

British **Geological Survey**

NATURAL ENVIRONMENT RESEARCH COUNCIL

Spatial scaling of CO, efflux in a temperate grazed grassland Nicole A.L. Archer¹, Barry G. Rawlins², Benjamin P. Marchant² ¹British Geological Survey, Murchison House, West Mains Rd, Edinburgh, EH9 3LA, U.K^{, 2}British Geological Survey, Nicker Hill, Keyworth, Nottingham, NG12 5GG, U.K

Introduction

Understanding CO₂ efflux from soil at different scales is important when up-scaling CO₂ measurements from plot to larger scales, but there have been few studies investigating spatial CO₂ efflux in temperate environments. We conducted a nested analysis of variation to explore how the CO₂ efflux variation occurs between different spatial scales. We also invested the temporal variation of CO₂ efflux, including soil moisture and CO₂ efflux relationships across different soil types.

Experimental Area

The experimental area is in the Hollin Hill Landslide Observatory in Yorkshire, United Kingdom. The area has slow moving landslides particularly on steep slopes because mudstone deposits (the Whitby Mudstone) slide over the lower sandstone (the Straithes Sandstone and Cleveland Ironstone) formation. The two formations are characterized by clay at the top of the slope and sand at the bottom of the slope. In the southeast of the area sandy clays are present. The area is grazed by sheep and has a mixed sward of Lolium perenne, Holcus lanatus and Poa species.

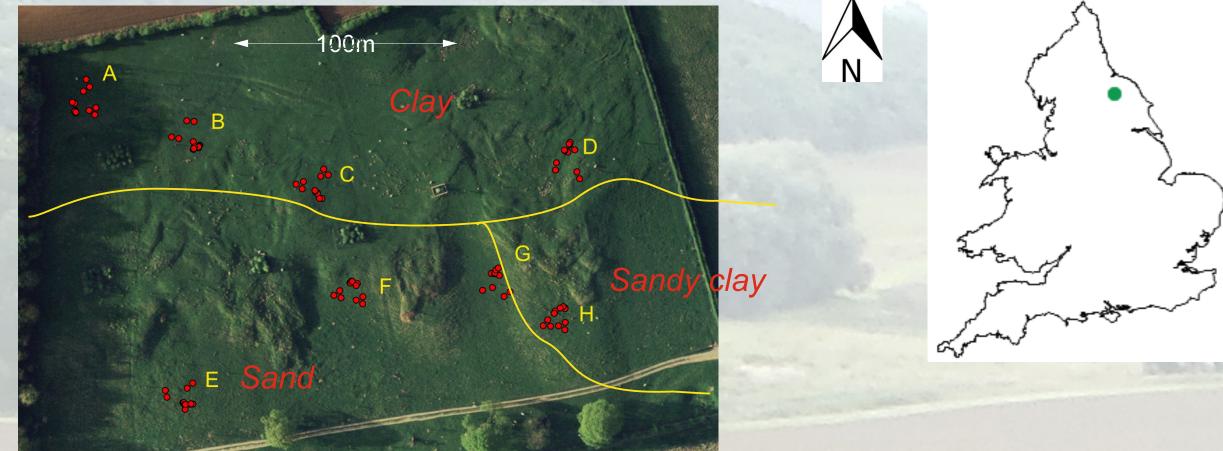
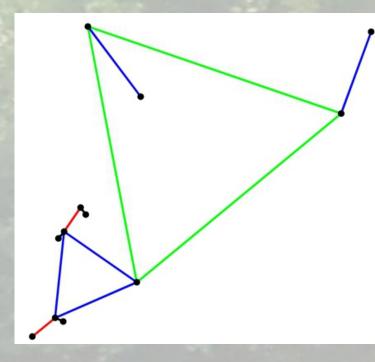



Figure 1) Aerial photo of the experimental area located in the Yorkshire Dales, England (shown as a green circle).

Methodology

The nested sampling scheme was optimized over a space of possible designs for a fixed sample size (12 points) at four levels (0.3m, 1.0m, 3.0m and 9.0m) following the optimization sampling scheme described by Lark 2010. The layout of nodes are shown in Figure 2. At each point (96 in total) a soil moisture sensor (5TE, DECAGON Devices, USA) was installed at 10 cm depth to log every 15 minutes. Above each soil water sensor, a portable closed chamber system (West Systems Srl, Italy) was used to take CO₂ flux measurements during three to four hour surveys during a dry summer and wet winter period. In addition, three automatic closed dynamic systems (Li-Cor Li-800, USA), were spaced 1 m apart and took CO₂ efflux measurements ever hour.

