, 

showing details of the regional lithostratigraphy, are available as supplementary 

material to the on-line version of this paper. Throughout the terrane, bedding dip is 

generally steep and the succession seen in each tract usually youngs towards the NW. 

At the base of the succession in each tract an assemblage of chert and graptolitic 

mudstone (very rarely, and only in the Ordovician tracts, with subjacent basaltic 

lavas) lies immediately to the NW of a major strike-parallel fault; the mudstone is 

conformably overlain by a very much thicker sequence of turbidite siltstone and 

sandstone. The top of the siltstone-sandstone unit is then cut out by a strike-parallel 
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fault that reintroduces the mudstone-chert assemblage at the stratigraphical base of the 

next tract north-westward. At the NW margin of the terrane the biostratigraphic range 

of the mudstone is restricted to one or two mid-Ordovician graptolite biozones 

(representing only 2 or 3 million years) , but progressively towards the SE the range 

increases until the mudstone unit spans the Late Ordovician and Early Silurian (up to 

25 million years). As a result, the age of the turbidite siltstone-sandstone unit in each 

tract (which only rarely spans more than a single graptolite biozone) decreases south-

eastward, from Early Caradoc (Sandbian) to Early Wenlock; this is the arrangement 

shown graphically in Figure 2. Within each tract the strata young towards the NW but 

over the entire terrane the strata in the SE are younger than those in the NW. This is 

the Southern Uplands paradox, summed up by Anderson & Cameron (1979, p. 263) 

from the Ards Peninsula, Northern Ireland, as follows: “Folding and stratigraphy 

combine in the classic Southern Uplands paradox: although north-younging limbs are 

predominant, graptolites invariable indicate the presence of younger sediments to the 

south.”   

 

The major historical contributions 

 

Graptolite biostratigraphy provided the key to an understanding of Southern Uplands 

geology. Lapworth (1872, 1878) first recognised the tripartite internal stratigraphy of 

the ‘Moffat Shale’ and then established a regionally applicable succession of biozones 

based on meticulous fieldwork at Dob’s Linn, 15 km NE of Moffat. He recognised 

and named, in upward succession, the Glenkiln, Hartfell and Birkhill shales. 

Lapworth was not the only palaeontologist researching Southern uplands graptolites 

(Rushton 2001), but it was undoubtedly his biostratigraphical insight that formed the 

basis for a regional understanding. To capitalise on the opportunity, the Geological 

Survey dispatched the authoritative figures of Peach and Horne to mastermind the 

remapping of the Southern Uplands, ably supported by the fossil collector 

Macconochie. The ensuing Peach & Horne (1899) Memoir – The Silurian Rocks of 

Britain. Volume 1, Scotland – stands as a classic of Victorian science and remains a 

valuable data source.  

 

Peach & Horne (1899) is a necessary starting point in any consideration of Southern 

Uplands geology but, as a precursor, a cameo of Dob’s Linn is appropriate since the 
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succession there is representative of the broader Southern Uplands pattern. 

Lapworth’s (1878) original map of the area remains a valid representation of the 

geology. It has a large format, shows a plethora of detail and has been reproduced in 

more recent publications (e.g. Figure 11.2 of Clarkson & Upton 2010). At Dob’s Linn 

the Moffat Shale Group mudstones strike broadly NE–SW and form one of the most 

continuous basal successions seen in any of the Southern Upland tracts. The SE limit 

of the mudstones is marked by a major strike-parallel fault, whilst at their NW limit 

the mudstones are abruptly and conformably succeeded by Gala Group sandstone 

beds. The Moffat Shale Group mudstones span about 15 graptolite biozones from the 

Early Caradoc (Ordovician) to the mid-Llandovery (Silurian) in about 80 m of strata 

(Figure 3). Interbedded within the mudstones are numerous thin layers of volcanic ash 

(metabentonites); from the Upper Hartfell and Birkhill Shales Merriman & Roberts 

(1990) described 138 metabentonite layers, comprising up to 20% of the total 

(compacted) succession in some graptolite biozones (Figure 3). The fine 

biostratigraphical control available at Dob’s Linn, coupled with radiometric dates 

from zircon in the metabentonites (Tucker et al. 1990) has enabled the section to be 

established as the international stratotype for the base of the Silurian System (e.g. 

Williams 1988).  

 

Peach & Horne’s (1899) reappraisal of Southern Uplands geology utilised and 

extended Lapworth’s biostratigraphy but they lacked the sedimentological and 

structural keys that were to prove crucial. The significance of neither the 

sedimentological features allowing the ‘way-up’ of steeply inclined strata to be 

established (graded bedding, cross-lamination, sole structures etc.), nor the structural 

importance of fold vergence were appreciated, and so the Southern Uplands’ 

paradoxical arrangement of stratigraphy was not recognised. Instead, Peach and 

Horne developed a structural model of the Southern Uplands in which tight folding 

dominated (Figure 4a). The folding is locally real enough but is fundamentally 

asymmetric with predominantly southwards vergence. Without this constraint on their 

regional model (but note the reverse fault at F in Figure 4) they explained the 

progressively southward younging biostratigraphy as arising from an intensely folded 

stratigraphy accommodated within a large-scale ‘anticlinorium-synclinorium’ system 

and defined the region in terms of a Northern Belt of Ordovician (Caradoc and 

Ashgill) age, a Central Belt of Silurian (Llandovery) age and a Southern Belt of 
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Silurian (Wenlock) age. These broad regional terms are still widely used, although 

their chronostratigraphical exclusivities have faltered. 

 

It was not until the early 1950s that the application of advances in sedimentology 

began to unpick Peach and Horne’s geological model. Kuenen (1953, pp 44-45) 

recognised the upright strata exposed on the south-west coast of the Southern Uplands 

(the Rhins of Galloway peninsula) as having been deposited by turbidity currents and, 

using graded bedding as his main guide, noted with evident surprise that “all along 

this coastal section the bottom of the graded beds … lies on their southern side. The 

northern [sic] limbs of the isoclinal structures appear to be entirely suppressed”. His 

surprise would have arisen from the expectation that, if Peach and Horne’s model was 

correct, there would be about as much south-younging as north-younging strata. 

Building on Keunen’s reconnaissance, the Rhins of Galloway ‘type area’ was soon 

described in detail by Kelling (1961). The new insight also forced a reconsideration of 

the regional structure and in a radical reinterpretation Craig & Walton (1959) 

proposed a series of large monoclines, each with steep limbs to the north and flat 

limbs cut on their south side by major strike-parallel reverse faults with substantial 

downthrow to the south. The steeply dipping, northern limbs contained uniformly 

north-younging strata; the flat limbs were corrugated by minor folds within a 

horizontal fold envelope that was faulted against the next steep limb southward. This 

model provided the starting-point for the accretionary thrust interpretations that were 

to follow as plate tectonics came to the fore. 

 

Subduction, accretion and the Iapetus Ocean 

 

The advent of plate tectonic theory revolutionised many geological interpretations, 

and that of the Southern Uplands Terrane was no exception. It led to the Southern 

Uplands being modelled as an accretionary thrust complex formed above a north-

dipping subduction zone at the Laurentian (northern) continental margin of the Early 

Palaeozoic Iapetus Ocean (McKerrow et al. 1977; Leggett et al 1979). This 

subduction zone eventually became the plane of collision – the Iapetus Suture – 

between Laurentia and the southern continent of Avalonia when the Iapetus Ocean 

closed. The suture appears as a prominent NW-dipping reflector on several deep 

seismic profiles across the Southern Uplands, and projects to the surface to the north 
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of the English Lake District and the Isle of Man; the evidence has been reviewed by 

Soper et al. (1992a). 

 

The existence of the Iapetus Ocean had long been presaged by the recognition of 

counter-intuitive similarities and contrasts of Early Palaeozoic faunal assemblages 

along and across the Caledonian Orogen. For example, in southern Scotland, Williams 

(1962) showed that the Ordovician brachiopod faunas from the Girvan succession 

bore a striking resemblance to those of the Appalachian region of North America, but 

showed little similarity to those of Wales. The palaeontological contrast – faunal 

provinciality – diminished with time until, by the Late Silurian and as a result of a 

decreasing oceanic separation, the fossil faunas became relatively cosmopolitan. The 

evidence of faunal provinciality and the history of its establishment has been reviewed 

and assessed by Cocks & Fortey (1982 and references therein) and pointed to a wide, 

Early Palaeozoic ocean separating equatorial Laurentia, to the north, from temperate 

Avalonia and other peri-Gondwanan continental fragments to the south.  

 

As the Iapetus Ocean began to close, subduction beneath the margin of Laurentia 

initiated the formation of an accretionary thrust complex – the accretionary prism 

model. There are modern analogues for this process at several actively convergent 

plate margins, and these examples have been used to inform the Southern Uplands 

debate, although none provide a comprehensive comparison. Leggett et al. (1983) and 

Leggett (1987) discussed the attributes of several modern examples, including the SW 

Japan and Sumatra fore-arcs, and emphasised broad similarities with the Southern 

Uplands whilst admitting much detailed variation. Another useful analogue is 

provided by the Late Cretaceous to Cenozoic, Kodiak accretionary complex in Alaska 

(Sample & Moore 1987) which was used by Merriman & Roberts (2001) as an aid to 

the interpretation of structural and metamorphic patterns in the Southern Uplands. 

 

The strata incorporated into the Southern Uplands accretionary complex originated as 

sand and mud carried by turbidity currents from the continental shelf, via submarine 

canyons, and built up into huge depositional fans. The turbidite deposits filled the 

supra-subduction-zone trench and encroached onto the oceanic plate, where they 

covered the sequence of hemipelagic mud (Moffat Shale Group), radiolarian chert and 

pillow lava (Crawford Group). As the submarine fans built out they overstepped 
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progressively younger oceanic sequences that were continually approaching the 

continental margin as the oceanic plate was subducted. Then, during the subduction 

process, discrete sections of the oceanic sequence and its cover of turbidite sandstone 

were sequentially stripped from the subducting oceanic plate and thrust beneath the 

stack of similarly stripped-off slices that made up the growing accretionary complex.  

These slices, structurally rotated towards the vertical (and in places even beyond it so 

that the component beds are inverted), now give rise to the characteristic Southern 

Uplands lithostratigraphic outcrop pattern of upright beds contained in elongated and 

NE-SW-trending, fault-bounded tracts which are defined stratigraphically in terms of 

groups and formations (Figures 1 & 2 and the supplementary material). 

 

The origins of the accretionary prism model can be traced back to such landmark 

papers as Wilson (1966) and Dewey (1969) which developed the theme of an opening 

and closing Iapetus Ocean within the Caledonian Orogen. Dewey (1971) then focused 

on the Early Palaeozoic evolution of the Scotland-Ireland sector of the Laurentian 

margin as the Iapetus Ocean closed. Tellingly, Dewey identified the Southern Upland 

succession as a wedge of clastic sediment that initially built up in a continental margin 

trench, but then extended out across the subducting oceanic plate. Deformation was 

caused by shortening of the sedimentary succession accompanied by segmentation of 

the oceanic crust (Dewey 1971, see his figure 5), processes giving rise to a structural 

geometry similar to that proposed by Craig & Walton (1959). Figure 3 of Dewey’s 

1971 paper is a stratigraphical correlation chart within which the eight Southern 

Uplands columns form a time-stratigraphical series of the type that was to become 

familiar: each column showed the onset of turbidite sedimentation, conformably 

succeeding graptolitic mudstone, becoming progressively younger southward. A 

modern successor is shown in Figure 2 of this paper.  

