Effects of winter temperature and summer drought on net ecosystem exchange of CO₂ in a temperate peatland

<u>Carole Helfter</u>¹, Claire Campbell², Mhairi Coyle¹, Margaret Anderson¹, Julia Drewer¹, Peter Levy¹, Daniela Famulari¹, Marsailidh Twigg¹, Ute Skiba¹, Michael Billett¹, Kerry Dinsmore¹, Eiko Nemitz¹, and Mark Sutton¹.

¹ Centre for Ecology and Hydrology, Penicuik, UK.
 ² Scottish Environmental Protection Agency, Stirling, UK.

Site description

- Auchencorth Moss (55° 47′ N, 03° 14′W) is a relatively flat, low-lying, ombrotrophic peatland in SE Scotland.
- The site was drained more than 100 years ago (drainage ditches now disused and overgrown).
- Land-use is primarily low intensity sheep grazing
- Peat depth ranges from <0.5 m to >5 m
- Vegetation consists of a patchy mix of grasses and sedges covering a primarily *Sphagnum* base layer on a typical peatland hummock/hollow microtopography.
- Mean water table depth is -12.5 cm, ranging from below -55 cm to +4.5 cm above the peat surface
- Auchencorth Moss is a CEH aquatic carbon catchment site (4 in the UK)

Site description: instrumentation

Eddy-covariance system (continuously since 2002):

Gill Windmaster Pro ultrasonic anemometer
Licor 7000 closed-path CO₂/H₂O analyser
Measurement height 3.4 m
Uniform fetch to North, West and South (several km)

Auchencorth Moss

Prevailing wind direction: S-W (ca. 70% of the time)

- Air and soil temperature
- Rainfall
- Radiation (total solar, PAR, net radiation)
 Water table depth

Image © 2013 Getmapping plc

Google earth

NATURAL ENVIRONMENT RESEARCH COUNCIL

Centre for Ecology & Hydrology Natural environment research council

100 m

Local climate - precipitation

Overall upward trend despite large inter-annual variability

¹MIDAS station; 3.5 km North of measurement site

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

Local climate - temperature

¹MIDAS station; 3.5 km North of measurement site

Annual CO₂ budget

NEE: Inter-annual variability

Mean length of growing season: 247 days ± 24 days

> Start: 15/03 ± 20 days End: 19/11 ± 19 days

Large inter-annual variability but NEE is closely linked to the length of the growing seasons

Effect of winter temperatures

- Winter air temperature is the strongest predictor for NEE and GPP_{sat} during the growing season
- Short-term effect on phenology?

Effect of winter temperatures

1-way ANOVA of summertime GPP, R_{eco} & NEE with respect to mean winter air temperature: 4 temperature classes (< 1 ° C, 2-3 ° C, 3-4 ° C, > 4 °C).

P-value	Wet	Dry	Ensemble	
	(WTD < 5 cm)	(WTD > 5 cm)		
GPP	0.30	0.016	0.08	
R _{eco}	0.52	0.002	0.05	
NEE	0.38	0.019	0.03	

 Mean winter air temperatures have a statistically significant effect on summertime NEE.

Impact on phenology: stunted/ delayed growth? No direct/independent observation.

 Overlapping effect of water table position: statistical significance extends to GPP and R_{eco} under low water table conditions (> 5 cm below peat surface).

Dry spells/drought

- Automated water table depth (WTD) measurements began in April 2007.
- The site is usually wet (WTD < 3 cm below peat surface for 42 out of 67 months) but dry spells have occurred in summer every year since 2007, except for 2012.</p>
- Usually waterlogged in autumn and winter.
- Spring/ summer WTD range: 3 cm to + 49 cm (July 2013).
- Drainage rate up to 3 cm day⁻¹, and rapid refilling.

Dry spells/drought

Sensitivity of ecosystem respiration to air temperature (Q₁₀) decreases with deepening water table.