	9.0 m
	3.0 m
	1 .0 m
	0 .3 m
•	Node

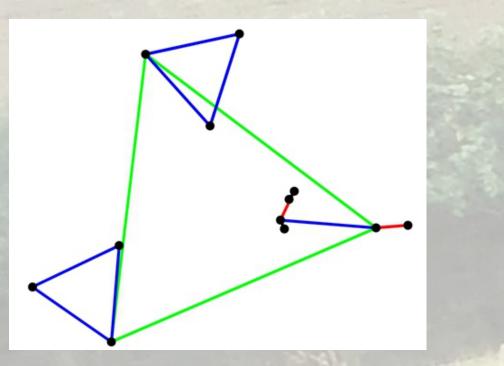
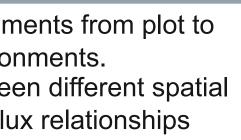
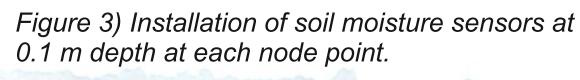



Figure 2) Layout of the optimized nested design showing how the different lag distances are arranged from a central 9m equilateral triangle



Contact Information **Dr Nicole A L Archer** email: nicarc@bgs.ac.uk

Soil moisture was also measured from the soil surface to 0.07 m (Figure 4) after each portable CO₂ measurement using a hand-held capacitance probe (ML3 ThetaProbe, Delta-T, Cambridge, UK). At the same time the permanently installed soil moisture sensor (Figure 3) recorded soil mositure at 0.1 m depth while portable CO₂ measurements were taken.

Results

	Spatial scales					
Month	>9m	9m	3m	1m		
Aug. 2013	0.18	0	0.14	0		
Sept. 2013	0.06	0	0	0		
Oct. 2013	0	0	0	0.73		
Feb. 2014	0.05	0	0.05	0		
April 2014	0.12	0	0	0		

Table 1) Spatial partitioning of CO₂ efflux variance after normal scores transform

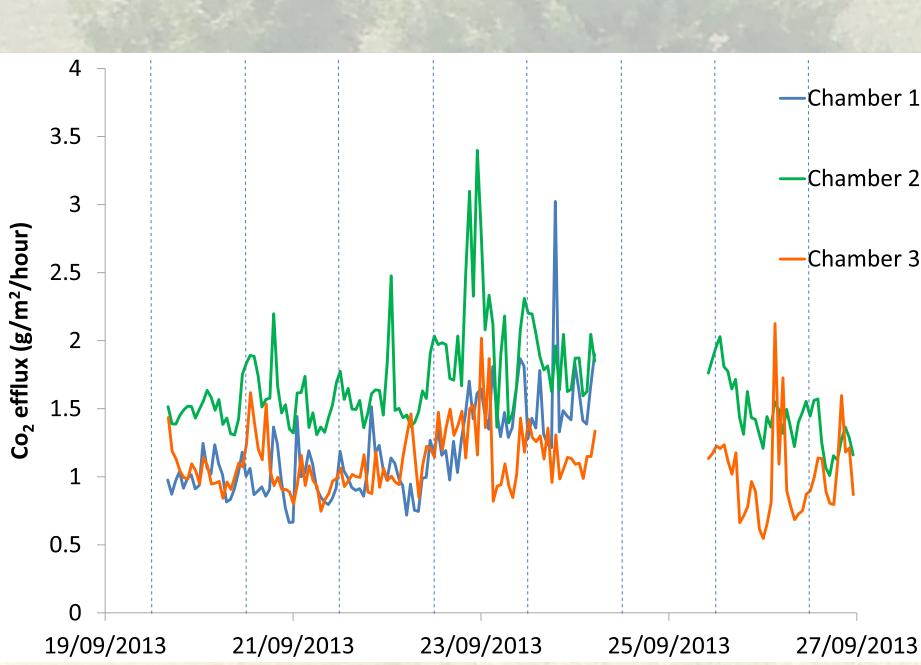


Figure 5) Temporal variability of CO₂ efflux measured by three automatic closed dynamic systems for a week during September after a relatively dry summer. The blue vertical dotted lines indicate midday.

Highest temporal variability occurred early to late evening. The temporal variability of CO₂ efflux within an hour was considered to be relatively low during the day.

Figure 4) Portable soil moisture measurement using a hand-held capacitance probe.

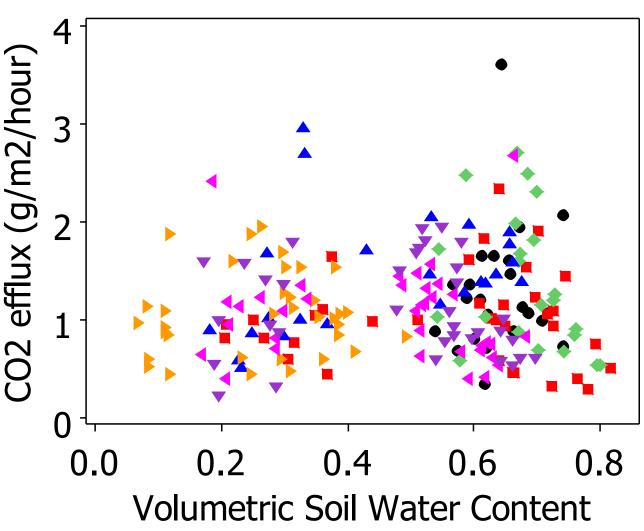


Figure 6) CO₂ efflux measured by a portable closed chamber system and soil water content measured by a hand-held soil moisture probe (averaged for 0 to 0.07 m depth) during a dry period October 2013 and wetter periods February and April 2014. The legend relates to the site groups located in Figure 1.