 

Dewey’s interpretation foreshadowed the development of the full-blown accretionary 

prism model (Figure 5) through a series of papers by McKerrow, Leggett and co-

workers (Mitchell & McKerrow 1975; McKerrow et al. 1977; Leggett et al. 1979, 

1982, 1983). Another likely influence was the illustration of an essentially thrust 

geometry for at least part of the Southern Uplands by Fyfe & Weir (1976), although 

the significance of this paper, and a precursor interpretation by Toghill (1970), has not 

generally received the acknowledgement that it deserves. Fyfe & Weir’s structural 
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cross sections across the Ettrick Valley are reproduced as Figure 4b as a comparison 

to Peach & Horne’s (1899) cross-section of the same general area to the NE of 

Moffat, at the head of the Ettrick Water valley. In his referee’s report on this paper, 

Dr T. Needham made the pertinent observation that Fyfe & Weir’s cross-sections do 

not show a regular sequence of imbrication, instead hinting at extensional or strike-

slip reactivation. 

 

The idealised accretionary prism as envisaged by McKerrow et al. (1977) is shown in 

Figure 5a, with a more recent representation by Stone (1995) following as Figure 5b. 

McKerrow et al. show the prism developing in size with, by the Early to Middle 

Silurian, the emergence of a trench-slope break, labelled “Cockburnland”. The name 

had originally been coined (in memory of a deceased colleague) by Walton (1963) to 

describe a dominantly igneous landmass further north, which was thought to be the 

provenance of the Late Ordovician conglomerates found in the Northern Belt of the 

Southern Uplands. As applied by McKerrow et al., Cockburnland mostly comprised 

turbidite sandstone and was thought to be the provenance for Silurian conglomerates 

and sandstones deposited along the southern margin of the Midland Valley Terrane. 

This link was undermined by subsequent work (to be discussed later in this account) 

that demonstrated significant compositional differences between the Midland Valley 

rocks and their putative Southern Uplands source. Accordingly, the status of 

Cockburnland as an emergent landmass is now uncertain, but the growing 

accretionary prism is highly likely to have provided recycled sediment into the 

younger deposits of the Southern Uplands. At the largest scale, this involved the 

slumped sedimentary fill of trench slope basins as identified, for example, in the 

Coldingham area (Figure 1) by Leggett et al. (1982, p. 511). Cockburnland, as an 

emergent trench-slope break, was identified by Leggett et al. (1982, 1983) as a feature 

that could be broadly correlated with the modern analogue of the Mentawai Islands in 

the Sumatran fore-arc.  

 

Perhaps the most curious feature of the Southern Uplands accretionary prism stressed 

by Leggett et al. (1982) was that, from the geophysical evidence, it appeared to lie as 

an allochthonous unit above continental crust. Nevertheless, the basaltic substrate to 

the turbidite successions (which now forms part of the Crawford Group) would, in the 

context of the accretionary prism model, be regarded as vestiges of oceanic crust and 
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so its composition and geochemical characteristics should be compatible with such an 

origin. A number of studies have attempted to confirm the association. The results 

(summarised by Smith et al. 2001) have proved ambiguous, with conflicting reports 

of the basaltic rocks having ocean ridge (MORB), island arc or within-plate 

geochemistry. More definitively, the volcanic rocks forming the substantial Bail Hill 

Volcanic Group (Phillips et al. 1999) have been shown to be alkaline in character, 

ranging from alkali basalt to trachyandesite, with the whole-rock geochemical 

characteristics and enrichment patterns of oceanic, within-plate basalt. The Bail Hill 

Volcanic Group is the largest component of a mixed assemblage of tholeiitic and 

alkaline, oceanic within-plate lavas that are distributed through the Northern Belt of 

the Southern Uplands, in places intercalated with the turbidite sequences rather than 

underlying it. Oceanic within-plate volcanism was thus contemporaneous with the 

early development of the Southern Uplands accretionary complex, producing ocean 

island successions that were subsequently subducted and incorporated into the 

growing prism. 

 

The accretionary prism model is an elegant solution to the principal geological 

problems posed by the Southern Uplands Terrane, but when first proposed enough 

issues appeared unresolved to prevent its immediate and universal acceptance. A 

particular conundrum arose from different Southern Uplands tracts having different 

detrital grain assemblages accompanied by different palaeocurrent regimes, a 

phenomenon that had been known for some time (e.g Walton 1955), but which now 

seemed to have a particular bearing on the accretionary prism interpretation. Murphy 

& Hutton (1986) described microconglomerates from the Irish Silurian sector of the 

terrane, some apparently derived from the north and others from the south side of the 

depositional basin, yet all showing a similar, magmatic arc provenance. The proposed 

explanation envisaged closure of the Iapetus Ocean at the end of the Ordovician, with 

supra-subduction, Ordovician volcanism synchronously ceasing at both its northern 

and southern margins. Erosion of the arc complexes then fed similar sediment, from 

both the north and the south, into a Silurian successor basin lying above the line of 

ocean closure. Morris (1987) and Stone et al. (1987) noted, from Ireland and Scotland 

respectively, that within the Ordovician tracts abundant and fresh-looking andesitic 

grains characterised sandstones that appeared to have been derived from the south, i.e. 

from an oceanward direction. From that perspective the northern part of the Southern 
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Uplands, largely comprising the Ordovician succession, seemed to have been 

deposited in a back-arc environment rather than at an accretionary fore-arc.  

       

These challenges to the accretionary prism model, and the responses of its proponents, 

were dubbed “The Southern Uplands Controversy” by McKerrow (1987) who, in 

February 1986, had convened a Geological Society of London symposium to discuss 

the issues. Contributions to the symposium that were to become fundamental to the 

regional debate were provided by Leggett (1987) who championed the fore-arc 

accretionary prism model placing much weight on modern analogues, Morris (1987) 

who developed the back-arc interpretation for the Ordovician Northern Belt based on 

data from Ireland, and Stone et al (1987) who put forward an interpretation involving 

development of a back-arc to foreland basin thrust duplex. Although these different 

approaches were underpinned by a common theme – the assembly of the Southern 

Uplands Terrane, by whatever means, occurred at the northern, active margin of the 

Iapetus Ocean, where oceanic crust was lost by subduction – McKerrow (1987, p. 

735) acknowledged that “before any general consensus can be reached more field 

evidence is needed.”  

 

Initially, the next phase of field investigations moved further from a consensus rather 

than towards it. An alternative proposal by Armstrong et al. (1996) for the origin of 

the Ordovician Northern Belt was based on detailed biostratigraphy and correlation 

with the coeval Girvan succession of the Midland Valley Terrane. Armstrong et al. 

(1996) regarded the Northern Belt strata as having been deposited as prograding 

submarine fans at a subsiding and extending continental margin, effectively as the 

more distal equivalent of the Girvan succession although requiring a more varied 

provenance. Basic lava and chert intimately associated with the some of the Northern 

Belt sedimentary units were thought to be indicative of an attenuated rift environment. 

This interpretation placed Northern Belt sedimentation in an extensional fore-arc 

setting (relative to the established Midland Valley arc magmatism) and, the authors 

felt (Armstrong et al. 1996, Abstract), “confounds the accretionary prism model” for 

the Southern Uplands which would require a compressional regime. This may well 

have been a deliberately provocative overstatement, but further evidence for a 

continental margin (as opposed to oceanic) setting for Northern Belt sedimentation 

was provided by Owen et al. (1999) derived from the rare-earth geochemistry of the 
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basal cherts, which established that they were not wholly oceanic but had received a 

terrigenous input.  

 

The sequence of proposals and counter-proposas described above, and the increasing 

tempo of work in their aftermath, were discussed in authoritative detail by Kelling 

(2001) at a 1999 symposium celebrating the publication centenary of the seminal 

Peach & Horne, Geological Survey memoir. The other papers that were presented 

ranged across the geological spectrum of the Southern Uplands and illustrated the 

diverse ways in which McKerrow’s appeal for more data had been met. There was 

still no unequivocal approval for the accretionary prism model, but it had clearly 

gained ground on the alternatives that involved Ordovician sedimentation and 

deformation in a back-arc basin environment. The general feeling was typified by 

Anderson (2001, p. 371) who concluded after a detailed review of structural 

interpretations: 

“While the two currently competing models, fore-arc accretionary prism and back-arc 

to foreland basin thrust duplex, both offer viable interpretations of current structural 

cross-sections, the essentially thin-skinned nature of the latter model demands 

assumptions which make it a less attractive explanation.” 

 

Anderson might well have added the third possibility for the origin of the Northern 

Belt that had been raised by Armstrong et al. (1996). This extensional fore-arc 

interpretation was then developed further by Armstrong & Owen (2001) as part of a 

comprehensive remodelling of terrane amalgamation across the paratectonic 

Caledonides of northern Britain, drawing support from correlations with 

Newfoundland. For the Southern Uplands, this remodelling involved the south-

directed thrust imbrication of the Northern Belt’s continental margin succession to 

override a continental block, named “Novantia” by Armstrong & Owen, which was 

thought by Kimbell & Stone (1995) to have peri-Gondwanan rather than Laurentian 

geophysical characteristics. In the Armstrong & Owen model, thrust imbrication was 

initiated by collision of an outboard arc terrane with the ocean-facing, southern 

margin of Novantia. The earlier collision of Novantia with the Midland Valley 

Terrane was thought to have driven obduction of the Ballantrae Complex before 

relaxation and subsidence allowed the spread of the Northern Belt submarine fans. 

Thereafter, following collision of the outboard arc and the southward thrusting of the 



 12

Ordovician tracts, the Silurian successions of the Southern Uplands built up as in a 

foreland basin thrust belt; there are similarities at this stage with the earlier, back-arc 

to foreland basin model of Stone et al. (1987). The Newfoundland correlations owed 

much to van Staal et al. (1998). 

 

So, at the end of the 20th century, a range of explanations were available for the 

origins of the Southern Uplands Terrane. The entire terrane had been proposed as an 

accretionary prism formed from the sedimentary cover of Iapetus oceanic crust as it 

was subducted beneath the margin of Laurentia (McKerrow et al. 1977, Leggett et al. 

1979); subduction operated continuously from the mid-Ordovician until the late 

Silurian, when the Iapetus Ocean closed. Alternatively, the northern (Ordovician and 

perhaps oldest Silurian) strata had been interpreted as the deposits of either a back arc 

basin (Morris 1987; Stone et al. 1987) or an extending and subsiding fore-arc 

(Armstrong et al. 1996). The southern (Silurian) strata had been interpreted as 

originating either in a foreland basin that migrated onto the Avalonian continental 

margin following mid-Silurian closure of the Iapetus Ocean (Stone et al., or in a 

successor basin lying above the Laurentia-Avalonia continental suture following end-

Ordovician closure of the Iapetus Ocean (Murphy & Hutton 1986). All of these 

interpretations then invoked various combinations of thrust and strike-slip tectonics to 

produce the terrane’s characteristic regional structure. Of the alternatives, the 

comprehensive accretionary prism model was undoubtedly the clear favourite but its 

definitive proof remained elusive. 