Theoretical value of ecosystem respiration for T_{air} = 0 °C increases with deepening water table.

Do heterotrophic processes become dominant as water table level decreases?

Dry spells/drought

- R_{eco} well-parameterised by $T_{air.}$
- Usually little or no dependence on WTD.
- Non-linear correlation of R_{eco} to WTD during dry spells with ~ constant T_{air.}
- 2 dry spells exhibit marked initial decline in R_{eco} with lowering of WTD (minimum R_{eco} at WTD ~ 15 cm below peat surface) followed by increase.

Dry spells/ drought

Period	Drainage rate	Maximum	Time lag		Minimum R _{eco}	WTD for min R _{eco}	Mean	Wind
	[cm day ⁻¹]	WTD [cm]	[days]		[µmol m ⁻² s ⁻¹]	[cm]	Tair [° C]	direction [°]
5-29/5/2008	1.2	20.4		2	0.03	1.5	10.1	70
22/7-1/8/2008	3.0	19.1		3	2.31	4.5	16.1	100
15-26/5/2010	1.6	30.7		2	1.05	15.6	12.9	181
9-24/6/2010	2.0	36.1		0	1.58	12.5	13.0	176
21/7-8/8/2010	2.0	22.1		5	2.01	2.9	11.4	191

Initial decline in respiration caused by a reduction in plant metabolic activity as water availability decreases?

• Lowering of the WT enables aerobic processes and microbial decomposition of organic matter in the peat profile increases.

 Minimum R_{eco} could correspond to equilibrium between declining autotrophic and increasing heterotrophic respiration.

 Subsequent net increase in R_{eco} with deepening WTD could correspond to a gradual increase in the ratio of heterotrophic to autotrophic respiration.

Dry spells/ drought

1-way ANOVA on daily GPP, R_{eco} and NEE with respect to 10 WTD classes (< 0 cm to > 45 cm in increments of 5 cm).

Year\p-value	NEE	R _{eco}	GPP	Period for WTD > 0 cm
2007	0.0002*	0.0242	0.0002*	12/4-17/9
2008	0.1421	0.0055	0.024	5/5-1/8
2009	0.72068	0.0363	0.808	25/05-6/09
2010	0.93	0.0012	0.0007	11/04-13/09
2012	0.0314*	0.0582	0.484	23/3-16/8
2013	0.035	0.003	0.054	18/05-11/09

* Equal variance test failed

- R_{eco} always significantly correlated to water table position (except for 2012 very wet year).
- GPP and NEE exhibit little sensitivity to water table depth.
- Significant correlation of GPP & R_{eco} to WTD in 2008, 2010 & 2013 (R_{eco} only).
- Summer droughts (2008 & 2010) affected both autotrophic and heterotrophic processes.

Conclusions

- Auchencorth Moss is a net sink of CO₂ (average 64.1 ± 33.6 g C-CO₂ m⁻² year⁻¹).
- The sink strength is highly variable year on year but strongly linked to the length of the growing seasons.
- Summertime NEE is significantly correlated to mean winter time air temperature suggesting short-term effects on the local phenology.
- Ecosystem response (GPP, R_{eco} & NEE) to winter conditions is more pronounced when the growing season is dry (WTD > 5 cm).
- R_{eco} is significantly correlated to the position of the water table and Q₁₀ decreases with deepening WT suggesting a shift in the balance between heterotrophic and autotrophic terms.
- Very weak net sink of CO₂ in 2013 as a result of a long, cold winter and a dry summer.

¹ UK Met Office - MIDAS Land and Marine Surface Station Data

² A decade of continuous NEE measurements at a Scottish peatland. Helfter et al. (in prep.)

³ Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Roulet et al., GCB (2007).

⁴ How strong is the current carbon sequestration of an Atlantic blanket bog? Koehler et al., GCB (2011).

⁵ Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire – a significant sink after accounting for all C-fluxes. Nilsson et al., GCB (2008).