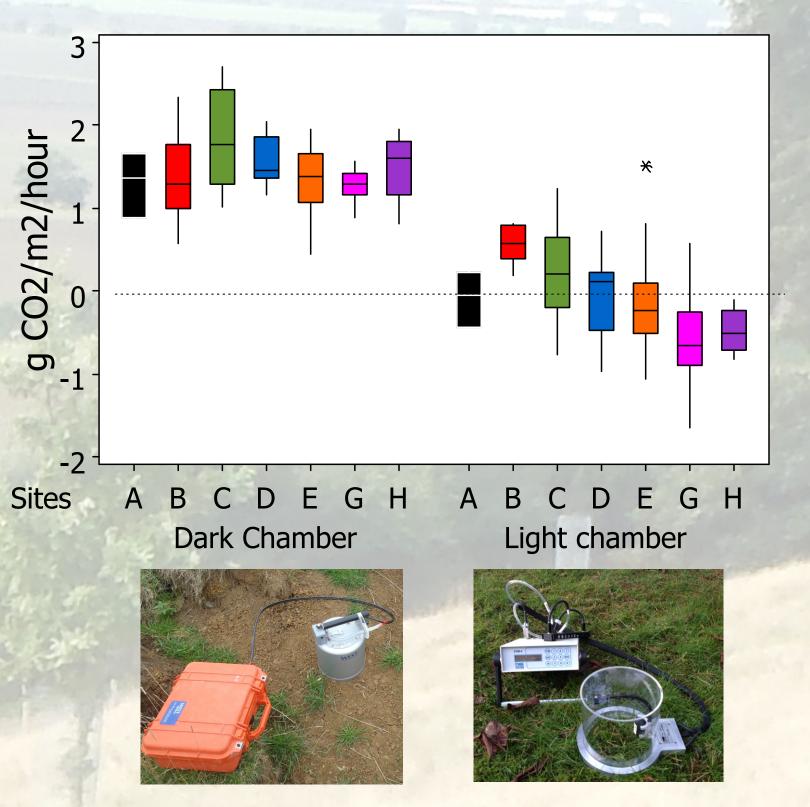
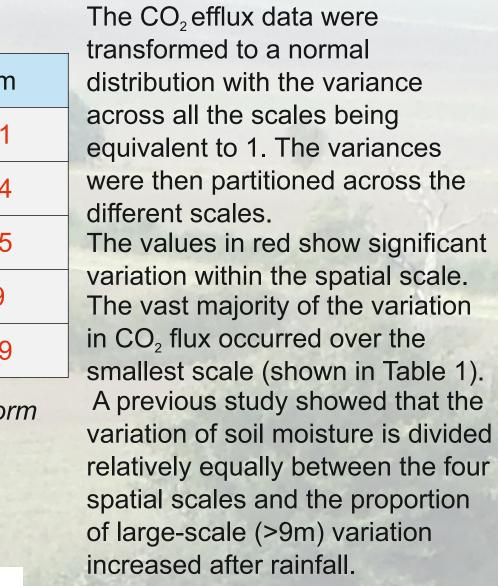


Figure 7) CO₂ efflux measured with portable closed chamber systems measured during April 2014. The light chamber measures CO, efflux during photosynthesis and the dark chamber measures only soil respiration. The site groups A to H are located in Figure 1.

Conclusions


1) Soil CO₂ efflux has high spatial variation at small scales. Although there was relatively little hourly variation of CO₂ efflux, the temporal variability of CO₂ efflux from morning to afternoon was larger. This causes difficultly to compare spatial variability between the sites as they are measured over a three to four hour period. Factors which affect CO₂, such as changes in temperature and atmospheric pressure are constantly changing and such factors ("nosie") have to be taken into account when investigating spatial variability of CO_2 .

2) There is no significant correlation between CO_2 efflux and Soil moisture over all sites, however there is decreased CO₂ efflux when soil are dry (<0.15 volumetric fraction) or highly saturated (>0.70 volumetric fraction).

3) The grazed temperate grassland in April was found not to assimilate all the CO₂ respired from the soil, even during sunny days. However, this is preliminary data and more field work is being done.

4) More investigation is needed and work is continuing to investigate the complexities of spatial and temporal variability in the Hollin Hill Observatory.

References & Geosciences, 37, 1633 -1641.

-Chamber 3

27/09/2013

	Sites
•	А
	В
•	С
	D
	E
	G
▼	Н

There is a clear distinction between the sandy soil (site E) which remains relatively dry even during wet conditions. At extreme wet and dry soil moisture conditions CO₂ efflux is low. Higher CO₂ efflux tends to occur between 0.35 to 0.65 soil water fractions.

During April 2014 after a relatively wet winter, the lower part of the hillslope, which is mainly sandy soils was a net sink to CO₂ during the day. The upper slope in particular B and C produced low levels of CO₂, even during the daytime, this may have been due to lower light conditions. There are no significant differences in soil respiration between the sites.

Lark R.M. 2011. Spatially nested sampling schemes for spatial variance components: Scope for their optimization. Computers