 

As the new millennium began, McKerrow’s (1987) request for more field data had 

certainly been answered, but in terms of the main issue – the  proof or otherwise of 

the accretionary prism model – there was still no clear resolution. Instead, the range of 

alternatives on offer had increased. The following sections of this review will explore 

the multidisciplinary ways in which that ‘main issue’ has been more recently 

addressed.  

 

Biostratigraphy 

 

Rushton (2001) reviewed progress in graptolite biostratigraphy since the days of 

Lapworth, Peach and Horne. Notable was the increasing refinement of biozonation, 
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which had resulted in a doubling of the recognised divisions relative to the twelve in 

Lapworth’s original (1878) scheme. The currently applied series of zones and sub-

zones has been established in a comprehensive review of the evidence by Zalasiewicz 

et al. (2009). In the Southern Uplands, the principal effect of the biostratigraphical 

refinement has been to allow the recognition of a more detailed arrangement of 

structural tracts, a process complemented by new fossil discoveries. For example, the 

Ashgill faunas of the Glenlee Formation, the southernmost of the Ordovician tracts 

(Figure 2), were only identified relatively recently (Floyd & Rushton 1993).  

 

The cross-strike, time-stratigraphic profiles now used to illustrate the Southern 

Uplands tract assemblage (Figure 2) show a much greater level of detail than was 

possible in the early expositions of the accretionary prism model by Leggett et al. 

(1979, 1982). Nevertheless, the same limitations are still imposed by the restricted 

nature of the faunas at any one locality. The cross-strike profile is determined by the 

youngest graptolite fauna obtained from the Moffat Shale Group, from beds 

immediately beneath the overlying turbidite sandstone, in each structural tract. It is 

always possible that the truly youngest fauna has been missed during collecting, or 

that the strata containing it have been tectonically excised; most Moffat Shale 

outcrops are indeed sheared and disrupted. However, the rare discoveries of 

graptolitic interbeds within the overlying turbidite successions have always proved to 

be indicative of either the same graptolite biozone as proved from the youngest part of 

the underlying Moffat Shale Group, or of the next youngest biozone.  In the southern 

part of the terrane, Moffat Shale is not seen to underlie much of the Hawick Group or 

the Riccarton Group, and for these divisions the biostratigraphical control is limited to 

fossiliferous interbeds. These are rare and so provide only sparse biostratigraphical 

control in the Hawick Group, but are relatively abundant in the Riccarton Group for 

which the control is, accordingly, very good.   

 

From the improved biostratigraphical resolution, along-strike variations have also 

become more apparent, so that the profiles across different parts of the Southern 

Uplands are now seen to be significantly different (e.g. Stone et al. 2012, their figures 

15 a & b). The biostratigraphical control of the along-strike variation has important 

structural implications, with individual tracts seen to be excised or repeated, and in 

some cases appearing to be out-of-sequence. Because the terrane built up as a 
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southward-propagating and mostly forward-breaking imbricate thrust belt, the initial 

deformation in each tract followed not long after the deposition of the strata involved. 

Hence the deformation was systematically diachronous (e.g. Barnes et al. 1989),and 

changes in the deformational regime can be tracked through time by the graptolite 

biostratigraphy of the affected rocks.  

 

Refinement of the graptolite biostratigraphy seems likely to continue. In terms of the 

British Lower Palaeozoic, many of the recent advances have arisen from research in 

Wales (Zalasiewicz et al. 2009) but work also continues in the Southern Uplands as 

exemplified by a thematic set of papers – Scottish graptolite biostratigraphy – 

published in 2003 in the Scottish Journal of Geology. In their introduction to the 

thematic set, Stone et al. (2003a, p. 14) stress that “[a]n understanding of the Southern 

Uplands accretionary thrust terrane has been achieved only by the integration of work 

in a range of geological disciplines. Graptolite biostratigraphy remains an essential 

component of that continuing analysis.”    

 

Conodonts were used by Armstrong et al. (1996) to supplement the graptolite 

biostratigraphy of the Northern Belt and to strengthen correlation with the coeval 

Midland Valley successions, an important aspect of their fore-arc model. Their 

interpretation, and the broader regional synthesis by Armstrong & Owen (2001), was 

also aided by correlations of the shelly fauna, notably brachiopods. Within the 

Northern Belt’s Kirkcolm Formation the shelly fauna, comprising trilobites, 

gastropods and corals as well as the brachiopods, is not in situ but is instead, at 

several localities to the NE of Abington, contained within mass flow deposits 

interbedded with the sandstone succession (Clarkson et al. 1992). The fauna is of 

mid-Caradoc age, equivalent in age to in situ shelly faunas known from the southern 

margin of the Midland Valley Terrane at Girvan (Scotland) and Pomeroy (Northern 

Ireland). Despite its relative proximity to Girvan, the Kirkcolm Formation fauna 

compares most closely to that of Pomeroy, a correlation established in particular by an 

assessment of the brachiopods by Candela & Harper (2010) who identified 40 

different taxa from the Kirkcolm Formation mass-flow deposits. The conclusion 

drawn was that whilst moderate sinistral displacement of up to a few hundred 

kilometres along the Southern Upland Fault was quite likely, earlier speculation of 

very much greater sinistral movement (e.g. Elders 1987) could be discounted.     
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In the future, radiolaria may offer some additional biostratigraphic benefit in the 

Southern Uplands and the results of exploratory work on cherts have been reported by 

Danelian & Clarkson (1998) and Danelian & Floyd (2001). However, the 

biostratigraphy of Lower Palaeozoic radiolaria is still, for the most part, poorly known 

and so progress in this area is likely to be slow.   

 

Lithostratigraphy and Provenance 

 

The oldest rocks known from the Southern Uplands Terrane are the mid-Ordovician, 

Arenig and Llanvirn mudstones, cherts and basaltic lavas of the Crawford Group. 

They represent the oceanic substrate on which the deep-marine, black and grey 

mudstones of the Moffat Shale Group were deposited. The thick, Caradoc to Wenlock 

turbidite successions that succeed the Moffat Shale are mostly submarine fan deposits 

with the variable sedimentological characteristics of channels, depositional sheet 

flows and lobes, overbank deposits and levee complexes; mass flow conglomerates 

and hemipelagite interbeds are present locally: much detail was provided by Leggett 

(1980). Stratigraphical variation in the dominant lithofacies, both vertically and 

lateral, is demonstrated by changes in individual bed thickness and by the range of 

typical turbidite features that are present: sole structures on bed bases, grading, and 

cross- and planar-lamination. These features commonly combine into classical 

Bouma-type sequences but, whilst the assemblages are locally distinctive, it is not 

possible to erect a regional lithostratigraphy that relies on them exclusively. Instead, 

the sedimentology is used to supplement the outcrop pattern of the Moffat Shale 

Group that defines the tract boundary faults. The primary importance of the strike-

parallel faults as stratigraphical boundaries has commonly led to the Southern 

Uplands divisions being referred to as tectonostratigraphic units. 

 

However the stratigraphy is defined, one of the more remarkable aspects of the 

Southern Uplands Terrane is the along-strike continuity of the component structural 

tracts of steeply dipping, turbidite lithofacies beds. Some individual tracts can be 

traced across the full width of the Southern Uplands, from the North Sea coast to the 

Rhins of Galloway, and thence into the Down-Longford inlier in Ireland, despite 

cross-strike widths that are generally less than 10 km and may be as little as 2 or 3 
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km. Apart from the age difference between adjacent tracts, as shown in Figure 2, 

some of them are dominated by sandstones with a distinctive population of detrital 

grains. This effect is particularly marked in the Ordovician Northern Belt, where 

sandstones rich in fresh-looking andesitic grains (both mafic mineral and igneous rock 

fragments) formed the Galdenoch, Portpatrick and Glenlee formations, in contrast to 

the more mature compositions of the Kirkcolm and Shinnel formations. Hence formal 

lithostratigraphy was first applied to the Ordovician succession, as summarised and 

rationalised by Floyd (1996): the Galdenoch and Kirkcolm formations formed the 

bulk of the Barrhill Group, the Portpatrick, Shinnel and Glenlee formations formed 

the bulk of the Scaur Group, both groups (together with the more northerly Tappins 

Group) made up the Leadhills Supergroup (Figures 1 & 2). Lithostratigraphical 

discrimination was aided by measurement of magnetic susceptibility, the andesitic-

rich sandstones showing much higher values than the more mature sandstones (Floyd 

& Trench 1989).  Thereafter, as more detail of the Silurian succession (Gala, Hawick 

and Riccarton groups) became known Floyd (2001) was able to extend a formal 

lithostratigraphy across the whole terrane.  

 

Since the regional syntheses of Floyd (1996, 2001) an additional group comprising 

five formations has been established in the north-eastern part of the Southern Uplands 

(Figure 1a). This division, the Ettrick Group, was described by Barnes & Stone (in 

Stone et al. 2012) but was first utilised for the British Geological Survey (2009) 1:50k 

map sheets for the Moffat and Ettrick districts (Scotland sheets 16W & 16E). Its 

introduction helped resolve the long-standing interpretational difficulty posed by the 

regional relationship between the Gala and Hawick groups. In the western part of the 

Southern Uplands the Laurieston Fault forms a relatively well-defined boundary 

between them (Figure 1), but eastwards the distinction is less clear and is further 

complicated by additional structural imbrication which has the effect of progressively 

broadening the Llandovery outcrop (e.g. Akhurst et al. 2001). The traditional solution 

has been to place the Gala-Hawick boundary at the northern limit of carbonate-rich 

sandstones thought characteristic of the Hawick Group (e.g. Floyd 2001). By default, 

the rocks to the north of this line were assigned to the Gala Group, but an early 

assessment of the British Geological Survey’s G-Base regional geochemical (stream 

sediment) dataset for Southern Scotland (BGS 1993) had identified the Moffat Valley 

Fault (Figure 1) as a major compositional boundary with an abrupt change across it in 
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Rb/Sr ratio as a key feature amongst several steep element distribution gradients 

coincident with the fault (Stone et al. 1993). The strata contained between the 

Laurieston Fault and the Moffat Valley Fault were largely those forming the 

eastward-broadening imbricate zone and as such might not have been directly 

represented farther west, though correlations have been suggested (Figure 2).  

 

Stone & Evans (2001) referred the strata between the Laurieston and Moffat Valley 

faults to the Buckholm Formation, adopting lithostratigraphy proposed farther east in 

the Gala Water area by Kassi & Weir (1993); older literature had related these strata 

to a Garnetiferous Group (Walton 1955) although the boundaries are not everywhere 

consistent. With Rb/Sr ratios similar to those of the Hawick Group rather than the 

Gala Group, but without the Hawick Group’s characteristic high carbonate content, 

the Buckholm Formation was potentially transitional between the two established 

groups. The more recent work in the Moffat and Ettrick districts resulted in the 

formalisation of the lithostratigraphy, with the ‘transitional’ strata assigned to four 

formations of the newly-defined Ettrick Group based on detailed sedimentology and 

whole-rock geochemistry (Figure 6) (Barnes & Stone in Stone et al. 2012). Though 

largely accommodating strata that had previously been assigned to the Gala Group, at 

its southern margin some strata are incorporated in the Ettrick Group that had 

traditionally been placed within the Hawick Group.   

