nerc.ac.uk

North or south? Niche separation of endemic red-legged kittiwakes and sympatric black-legged kittiwakes during their non-breeding migrations

Orben, Rachael A.; Irons, David B.; Paredes, Rosana; Roby, Daniel D.; Phillips, Richard A.; Shaffer, Scott A.. 2015 North or south? Niche separation of endemic red-legged kittiwakes and sympatric black-legged kittiwakes during their non-breeding migrations. Journal of Biogeography, 42 (2). 401-412. 10.1111/jbi.12425

Before downloading, please read NORA policies.
[img] Text
This article has been accepted for publication and will appear in a revised form in the Journal of Biogeography, published by Wiley. Copyright John Wiley & Sons Ltd.
Orbenetal_2015_JBI_complete.docx - Accepted Version

Download (1MB)

Abstract/Summary

Aim Species that breed sympatrically often occupy different foraging niches to mitigate competition for prey. When resource availability declines at the end of the breeding season, some animals migrate to regions with more favourable environmental conditions. When these life-history traits combine, foraging habitat preferences may continue to influence migration patterns and habitat utilization. The Bering Sea is home to the red-legged kittiwake (RLKI), Rissa brevirostris, which is endemic, and the black-legged kittiwake (BLKI), Rissa tridactyla, which has a circumpolar breeding distribution. Since the 1970s, numbers of RLKIs at the largest colony have declined and then recovered, whilst the BLKI population has remained stable. Knowledge of the migration ecology of kittiwakes is key to understanding differences in population trajectories, and predicting possible future responses of these species to climate change. Location Pribilof Islands, Bering Sea, subarctic North Pacific. Methods Using geolocation loggers, we tracked adult RLKIs and BLKIs during their non-breeding migrations. We used iterative methods to assess suitable sample sizes for determining space use. Kittiwakes are surface foragers; therefore we used wet–dry data to distinguish active foraging behaviour and to test the species' responses to environmental conditions. Stable isotope ratios of feathers grown during the non-breeding period were used to assess dietary niche. Results RLKIs remained largely in the Bering Sea, where they experienced colder conditions and shorter days; individual birds used multiple habitats, including the continental shelves, the sea-ice edge and pelagic waters. In contrast, BLKIs migrated to the subarctic North Pacific, where they dispersed laterally across the basin; the majority of birds travelled to the western subarctic. RLKIs spent less time actively foraging than BLKIs, and consumed higher trophic-level prey. Main conclusions The disparate wintering ranges and foraging behaviour of BLKIs and RLKIs suggest distinct environmental factors drive variation in overwinter survival. A strong association with sea ice, and specialization both in diet and foraging behaviour, may make RLKIs particularly vulnerable to climatic change.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1111/jbi.12425
Programmes: BAS Programmes > Polar Science for Planet Earth (2009 - ) > Ecosystems
ISSN: 03050270
Additional Keywords: Bering Sea, ecological segregation, geolocation, non-breeding habitat, North Pacific, resource partitioning, Rissa brevirostris, Rissa tridactyla, seabird
Date made live: 17 Nov 2014 15:23 +0 (UTC)
URI: http://nora.nerc.ac.uk/id/eprint/508834

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...