 

Delineation of the Ettrick Group was assisted by an assessment of the G-Base stream 

sediment geochemistry (Stone & McMillan 2013), but the regional aspects of this database 

have also been applied to the Southern Uplands more generally. Stone et al. (1999, 2004) 

identified two element assemblages as being of particular value in tracking geologically-

controlled changes in sediment composition: the basic-ultrabasic elements (Cr-Ni-Mg-V-

Ti), and the feldspar association (Rb-Sr-K-Ba), both of which had potential as 

lithostratigraphical mapping surrogates. Breward et al. (2011) were able to extend the 

element distribution patterns seen in the Southern Uplands westward into the Down-

Longford inlier, Ireland, utilising similar geochemical data acquired there as part of the 

TELLUS project. However, the direct spatial associations between the patterns of element 

distribution in stream sediment and changes in the underlying bedrock outcrop do not 

necessarily mean that the two media have the same compositions. The significances of 

relative element enhancement or depletion from rock to sediment have been explored by 
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Stone et al. (2003b, 2006) and have implications for the variation in host minerals, as 

detrital sandstone grains, that may originally have contained the elements in question.   

  

An early application of whole rock geochemistry by Duller & Floyd (1995) 

characterised different assemblages of cratonic- and volcanic-derived sandstones. The 

series of box-plots shown in Figure 7a is one example of geochemical variation 

derived by Barnes (2008) from the Duller & Floyd database. It is intriguing that in 

this and other examples the geochemical abundances do not precisely match what 

might have been predicted from the sandstone petrography. It would seem that much 

of the whole-rock geochemical variation is cryptic, being embodied within the 

abundant matrix of the wacke-type sandstones. This conclusion would also have 

implications for interpretation of the regional geochemical data. It should also be 

noted that, in Figure 7a, a ‘G9’ tract (= Gala Group tract 9) has similar MgO 

abundance to the adjacent Gala Group tracts 7 and 8. In defining a ‘Gala 9’ tract, 

Barnes (2008) followed the nomenclature applied on the Rhins of Galloway by 

McCurry & Stone (1996) to a tract that had previously been regarded (Stone 1995) as 

a correlative of the Cairnharrow Formation (Hawick Group). Compositional data such 

as those illustrated provoked the change, and has further led to the suggestion that 

‘Gala 9’ on the Rhins of Galloway may correlate with part of the Ettrick Group 

(Barnes & Stone in Stone et al. 2012). 

 

Utilising REE geochemistry, Williams et al. (1996) focussed on the volcaniclastic 

contribution to the Southern Uplands sandstones. They reported results that 

emphasised the apparently juvenile nature of the volcanic detritus at the time of 

deposition, a character shown most distinctly by the lack of a negative, chondrite-

normalised Eu anomaly. Tracking that juvenile influence through time was attempted 

by Stone & Evans (2001) using Nd isotope data (Figure 7b), with results confirming 

the Ordovician provenance bipolarity, mature cratonic versus juvenile volcanic, but 

thereafter suggesting a progressive arc unroofing trend during deposition of the Gala 

Group, with a resurgence of a juvenile input during deposition of the Hawick and 

Riccarton groups. It may be significant that sandstone samples that would later be 

assigned to the Ettrick Group were marked by the reappearance of juvenile material 

superimposed on the mature end of the arc unroofing series defined by Gala Group 

data points (Figure 7b).  
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These various geochemical investigations had begun to focus on one of the 

fundamental points at issue between the different evolutionary models for the 

Southern Uplands Terrane: the provenance of the volcanic detritus characteristic of 

some Ordovician and older Silurian tracts. Was the volcanic provenance to the north 

of a fore-arc accretionary prism (McKerrow et al. 1977; Leggett et al. 1979), or was it 

to the south of a back-arc depositional basin (Morris 1987; Stone et al. 1987). Mineral 

chemistry showed that the volcanic material in the volcaniclastic formations was 

mostly derived from calc-alkaline to transitional calc-alkaline to tholeiitic sources 

(Styles et al. 1989, 1995) that could be accommodated within both models. However, 

as more palaeocurrent data were accumulated it became clear that for most formations 

the directions indicated were quite variable (e.g. Stone 1995, figures 12, 15 and 17) 

and could be explained by deviation of depositional fans into a basin-axial, NE or SW 

trend, even if the original source was the Laurentian continental margin to the NW. 

For most of the volcaniclastic formations this undermined the argument that a 

southern volcanic arc was necessary to explain the palaeocurrent and compositional 

patterns. The one exception was the Portpatrick Formation, the most extensive of the 

Ordovician volcanic-rich divisions, for which a fairly consistent pattern emerged of 

derivation from the south or SW quadrant.  

 

But even accepting a southern arc source for the Portpatrick Formation, was it active 

contemporaneously with the Late Ordovician sedimentation, as required by the back-

arc model?  When the age of the Portpatrick Formation volcanic detritus was 

established, that proved not to be the case. Ar-Ar work by Kelley & Bluck (1989) on 

rhyolite and andesite clasts suggested that the volcanic source rocks had an age range 

of about 560-530 Ma and so were Late Neoproterozoic to Early Cambrian rather than 

Late Ordovician. Kelley and Bluck’s results were relatively imprecise, with large 

errors, but were subsequently vindicated by U-Pb dating of detrital zircons by Phillips 

et al. (2003) who defined zircon population peaks in the Portpatrick Formation 

sandstone at around 557 Ma, 613 Ma and 1043 Ma. These dates confirmed that 

the volcanic detritus was not derived from a Late Ordovician arc, but rather from a 

pre-existing Neoproterozoic to Early Cambrian arc which, Phillips et al. (2003) 

suggested, could be correlated with volcanism in Avalonian (providing a southern 

source) rather than in Laurentia.  
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Further evidence from detrital zircon populations was provided by Waldron et al. 

(2008, 2014). In the first of these papers data was presented from five of the 

lithostratigraphic divisions of the Leadhills Supergroup where, within sandstones 

from the Kirkcolm, Galdenoch, Glenwhargen and Shinnel and Glenlee formations an 

abundance of Archaean and Proterozoic zircons were related to potential sources 

within the Laurentian basement. Although no Portpatrick Formation sandstones were 

analysed, Waldron et al. (2008) were not convinced of the southerly, Avalonian origin 

for Neoproterozoic zircons that had been proposed by Phillips et al. (2003). Instead, 

Waldron et al. (2008) felt that the Neoproterozoic zircons could also be 

accommodated in a Laurentian provenance. Data in support of a Laurentian origin 

was subsequently presented by Waldron et al. (2014) in a wide-ranging study of 

detrital zircons from the trans-Iapetus zone in Britain, Ireland and Canada. Taken in 

conjunction with their earlier paper, Waldron et al. (2014) provided detrital zircon 

data from the full tectonostratigraphic range of the Southern Uplands Terrane 

including the Portpatrick Formation, although the Ettrick Group was not differentiated 

from the Gala Group. The results showed a consistent dominance of Mesoproterozoic 

zircons in all of the samples, whilst the proportion of Archaean zircon decreased into 

the younger rocks. Most samples also contained some Cambrian and/or Early 

Ordovician zircon grains thought to have originated from a combination of Laurentian 

margin, rift-related and volcanic arc magmatism, or from erosion of obducted 

ophiolite bodies such as the Ballantrae Complex. These younger zircons apart, 

Waldron et al. (2014) accommodated their results within an entirely Laurentian 

provenance, principally by a progressive change in source from the younger parts of 

the Dalradian succession to a combination of its older divisions and parts of the 

Moine Supergroup.   

 

Setting aside the volcaniclastic components, the zircon data of Waldron et al. (2008, 

2014) was seen as strongly supporting a broadly Dalradian provenance for much of 

the Southern Uplands ‘continental’ sediment.  

This had been favoured by Hutchison & Oliver (1998) on the basis of a close 

similarity between detrital garnet grains from Southern Uplands sandstones (mostly 

from the Corsewall (Tappins Group) and Kirkcolm formations) and ‘Barrovian’ 

metamorphic garnet from the Dalradian (Grampian Terrane). Conversely, an 
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assessment of the regional geochemical dataset by Stone et al. (1999) found little 

evidence to support a Dalradian provenance with, for example, the high Ti levels of 

the Dalradian not reflected across most of the Southern Uplands (the Kirkcolm 

Formation excepted). Debate continues as to whether erosion of Dalradian rocks 

provided the sediment for some Southern Uplands sandstones, or whether these were 

sourced in a separate Midland Valley Terrane. Kelley & Bluck (1989) reported Ar-Ar 

ages in the range 458 Ma to 502 Ma for detrital micas in sandstones from the 

Kirkcolm and Portpatrick formations. Although these ages were compatible with a 

derivation of the mica grains from the Dalradian, that possibility was discounted by 

Kelley and Bluck, largely on palaeogeographical grounds. Their preference was for a 

provenance sited within the Midland Valley Terrane, where Early Palaeozoic arc 

magmatism was thought to have been responsible for the uplift of continental 

basement, allowing its rapid erosion. Bluck (2001) reviewed mica ages then available 

for the Southern Uplands and the Dalradian and emphasised that the modal age of 

dates from the detrital micas in the former terrane was some 30 Ma earlier than the 

modal age from the Dalradian.  Radiometric dating of a granite boulder from a 

Corsewall Formation (Tappins Group) conglomerate (U-Pb monazite: 474±2 Ma) was 

also cited by Bluck et al. (2006) as evidence for a ‘Midland Valley arc’ provenance 

for the Southern Uplands sediment, with the palaeogeographical objections to a 

Dalradian provenance reiterated. Conversely, the Dalradian provenance for Northern 

Belt sandstones received strong support from a detrital heavy mineral study by Mange 

et al. (2005) that demonstrated the progressive unroofing and erosion of a Barrovian-

type metamorphic complex, though unusual components in the Portpatrick Formation 

again hinted at an Avalonian/Cadomian provenance.  

 

The Midland Valley situation was clarified by results obtained by Phillips et al. 

(2009) from a study of detrital zircons in sandstones occupying the Silurian inliers 

along the southern margin of that terrane. Phillips and his co-workers found a paucity 

of Archaean zircons and demonstrated a bimodal distribution of Mesoproterozoic (ca 

1000 Ma) and Early Ordovician (ca 475 Ma) ages that together ruled out a Dalradian 

provenance. If the Southern Uplands sediment had been derived from Dalradian 

sources within the Grampian Terrane, either it would have had to somehow bypass the 

Midland Valley Terrane, or those terranes had a very different spatial relationship to 

that currently seen. Phillips et al. (2009, see especially Figure 8 therein) speculated 
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that sequential sinistral strike-slip movements might have resolved this difficulty by 

juxtaposing different provenance areas and depositional centres at different times.  

 

Structure and deformational progression 

 

At the heart of Southern Uplands regional structure lies the stratigraphical paradox, 

wherein at outcrop most of the steeply inclined beds face northward so that the 

sequence becomes younger in that direction, yet the oldest strata are found in the 

north of the terrane and the youngest in the south. Various geometries of folding and 

faulting have been proposed as explanations, with the forerunners to the current, 

accretionary thrust model summarised by Anderson (2001). Structural summaries 

(and bibliographies) have also been provided by Barnes & Stone (1999), Oliver et al. 

(2002) and Stone et al. (2012).  

 

In terms of the accretionary prism model (and implicit in its rivals), a thrust complex 

developed above the northward-dipping subduction zone that carried Iapetus Ocean 

crust beneath the Laurentian continental margin. It was built by a series of southward-

propagating, imbricate thrusts that sequentially stripped the oceanic sedimentary 

cover from the descending plate and stacked-up the ensuing, fault-bounded tracts, 

each tract being inserted at the base of a stack of previously accreted tracts (Figure 5). 

The true picture is probably more complicated, with frontally accreted thrust units 

riding above one or more décollement levels below which underplated duplex 

structures developed (Figure 8).  

 

An underplating regime, as described by Sample & Moore (1987) from the Kodiak 

complex (Alaska), appears to be the most conducive environment for the accretion of 

the coherent tracts of strata that characterise the Southern Uplands. In many other 

accretionary environments there is considerable disruption of the accreting strata to 

produce an abundance of mélange, but this lithology is generally scarce in the 

Southern Uplands. Mélange or ‘mélange-like’ lithologies have been described by 

Kemp (1987) and Needham (1995) from the Hawick Group, and by Ogawa (1998) 

from the Tappins Group, but all would be more properly termed ‘broken formations’ 

and still represent only a very minor component of the overall accretionary 

assemblage. 
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Prior to the underplating proposals of Sample & Moore (1987), reasons for the 

scarcity of mélange were debated by Leggett et al. (1982). They cited work by Moore 

(1979) which had established that accretion of coherent units of strata was more likely 

when there was a low ratio of plate convergence rate to sediment influx; a high ratio 

favoured disruption and mélange formation. This situation – a low convergence rate 

coupled with a high sedimentation rate - would appear to have prevailed in the 

Southern Uplands prism where accretion was relatively long-lived and the sediment 

supply consistently abundant. It would have required at least 20 million years of 

oceanic subduction to incorporate the tracts now forming the Late Ordovician 

Leadhills Supergroup and the Early Silurian Gala Group, and perhaps another 10 

million years of ‘foreland basin convergence’ following closure of the ocean to 

incorporate the tracts of the Ettrick, Hawick and Riccarton groups. It has been widely 

assumed that its maximum, the Iapetus Ocean was at least 1 000 km wide, a figure 

supported by an area balancing assessment by Anderson (2001) that calculated a 

width in excess of 1 000 km for the Moffat Shale  depositional basin. Taking from 

these figures the approximation that 500 km of oceanic crust were subducted at the 

Laurentian margin whilst the Southern Uplands accretionary prism developed over 25 

million years, it gives a relatively slow subduction rate of about 2 cm/year, at the 

lower end of the 2 to 8 cm/year of convergence generally agreed for currently active 

subduction zones.  

 

The deformational sequence 

 

Whether involved in frontal accretion or in underplating, the original thrust faults 

would have advanced at a relatively low angle but, as the complex developed, were 

structurally rotated towards the vertical, as were the strata between them. This would 

have occurred progressively, with the older strata (in the north) steeply rotated whilst 

younger strata (in the south) remained at a shallow angle. Hence it is difficult to 

envisage the currently uniform arrangement of steeply dipping and locally overturned 

strata, consistently present across the entire width of the exposed accretionary 

complex, being created by the accretionary process alone. Much post-accretion 

shortening and rotation seems probable, as will be discussed below. At depth the 
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tract-bounding faults have been generally illustrated as listric, merging northwards 

into a major regional décollement; again the reality may well be more complicated.  

 

An early phase of deformation (D1) seen throughout the Southern Uplands is related 

to thrust propagation, hence the folds produced are diachronous, becoming younger 

southwards. Later phases of deformation are apparent locally, associated either with 

accommodation in the thrust hinterland commensurate with D1 deformation at the 

thrust front (and so likely to be equally diachronous as D1 but less systematically so) 

or with intermittent sinistral shear imposed across the entire belt but focused into 

major strike-parallel fault zones. These post-D1 deformation phases have been 

referred respectively to D2 (co-axial with the gently plunging D1 folds) and D3 

(sinistral, steeply plunging folds) following Barnes et al. (1989), but their relationship 

is not everywhere strictly sequential. 

 

The earliest accreted units that are still preserved form the Tappins Group (Figure 1). 

They show much evidence of stratal disruption; chaotic bedding is fairly widespread 

and a scaly cleavage is locally developed (Ogawa 1998). These features were thought 

by Merriman & Roberts (2001) to be characteristic of frontal accretion in and above a 

zone of décollement, and they also noted a cryptic disruption of the sedimentary 

microfabric by bedding-plane slip. Further south within the Southern Uplands, thrust 

units containing relatively coherent bedding and a more widely developed slaty 

cleavage probably passed beneath the décollement and accumulated as a series of 

underplated thrust duplexes. In the great majority of examples, the thin Moffat Shale 

Group succession acted as the décollement horizon, allowing the overlying turbidite 

successions to be stripped from the subducting basement of oceanic crust. Needham 

(2004) has investigated structures within the décollement zones and described 

different structural assemblages thought to have arisen from deformation at different 

depths within the accretionary complex. These may correspond to frontal accretion 

and underplating or to underplating at different structural levels.  

 

Within the Leadhills Supergroup tracts south of the Tappins Group and those forming 

the northern (older) part of the Gala Group, the accretion-related folds (D1) are mostly 

south-verging (commensurate with south-directed thrusting) with an axial planar 

cleavage; any superimposed D2 structures tend to be co-axial with the D1 folds and 
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may be associated with a crenulation cleavage and locally with minor north-directed 

thrust movement (e.g. Barnes et al. 1989; Needham 1993). Further south, there is a 

change in D1 structural style in the southernmost Gala Group that thence carries 

southward through the Ettrick and Hawick groups. The tract biostratigraphy shows the 

change in style to have occurred from the Late Llandovery onwards. The sequential 

southward younging of the structural tracts, established through the Leadhills 

Supergroup and the northern (older) part of the Gala Group, is replaced in the Ettrick 

Group by the repetition of narrow tracts all with very similar ages. Through the 

southernmost Gala Group tracts, increased complexity and asymmetry are apparent in 

the D1 fold pattern with, for example, north-verging fold and thrust tracts (McCurry & 

Anderson 1989; Holdsworth et al. 2002a) and the likelihood of out of sequence 

thrusting (Rushton et al. 1996; McMillan. 2002).  

 

In general, the Hawick Group tracts are more folded and are affected by a stronger 

cleavage than is apparent in the older tracts to the north, with a tendency for the 

cleavage to be clockwise transecting, up to 20° locally (Stringer & Treagus 1980; 

Anderson 1987). The plunge of the fold hinges may be highly variable and folds are 

downward-facing locally. This combination of structural features indicates that, from 

the mid-Llandovery onwards, a significant component of sinistral shear was 

intermittently present during the accretionary D1 deformation at the thrust front, and 

at the same time was probably responsible for the imposition of the steeply plunging 

D3 folds within the thrust hinterland. The domainal nature of this transpressive 

deformation has been stressed, most recently by Holdsworth et al. (2002b) who 

describe, from the Berwickshire coastal sections, its partitioning into strike-slip and 

contraction-dominated zones. The approximate temporal coincidence of this increase 

in transpression affecting the Hawick Group, with back-thrusting and out-of-sequence 

thrusting affecting the southernmost (youngest) Gala Group tracts, led to the 

suggestion by Rushton et al. (1996) that during the Late Llandovery the accretionary 

thrust belt had to accommodate to an obstacle to its forward propagation. This may 

have been an isolated crustal feature – Novantia of Armstrong & Owen (2001) or its 

precedents – or the process might have seen the effective closure of the Iapetus Ocean 

with the subsequent, youngest Llandovery to Wenlock turbidite successions (Hawick 

& Riccarton groups) deposited in a post-collisional basin. Of course, many other 

variables may also have been influential, perhaps a change in plate convergence 
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parameters or in sediment input rate. Whatever the cause, by the time of the Wenlock 

deposition of the Riccarton Group, the forward-breaking, sequential thrust pattern 

characteristic of the earlier phase of accretion appears to have been re-established 

(Kemp 1986).  

 

Overall, it seems likely that the Iapetus Ocean had closed by the Late Wenlock, with 

deformation of the Hawick-Riccarton successions within a foreland fold and thrust 

belt that migrating across the sutured remains of the Iapetus Ocean and then 

southward to over-ride the Avalonian continental margin. Ahead of the deformation 

front, sedimentary links suggest that by Wenlock times the foreland basin extended to 

the Isle of Man and into the south of the English Lake District (Kemp 1991, Kneller et 

al. 1993, McCaffrey & Kneller 1996; Morris et al. 1999). A particularly clear 

correlation is provided by a distinctive laminated hemipelagite facies seen in the Ross 

and Raeberry Castle formations (Hawick and Riccarton groups respectively) in the 

Southern Uplands, in the Brathay Formation (Windermere Supergroup) in the Lake 

District, and in the Niarbyl Formation (Dalby Group) in the Isle of Man. By Ludlow 

times, loading by the advancing Southern Uplands thrust belt had caused an 

acceleration of subsidence on the Avalonian margin, with deposition of a thick 

Ludlow turbidite sequence now preserved in the southern Lake District as the 

Coniston Group of the Windermere Supergroup. Thereafter convergence stalled and 

the post-Iapetus depocentre had stabilised and filled by the end of Přídolí times.  

 

The Southern Uplands accretionary complex appears not to have suffered any 

substantial deformation as a result of the Laurentia-Avalonia collision, which 

accordingly has been widely described as ‘soft’. One explanation offered for the lack 

of deformation is the possibility that final closure of the Iapetus Ocean, as modelled 

palaeogeographically, was largely effected by sinistral strike-slip tectonics (e.g. Soper 

et al. 1992b). The widespread evidence of fold-transecting cleavage patterns and vein 

arrays (e.g. Anderson 1987) demonstrates a degree of sinistral shear within the 

accretionary complex, as do the steeply-plunging D3 folds. But these are relatively 

small-scale structures, and evidence for sinistral shear on a larger scale has proved 

generally elusive. However, one potentially very significant larger-scale structure has 

been reported recently by Beamish et al. (2010) after analysis of a high-resolution, 

airborne conductivity survey (part of the TELLUS project) that proved spectacularly 
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successful in delineating the thin zones of Moffat Shale Group carbonaceous 

mudstone in the Down-Longford extension of the Southern Uplands Terrane. Near 

Banbridge, in County Down, the conductivity data suggested that unexposed (but 

near-surface) Moffat Shale Group inliers, and by association the strike-parallel, tract-

boundary faults, define a large sinistral strike-slip duplex. Such cryptic structures 

might also be present in Scotland, where conductivity data is not available.  

 

Despite the lack of deformation, and arguments in favour of strike-slip tectonics, there 

is some evidence at the northern margin of the accretionary complex, for its 

northward emplacement onto Laurentian crystalline basement. North-directed 

thrusting of the Girvan succession during the mid to late Silurian was demonstrated 

by Williams (1959) and incorporated into an overall regional structure portrayed by 

Needham & Knipe (1986) as a large-scale pop-up. In this model, the Iapetus Suture 

formed the forethrust, and the backthrust zone now manifest at Girvan was 

responsible for obducting the rear of the accretionary complex north-westward onto 

the Laurentian margin. It is tempting to speculate that considerable horizontal 

shortening of the accretionary complex would have been likely in such circumstances 

and may have been accommodated by the widespread rotation of bedding towards the 

vertical, an attitude hard to attain across the whole terrane only by accretionary 

activity. That said, it is actually difficult to envisage in detail any specific structural 

mechanism that could produce the unique tectonostratigraphical pattern and uniformly 

steep dips of the Southern Uplands Terrane.  

 

The last of the ‘Caledonian’ structural features imposed on the Southern Uplands, 

subsequent to any D3 reactivation of the strike-parallel faults, was a regional, 

conjugate set of cross-cutting strike-slip faults. The individual faults have mostly 

small displacements but are widespread and numerous (e.g. Anderson 1987; Stone 

1995); sinistral faults trend NNE-SSW whilst dextral faults trend NW-SE. The 

cumulative effect of these minor but multiple displacements may be responsible for 

the local variations in bedding strike seen in some parts of the terrane (Anderson 

2001). This fault pattern also played an important role in the post-Silurian tectonic 

history of the Southern Uplands Terrane by defining the marginal orientations of 

Devonian and Permo-Carboniferous graben and half-graben basins.      

  



 28

Moniaive Shear Zone 

 
A major, regional product of strike-parallel, sinistral transpression is the Moniaive 

Shear Zone (MSZ), which occupies the northern margin of the Gala Group tract 

assemblage in the central part of the Southern Uplands (Figure 1b). It is a zone of high 

strain, up to 5 km wide, that has been recognised over a strike length of c.100 km 

(Phillips et al. 1995); it continues westward across Ireland as the Slieve Glah Shear 

Zone. In the Southern Uplands, along most of its length the MSZ is truncated abruptly 

to the north-west by the Orlock Bridge Fault but dies out southward within the 

northern tract of the Gala Group. The exception is in the north-east, where the shear 

zone diverts southwards, away from the Orlock Bridge Fault, before dying out (Figure 

1b). It is characterised by the intermittent development of a pervasive foliation 

accompanied locally by a strong linear component. The shear fabric is commonly sub-

parallel to the relatively weaker D1 cleavage and transposes all original structure. 

Strain within the shear zone is very variable but a variety of structural indicators 

consistently show a sinistral sense of shear. The timing of final shear zone 

development can be established from relationships in the thermal metamorphic 

aureole of the Early Devonian Cairnsmore of Fleet Pluton. There, cordierite 

porphyroblasts are deformed by the shear zone foliation, but the foliation is in turn 

overprinted by biotite hornfelsing and later stages of the thermal metamorphism. 

These relationships closely constrain the timing of final development for the 

Moniaive Shear Zone to around 395 Ma (Evans, Appendix 7 in Barnes 2008). Hence 

the MSZ could have been active during the Acadian deformational event, dated from 

Northern England at about 397 Ma (e.g. Merriman et al. 1995).  

 

It is likely that the Moniaive Shear Zone is a composite feature, representing 

progressive but intermittent deformation over a long time period from its initiation 

during D1 (accretionary) deformation in the Early Silurian until the possibly Acadian 

effects in the Early to Middle Devonian. Despite the possible long duration of 

deformation there are no grounds for assuming very large lateral displacement from 

evidence in Scotland. Substantial movement of several hundred kilomtres has been 

proposed for the Slieve Glah Shear Zone, along-strike to the west of the MSZ in 

Ireland (Anderson & Oliver 1986) but in Scotland, across the MSZ and the adjacent, 

tract-bounding Orlock Bridge Fault there is no greater biostratigraphical break than is 



 29

seen across the other tract-bounding faults of the Southern Uplands. However, the 

MSZ does lie above a deep crustal discontinuity (to be discussed below) that may 

have focused movement during and after the collision of Laurentia and Avalonia, 

including Acadian reactivation. 

 

Metamorphism and thermal history 

 

The Southern Uplands strata were subjected to low grades of metamorphism during 

development of the accretionary complex and its subsequent burial beneath an 

unconformable covering of younger strata. The relationships seen are most readily 

explained if a depth-related (burial) pattern of metamorphism was imposed on strata 

that were already steeply inclined. Grades defined by the crystal thicknesses of white 

mica (illite crystallinity) in mudstone (Merriman & Roberts 2001) range from the 

deep diagenetic zone to the epizone. The prehnite-pumpellyite facies (approximately 

equivalent to the anchizone) can be proved fairly widely, especially in volcaniclastic 

sandstones (e.g. Oliver et al. 1984; Kemp et al. 1985). Only locally does the grade 

rise to epizone, and mostly that is either in the vicinity of intrusions or where cleavage 

is unusually well developed. 

 

Assuming low to moderate heat-flow (<25°C), the depth of burial of the Southern 

Uplands strata would have ranged from about 6 or 7 km, for those rocks now in the 

deep diagenetic zone, up to about 13 km for some of the epizonal rocks (Figure 9). 

Some of this burial depth would have arisen from the likely post-accretionary cover of 

Devonian sediment but this alone would not have resulted in the metamorphic 

relationships now preserved. Most significantly, there is no consistent pattern of 

increasing grade into older strata, which would be expected in normal sedimentary 

burial, and instead, some of the highest grades (though still mostly anchizonal) are 

found in the Hawick Group. In a number of cases the metamorphic grade increases 

sequentially into younger tracts. If the succession had initially acquired a pattern of 

normal burial metamorphism whereby grade increases into older strata, and had 

subsequently been imbricated and rotated, older strata would still be expected to show 

higher grades than younger strata; this is demonstrably not the case. As an additional 

complication, in places the grade changes abruptly along strike at major cross faults, 

with lower grade on the downthrow side. These relationships are most readily 
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explained if a depth-related pattern of metamorphism was imposed on strata that were 

already steeply inclined. This would have been achieved after their incorporation in 

the accretionary complex. Abrupt changes in grade across some of the tract-boundary 

faults probably arose through post-metamorphic reactivation of those faults.  

 

To explain the geometry of the metamorphic pattern found in the Southern Uplands 

thrust complex, Merriman & Roberts (2001) explored the consequences of two levels 

of accretion, separated by a zone of décollement (Figure 8a). In this they were 

influenced by the analogy of the Kodiak accretionary complex, as described by 

Sample & Moore (1987), whose model is reproduced for comparison in Figure 8b. 

Southern Uplands strata accreted to the toe of the prism were stacked above the 

décollement and were probably metamorphosed only in the late diagenetic zone and 

with only a weak development of the D1 cleavage. Below the décollement, in a region 

of underplating, strata were accreted in a series of duplexes, were metamorphosed 

typically in the anchizone, and show a moderate to well-developed slaty cleavage. At 

both levels, coherent, thrust-enclosed tracts of strata were rotated and buried to 

produce a syn-D1, depth-dependent pattern of approximately horizontal metamorphic 

zones that intersect moderately to steeply dipping strata. Present-day moderate dips on 

some zonal boundary surfaces confirm the post-accretion rotation suggested by the 

uniformly steep bedding dips (Merriman & Roberts 2001). Thereafter, intermittent 

Devonian through to Permian uplift and extension reactivated the then-near-vertical 

tract boundary faults to juxtapose different levels of the metamorphic sequence. The 

greatest displacement is seen along parts of the Orlock Bridge Fault, where 

Ordovician rocks in the Late Diagenetic Zone are juxtaposed against epizonal Silurian 

rocks in the Moniaive Shear Zone (Figure 9). Even allowing for the effects of tectonic 

shearing, downthrow to the north may have been as much as 4 km. However, this 

effect also highlights an outstanding issue arising from the metamorphic 

interpretations. There would have been movement on any décollement plane within 

the accretionary prism, such that an age difference would develop between the strata 

accreted above and below. Yet even at the Orlock Bridge Fault there is no disruption 

of the biostratigraphic relationships between the tracts, which maintain a pattern of 

southward younging by small increments despite the abrupt changes in metamorphic 

grade.  
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The very small crystal size and chemical-crystal structure of clay minerals makes 

them sensitive to the differences in basin thermal histories that characterise different 

geotectonic settings (Merriman 2002 and references therein). One dimension of the 

crystal cell structure of the illite-phengite-muscovite clay mineral series, known as the 

b unit cell dimension and measurable by x-ray diffraction, was linked by Guidotti & 

Sassi (1986) to pressure-temperature conditions, so providing a means of assessing 

the thermal conditions of low-grade metamorphism. This afforded to Stone & 

Merriman (2004) a means of testing the relative merits of the back arc (extensional) 

and fore-arc (convergent) depositional basin settings inherent in the different tectonic 

models for the terrane. A relatively high heat flow would be expected in the 

extensional setting, a much lower heat flow in the compressional setting, with the clay 

mineral structures formed therein under low-grade metamorphic conditions varying 

accordingly. 

 

In his review of mudrock clay mineral assemblages in the British paratectonic 

Caledonides, Merriman (2002) had shown that the geotectonic setting of Early 

Palaeozoic basins strongly influenced clay reactions in responses to diagenesis and 

low-grade metamorphism. The result was a broader range of clay minerals in the 

extensional basins of Wales, the northern Lake District (Skiddaw Group) and the Isle 

of Man (Manx Group) when compared to the convergent basin of the southern Lake 

District (Windermere Supergroup). Southern Uplands data matched that for the 

convergent basin of the southern Lake District and, importantly, showed no variation 

across the width of the accretionary complex. This made unlikely any progression 

from back arc (extensional) to fore-arc (convergent) basin settings across the Southern 

Uplands. Stone & Merriman (2004) extended the comparison to the b cell dimensions 

with results (Figure 10) that they felt effectively eliminated any possibility of an 

initially extensional, back-arc setting for the Northern Belt of the Southern Uplands, 

the model proposed by Morris (1987) and Stone et al. (1987). The convergent, 

accretionary prism model passes the ‘thermal history test’, as does the foreland basin 

interpretation of Stone et al. for the southern part of the thrust complex, but there 

would be little effective differences between that and the leading edge of the 

accretionary prism migrating onto the Avalonian continental margin, and developing 

thereafter as a foreland fold and thrust belt. 

 



 32

The model for the Southern Uplands Northern Belt proposed by Armstrong et al. 

(1996), which envisaged its deposition within an extensional basin formed on the 

Laurentian continental margin, also fails the ‘thermal history test’. Although the 

proposed basin developed above thinned continental crust, the necessary eruption 

within it of volcanic units such as the Downan Point Lava Formation (the 

northernmost tract of the Tappins Group adjacent to the Ballantrae Complex) and the 

Bail Hill Volcanic Group (Figure 1a) would argue strongly for an elevated heat flow 

in an extensional setting. Instead, the ‘thermal history test’ indicates a low geothermal 

gradient in a compressional setting. Such a setting is compatible with the accretionary 

prism model, in which the volcanic edifices are seen as oceanic features that arrive at 

the subduction trench, extinct and cooled, there to be incorporated into the thrust 

complex under compressional conditions and with low thermal gradient.   

 

What lies beneath? 

 

Given its origins at a continental-oceanic plate boundary and subsequent 

incorporation into a plate collision zone the Southern Uplands Terrane is inevitably 

allochthonous, with two lines of evidence suggesting that it is now underlain by 

crystalline, continental crust. The nature of that crust might be illustrated by the 

xenoliths contained in post-collision dykes and volcanic vents, whilst regional 

geophysical data are most readily explicable in terms of a continental-type basement.  

 
A study of xenoliths contained in Carboniferous volcanic rocks led Upton et al. 

(1983) to infer that the Southern Uplands were underlain by a granulite-facies, 

feldspathic basement. Xenoliths have also been recovered from the widespread 

lamprophre dykes that were intruded during the Early Devonian. Floyd & Phillips 

(1998) and Barnes (2008) report variably foliated dioritic and granodioritic xenoliths 

in dykes intruded into the Gala and Hawick groups in Galloway. Given the likely 

deep source of lamprophyre dykes, these xenoliths could well have been derived from  

continental crust underlying the accretionary complex. Farther to the south-west, in 

the extension of the Southern Uplands Terrane into Northern Ireland, Anderson & 

Oliver (1996) have interpreted xenoliths of mylonitised andesitic rock as having been 

derived from the partly subducted Avalonian plate. They suggest a source akin to the 

Borrowdale Volcanic Group of the English Lake District which, by Early Devonian 
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times, had been over-ridden by the advancing Southern Uplands thrust belt. Though 

none of these suggestions can be definitively verified, they do support the 

allochthoneity of the Southern Uplands Terrane.  

 

From pioneering seismic interpretations (Bamford et al. 1977; Hall et al. 1983) it 

became clear that not only was crystalline basement present, but that it might be at 

unexpectedly shallow depths of only a few kilometres. A counter-proposal, that the 

seismic data might be explained by an increase at depth in the metamorphic grade of 

the accretionary complex sedimentary rocks (Oliver & McKerrow 1984) cannot be 

entirely discounted but is not generally favoured. A number of seismic lines have now 

traversed the Iapetus Suture Zone and have generally been interpreted in terms of a 

north-west-dipping, reflective zone projecting to the surface close to the northern 

coast of the Isle of Man and thence striking north-east beneath northern England. 

When the seismic results are integrated with regional interpretations of gravity and 

magnetic data a rather more complicated picture emerges in which potentially 

Avalonian-type crust is caught up in a compound suture zone that extends well to the 

north beneath the Southern Uplands Terrane.  

 

This situation is encapsulated in the interpretation of the long wavelength magnetic 

anomaly over SW Scotland known as the ‘Galloway High’ and shown in Figure 11, 

after Kimbell & Stone (1995; cf. British Geological Survey 2006). Relatively 

magnetic continental crust beneath the Southern Upland Terrane and the Lake District 

Terrane of northern England is separated by a zone of less magnetic crust interpreted 

as sedimentary rock of Avalonian affinity carried to deep structural levels within the 

Iapetus Suture Zone. The northern margin of the Southern Uplands’ magnetic 

basement coincides, at depth, with the surface trace of the Moniaive Shear Zone 

(Figure 1b). Kimbell & Stone acknowledged that the data could also be explained by 

strong relief on the deep magnetic basement and, indeed, the earlier seismic 

interpretations modelled such basement relief. However the ‘steps’ proposed on 

seismic grounds were not consistent, and did not match those required by 

interpretations of the gravity and magnetic data. In particular, they did not provide a 

structural association with the Moniaive Shear Zone, which was regarded as a high-

level effect of the reactivation of the deep basement structure. 
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Accepting an association between the MSZ and a deep basement discontinuity, the ca 

395 Ma (broadly Acadian), final phase of sinistral shear would apply equally to both. 

Its coincidence with the intrusion of the granitic plutons of SW Scotland has been 

related to a regional tectonic regime of transtension in the Early Devonian (Soper & 

Woodcock 2003; Brown et al. 2008) and the significance of the MSZ (and so by 

implication across the deep structural discontinuity) within this regional regime is 

emphasised by the significant differences in pluton age and composition that have 

been noted across it (Thirlwall 1988; Stone et al. 1997). The closest spatial 

association between the deep and surface features occurs in the deepest structural 

levels exposed in the Galloway Permo-Carboniferous horst, a composite massif 

underpinned by the Galloway plutons (Stone et al. 1995). Further to the NE the 

relationship is not so direct. There, the location and shape of the unexposed but 

geophysically modelled, compound Tweeddale granitic pluton (Lagios & Hipkin 

1979; Stone et al. 1997) are in close spatial association with the surface traces of the 

Orlock Bridge and Moffat Valley faults (Figure 1). The top surface of the pluton is 

modelled as lying about 2 - 3 km below ground level, and some fault control on the 

position of intrusion seems probable. In addition, where it approaches the pluton the 

MSZ narrows and diverts southwards away from the Orlock Bridge Fault (Figure 1b), 

providing further evidence for interaction of shearing either with the pluton or with its 

intrusion process. 

 

With the possibility that both intrusion at Tweeddale and regional sinistral shear were 

polyphase, the overall relationship of shearing to intrusion remains uncertain. 

However, it does seem clear that emplacement of the Southern Uplands thrust 

complex as an allochthon onto continental basement was completed by the Early 

Devonian. If all of the sinistral shear recorded in the MSZ was related to reactivation 

along the deep basement discontinuity, then emplacement of the allochthon (or at 

least its northern sector) would need to have been completed by the mid-Silurian. This 

time-scale would be more readily achieved if the southern part of the Southern 

Uplands thrust complex was developed in a foreland basin context above Avalonian 

continental crust following ‘soft’ closure of the Iapetus Ocean.     

 

Kimbell & Stone (1995) speculated that the magnetic basement unit beneath the 

Southern Uplands might represent the ‘missing’ arc terrane inferred from provenance 
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studies and inherent in the back-arc interpretation of the Northern Belt. This was a 

valid proposal at the time, although even then Kimbell & Stone preferred the 

alternative whereby the Southern Uplands magnetic basement unit was a rifted 

fragment of the Avalonian margin caught up in the hanging wall of the Iapetus Suture. 

Subsequently, Armstrong & Owen (2001) identified the magnetic unit with their 

Novantia arc terrane, as detailed previously. If the xenoliths described previously do 

indeed represent Southern Uplands ‘basement’, the location of their host dykes within 

the Gala and Hawick groups, and to the south of the Orlock Bridge Fault, would 

suggest that they were derived from the magnetic basement unit, perhaps Novantia. 

 

Concluding discussion: consensus and outstanding issues 

 

The current consensus views the Southern Uplands Terrane as having originated, from 

the late Ordovician to the mid-Silurian, as an accretionary thrust prism at the active, 

northern margin of the Iapetus Ocean during the subduction of that ocean’s crust 

beneath Laurentian continental crust. The later stages of accretion probably took place 

in a foreland basin setting, following effective closure of the Iapetus Ocean, as the 

leading edge of the prism migrated onto the Avalonian continental margin. That near-

consensus nevertheless conceals a range of uncertainties, not least of which is the 

major space problem arising from the current juxtaposition of the Southern Uplands 

and Midland Valley terranes. This, the ‘missing fore-arc’ problem has been 

emphasised by Bluck in a series of contributions (e.g. 1984, 1985, 2001) and 

underlies the alternative interpretation of the Northern Belt as an essentially fore-arc 

succession by Armstrong et al. (1996) and Armstrong & Owen (2001).  

 

The full regional configuration would envisage the ‘missing fore-arc’ as lying 

between the accretionary complex and the Midland Valley arc, with the magmatism 

therein generated above the subduction zone that also drove accretion. The sub-

alkaline to peralkaline geochemistry of the abundant volcanic ash (metabentonite) 

layers within the Moffat Shale Group (Merriman & Roberts 1990) (Figure 3) suggests 

a source within a continental volcanic arc (or extensional back-arc), and the Midland 

Valley arc would thus seem a likely candidate. Perhaps surprisingly, the available age 

data does not support such a correlation. The volcanism recorded in the Moffat Shale 

Group peaked in the Llandovery at around 430 Ma, whilst younger metabentonites 



 36

have been recorded within the Hawick Group (Batchelor et al. 2003). These ages are 

not reflected in the zircon populations from Llandovery and Wenlock sandstones in 

the Midland Valley, which would have been deposited in a much more proximal 

situation to the putative arc. Rather, the Midland Valley detrital zircon population is 

dominated by older, Arenig to Llanvirn magmatism with a peak at about 475 Ma. 

(Phillips et al. 2009).  The picture is further complicated by a likely Dalradian 

provenance for most of the detrital zircons in Southern Uplands sandstones (e.g. 

Waldron et al. 2008, 2014) in contrast to the situation in the Midland Valley Terrane, 

where a dearth of detrital Archaean zircon in the Silurian sandstones was thought by 

Phillips et al. (2009) to make a Dalradian provenance unlikely. Although counter 

arguments were presented by Waldron et al. (2014) based on stratigraphical variations 

in the Dalradian detrital zircon populations, this Ordovician to Silurian dilemma is 

mirrored in the mid-Silurian to Early Devonian by the apparently missing source of 

Midland Valley conglomerates. These were derived from the south but from a 

provenance that is not represented within the currently exposed Southern Uplands 

Terrane, a circumstance established by a wide range of evidence and discussed by, 

amongst others, Bluck (1983, 1984), Syba (1989), Stone & Evans (2001) and Phillips 

et al. (2004). The complications and contradictions arising from these provenance 

mis-matches between terranes as currently positioned have been widely explored – 

see Bluck (2013) for a recent comprehensive review – but remain unresolved. 

 

One tempting solution to these enigmas of regional correlation is to assume that large 

scale strike-slip movement has juxtaposed terrane elements that were originally far 

apart. However, provenance evidence from the Northern Belt of the Southern Uplands 

makes this unlikely at the terrane boundary. The derived (in sediment mass flows) 

shelly faunas in the Kirkcolm Formation have relatively locally, in situ correlatives in 

the Midland Valley Terrane, albeit in Ireland, whilst detrital mineral grains and zircon 

dating make a Dalradian provenance likely for all of the sandstones of the Southern 

Uplands Terrane (Clarkson et al. 1992; Hutchinson & Oliver 1998; Mange et al. 

2005; Waldron et al. 2008, 2014 – but for a summary of the contrary view see Bluck 

2013). The extension of detrital zircon analysis through the full range of Southern 

Uplands tectonostratigraphy by Waldron et al. (2014) is a welcome development, but 

it should also be noted that much of the other detailed provenance work has been 

concentrated on the Ordovician, Northern Belt of the Southern Uplands (the Leadhills 
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Supergroup) where lithostratigraphical differences are most apparent. Extension of 

those techniques across the Silurian divisions further south, where compositional 

differences are cryptic, would allow for a more comprehensive regional assessment.   

 

Detailed provenance analysis of that sort requires an accurate knowledge of the 

internal structure of the Southern Uplands thrust belt, and for that graptolite 

biostratigraphy seems likely to remain vital. As further refinement of the biozonal 

scheme is achieved and new fossil discoveries are utilised, it will be possible to 

improve contrasts and correlations within the tract pattern based on the inliers of 

Moffat Shale Group, that ideally form the base of each tract’s succession, at least for 

the Ordovician Leadhills Supergroup and the Silurian Gala and Ettrick groups. A 

means of remotely mapping those inliers has recently been demonstrated, perhaps 

unexpectedly, as part of the multidisciplinary TELLUS programme in Northern 

Ireland. There, a high-resolution, airborne conductivity survey proved spectacularly 

successful in delineating the thin zones of carbonaceous mudstone in the Down-

Longford extension of the Southern Uplands Terrane, including concealed inliers with 

no apparent surface exposure (Beamish et al. 2010). It is the lithological character of 

the Moffat Shale Group that is probably the key to the development of the Southern 

Upland Terrane’s characteristic structure, providing a fissile and highly effective 

basal décollement plane for accretion of the overlying turbidite strata in the coherent 

packages now seen.  

 

As an additional influence, the possibility of oblique convergence must be considered, 

but the structural evidence is more supportive of mostly orthogonal accretion 

interrupted by intervals of strike-slip. It also seems unlikely that oblique accretion 

would produce the distinctive cross-strike, time-stratigraphic pattern (Figure 2) that 

has become the terrane’s leitmotif; more excision, duplication and interleaving of 

tracts would be expected under that circumstance. When disturbance of the sequential 

tract-incorporation pattern did occur in the late Llandovery (Ettrick and Hawick 

groups: Rushton et al. 1996), followed by its subsequent re-establishment in the 

Wenlock (Riccarton Group: Kemp 1986), it most probably marked the effective 

closure of the Iapetus Ocean and the migration of the accretionary prism onto the 

Avalonian margin as a foreland fold and thrust belt.  

 



 38

Figure 12 is an attempt to pull together the evidence for the development of the 

Southern Uplands Terrane and perhaps to resolve (or at least to highlight) some of the 

apparent conflicts and difficulties. Such diagrams invariably beg questions of relative 

scale and have a necessary tendency to exaggerate the portions of particular interest or 

complexity. Figure 12 is no exception and should be viewed with those limitations in 

mind. 

 

The Late Ordovician situation shown in Figure 12a has turbidite deposition on an 

extended fore-arc of thin continental crust. This follows the model developed by 

Armstrong et al. (1996) and Armstrong & Owen (2001), for which the rare earth 

element geochemical evidence from cherts (Owen et al. 1999) seems to provide 

compelling support. However, this model does throw up some potential difficulties. 

One issue is a requirement for the same facies of the Glenkiln Shale Formation 

(Moffat Shale Group) to have been deposited on both the thin continental fore-arc and 

on the more distant oceanic crust, to be overlain by Late Ordovician turbidites in the 

former situation but forming the basal sequence of the full Moffat Shale development 

in the latter. This would seem unlikely and is further complicated by the possibility 

that a trench may have intervened between the two environments since subduction to 

generate the Midland Valley magmatic arc would be likely at that time. A second 

issue is the origin of the volcanic rocks within the Northern Belt succession, most of 

which have apparently oceanic, within-plate geochemistry. A solution here might lie 

in the disturbances that would inevitably have accompanied the obduction of the 

Ballantrae Complex, with the possibility of slab break-off and/or a reversal in 

subduction direction: for further discussion see Stone (2014). Nevertheless, there 

remains the difficulty of the apparently low heat flow in the Northern Belt 

depositional basin at a time of active volcanicity; a problem not addressed in Figure 

12a and which remains unresolved.   

 

The Ballantrae Complex is shown in Figure 12a as an ophiolitic wedge trapped 

between the Midland Valley volcanic arc (at the margin of Laurentia) and its fore-arc 

of thin continental crust, represented as two separate continental blocks. If the 

Ballantrae Complex formed through compression of an arc to back-arc zone formed in 

such a way, it would obviate the otherwise necessary long-distance obduction of the 

ophiolite across the fore-arc (Stone 2014). Another important assumption in Figure 



 39

12a is the inclusion within the fore-arc crust of the magnetic continental basement 

unit recognised by Kimbell & Stone (1995) as the source of the ‘Galloway High’ 

(Figure 11), and identified as ‘Novantia’ by Armstrong & Owen (2001). The early 

incorporation of Novantia at the Laurentian margin, perhaps as a part of the processes 

driving Late Arenig obduction of the Ballantrae Complex ophiolite, would ease the 

difficulty of subsequently subducting a block of continental crust beneath the 

Southern Uplands accretionary prism. It might however be seen as unlikely for a peri-

Gondwanan fragment (as Novantia was viewed by Kimbell & Stone (1995) on 

geophysical grounds) to be accreted onto Laurentia as early as the Arenig.   

 

Towards the end of the Ordovician, the time interval represented in Figure 12b, 

subduction of Iapetus Ocean crust accompanied a generally compressive regime 

across the fore-arc region. In response, the thin continental basement blocks became 

imbricated, and above them a forward-breaking thrust belt developed in the turbidite 

succession. Turbidite deposition ahead of the thrust belt encroached outward onto 

Iapetus Ocean crust. It should be noted that initiating the thrust belt above continental 

crust (Novantia and its inboard companion in Figure 12b) diminishes the scale 

required for later thrust movement of the entire accretionary prism back onto the 

margin of Laurentia. By the earliest Silurian, the situation represented in Figure 12c, 

the fore-arc thrust belt has migrated into the oceanic realm and developed further as a 

conventional, supra-subduction accretionary prism. But it must be admitted that such 

a transition without any interruption of the regional tectonostratigraphic pattern 

(Figure 2) is remarkable, particularly if décollement planes developed within the 

prism. Meanwhile, that objection notwithstanding, further shortening of the fore-arc 

basement is envisaged through block rotation and imbrication, and was reflected in 

the accretionary prism by rotation and steepening of the early-formed tracts. Finally, 

Figure 12d illustrates the possible mid-Silurian situation following the elimination of 

the Iapetus Ocean by the ‘soft’ collision of Avalonia and Laurentia. The leading edge 

of the accretionary prism advanced onto the Avalonian margin, causing the Late 

Llandovery structural disruptions noted by Rushton et al. (1996) before the forward-

breaking thrust pattern was re-established in a foreland basin setting. Shortening of 

the fore-arc basement continued and was accompanied by some north-directed 

thrusting at the rear of the accretionary prism. Strike-slip movement was 

preferentially partitioned into the basement discontinuities and propagated upwards as 
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the Moniaive Shear Zone adjacent to the Orlock Bridge Fault and the Southern 

Upland Fault (labelled 1 & 2 in Figure 12d). Subsequent isostatic rebound of the 

depressed Avalonian crust would have contributed to subsequent uplift of the whole 

accretionary complex relative to the Midland Valley Terrane, creating the overall 

downthrow to the north now seen across the Southern Upland Fault.  

 

So far, so deceptively simple, but in reconstructing idealised cartoons such as those 

shown in Figure 12, it is easy to forget the true scale of the palaeogeography 

represented. The Southern Uplands Terrane represents just a small fragment of the 

Paratectonic Caledonides, which in turn are but the preserved fragments of a vastly 

more extensive Early Palaeozoic palaeogeography. The westward continuation of the 

Southern Uplands into Ireland, as the Down-Longford Lower Palaeozoic inlier, is 

well-established with detailed tract correlation possible across the North Channel (e.g. 

Barnes et al. 1987). Further afield, regional correlations with Newfoundland are 

possible (e.g. Colman-Sadd et al. 1992) but also serve to emphasise the scale of the 

original continental margin to the Iapetus Ocean, with its offshore volcanic arcs and 

islands. Van Staal et al. (1998) compared the northern margin of the Iapetus Ocean, 

the eventual focus of the Caledonian-Appalachian Orogen, to situation derived from 

forward-modelling of the present-day west and south-west Pacific Ocean. They 

concluded that whilst oceanic elements might broadly preserve along strike coherence 

for several thousand kilometres, convergent and/or strike slip excision or duplication 

was highly likely, either during oblique convergence or terminal collision. Against 

this background the Southern Uplands Terrane stands out as a remarkable, thirty-

million-year record of accretionary geological processes at the Laurentian margin of 

the Iapetus Ocean, from the Late Ordovician to the Middle Silurian. 
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Figure Captions 

 

Figure 1.  

Outline geological maps of the Southern Uplands Terrane showing, in particular: a) the 

distribution of the lithostratigraphical groups and the position of the named strike-

parallel faults that form their boundaries; b) the arrangement of the tectonostratigraphical 

tracts after Stone et al. (2012, figure 14). For chronostratigraphical correlations see 

Figure 2. The position of the concealed Tweeddale pluton has been extrapolated from 

regional gravity data after Stone et al. (2012, figure 28).  

 

Figure 2.  

A time (biostratigraphy) versus structural position (tectonostratigraphy) profile for the 

SW part of the Southern Uplands Terrane, after Stone et al. (2012, figure 15b). Time 

scale from Gradstein et al. (2012).  

 

Figure 3.  

The stratigraphy of the Moffat Shale Group at Dob’s Linn showing the distribution and 

abundance of metabentonites. After Merriman & Roberts (1990) and Tucker et al 

(1990). 

 

Figure 4.  

Structural cross-sections of the upper Ettrick Water valley to the NE of Moffat: a) the 

tight folding interpretation of Peach & Horne (1899, figure 18) – but note the reverse 

fault at F; b) the imbricate thrust interpretation of Fyfe & Weir (1976, figure 3). In all 

cases, the strata succeeding the Moffat Shale Group that was assigned by the authors to 

the Gala Group would now be regarded as part of the Ettrick Group following British 

Geological Survey (2009).    

 

Figure 5.  
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Representations of the Southern Uplands Terrrane as an accretionary prism: a) the 

original proposal after McKerrow et al. (1977, figure 3); b) a later representation after 

Stone (1995, figure 3). 

 

Figure 6.  

Geochemical differentiation of the Gala, Ettrick and Hawick groups with their 

component sandstones compositionally separated by Ni–Sr and CaO–SiO2 

abundances: after Barnes & Stone in Stone et al. (2012, figure 20). 

 

Figure 7.  

Two examples of geochemical discrimination diagrams that have been used to 

differentiate the tectonostratigraphy of the Southern Uplands Terrane: a) box plots 

showing relative MgO abundance after Barnes (2008, figure 21) utilising data from 

Duller & Floyd (1995); b) variation in provenance maturity based on ɛNd values after 

Stone & Evans (2001, figure 2). For explanation of abbreviations see Figure 2; the 

status of ‘Gala 9’ (G9 in figure 7a) is discussed in the text. 

 

Figure 8.  

Frontal accretion, underplating and burial metamorphism. a) An attempt to integrate 

structural and metamorphic patterns in a two-layer Southern Uplands accretionary 

prism utilising a modified Figure 5b, after Stone & Merriman (2004, figure 2). Lowest 

grade rocks are accreted at the toe of the prism, rotated and stacked above a major 

décollement; higher grade rocks are rotated and underplated below the décollement. 

Syntectonic burial generates a depth-dependent pattern of horizontal metamorphic 

zones intersecting the steeply dipping strata. b) The accretionary model developed 

from the Kodiak complex by Sample & Moore (1987, figure 3).  

 

Figure 9  

A NW–SE metamorphic cross-section of the Southern Uplands Terrane through 

Moniaive, after Merriman & Roberts (2001, figure 5). For explanation of 

abbreviations see Figure 2. 

 

Figure 10  
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Histograms of K-white mica b cell dimension data from mudrock lithologies of the 

Southern Uplands Terrane and comparative areas, after Stone & Merriman (2004, 

figure 3) who list details of the data sources. 

 

Figure 11 

A model to explain the observed (total field) magnetic anomalies along a NW–SE 

profile through the SW part of the Southern Uplands Terrane. Shaded units are 

magnetic, with magnetizations in A/m indicated. After Kimbell & Stone (1995, figure 

3b).    

 

Figure 12  

A series of naïve, 2-D cartoons that attempt to demonstrate the relationship of the 

events that constructed the Southern Uplands accretionary complex as the Iapetus 

Ocean was subducted beneath the continental margin of Laurentia. The sections are 

schematic and no relative scale is implied. 

 

 

Captions for Supplementary Figures 

 

Supplementary figure 1 

Outline geology of Southern Scotland after Stone et al. (2012, figure 2). 

 

Supplementary figure 2 

The principal structural tracts of the Southern Uplands Terrane after Stone et al. 

(2012, figure 14). 






























