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Abstract

Seismic amplitudes contain important information which can be related to fluid saturation.

The amplitude-versus-offset (AVO) analysis of seismic data based on Gassmann’s theory and

approximation of the Zoeppritz equations, has played an central role in reservoir

characterization. However, this standard technique faces a long standing problem, its inability

to distinguish between partial gas and “fizz-water” with little gas saturation. In this paper, we

studied seismic dispersion and attenuation in partially saturated poroelastic media by using

frequency-dependent rock physics model, through which the frequency-dependent AVO

(FAVO) response is calculated as a function of porosity and water saturation. We propose a

crossplotting of two attributes derived from FAVO response to differentiate partial gas

saturation and “fizz-water” saturation. One of the attributes is a measure of “low frequency”

or Gassmann, reflectivity, while the other is a measure of the “frequency-dependence” of

reflectivity. This is in contrast to standard AVO attributes, where there is typically no such

separation. A pragmatic FAVO inversion for rock and fluid properties is also established

based on Bayesian theorem. Synthetic study is performed to explore the potential of the

method to estimate gas saturation and porosity variations. An advantage of our work is that

the method is in principle predictive, opening the way to further testing and calibration with



field data. We believe that such work should guide and augment more theoretical studies of

FAVO analysis.
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Introduction

Reservoir characterization and fluid detection are fundamental goals of geophysical

technology. The reliable estimation of gas saturation is a long standing problem (Han and

Batzle, 2002), which is important in both exploration and interpretation of time-lapse data.

Despite some progress in the application of Bayesian inversion concepts (Bachrach, 2006),

reliable estimation of gas saturation has remained elusive. The root of the problem is the

relative insensitivity of seismic velocity to gas saturation variations. Introduction of a small

amount of gas often leads to a sudden drop in velocity, but only small further variations may

be seen when the gas saturation is increased further.

In principle, consideration of attenuation may improve the situation, since the relationship

between attenuation and water saturation typically has a different form to that between

velocity and water saturation (Murphy, 1982, 1984; Gist, 1994; Cadoret et al., 1998;

Nakagawa et al., 2013). Nevertheless, attenuation-based techniques face obstacles in terms of

the difficulty of the measurements and the lack of appropriate modelling and interpretation

frameworks.

Significant strides have been made recently in the measurement of attenuation from seismic

reflection data (Dasgupta and Clark, 1998; Clark et al., 2001; Reine et al 2009). The basis of

the techniques is measuring the cumulative loss of energy during transmission through an

attenuating zone. The applicability of the method is limited by the thickness of the

attenuating zones, and some targets are too thin for successful application of the method. An

alternative approach (Chapman et al., 2006; Ren et al., 2009; Wilson et al., 2009; Xu et al.,

2011, Zhang, 2011; Innanen, 2011, 2012; Sun et al., 2012; Wu et al., 2013) aims to estimate

seismic attenuation indirectly through the frequency-dependence of the reflection coefficient

from attenuative and dispersive media.



The frequency-dependence of seismic velocities and attenuations in fluid saturated rocks is

the subject of intensive current research from both a theoretical and experimental standpoint

(Korneev et al., 2004; Müller and Rothert, 2006; Quintal and Tisato, 2013; Tisato and Quintal,

2013). However, many important aspects remain poorly understood and controversial. It

appears that no currently available theory can satisfactorily describe and predict velocity

dispersion and attenuation. The case of partially saturation appears to be particularly difficult.

In this paper, we investigate the possibility of determining gas saturation from the frequency-

dependence of reflectivity in the pre-stack domain using simplified, but we believe

representative, rock physics theory. We show how existing frequency-dependent rock physics

theory can be used as a tool to match water saturation information at the well to the output of

frequency-dependent amplitude-versus-offset analysis of seismic reflection data. Our results

are placed in a convenient Bayesian inversion scheme, which allows the theoretical

detectability of saturation and porosity variations to be assessed. While future testing on field

data is required to validate the technique.

We begin by briefly reviewing the current understanding of seismic dispersion and

attenuation in fluid saturated rocks. We then present a pragmatic approach to calculating

frequency-dependent reflectivity on the basis of parameters which can be estimated from well

log data. The calculated data can then be used as a basis for our Bayesian inversion scheme

targeted at recovering porosity and saturation variations. A numerical example illustrates the

potential power of the technique.

Modelling attenuation and dispersion in partially saturated rock

The development of mathematical theories to describe the dispersion and attenuation of

seismic waves in fluid saturated rock has been a focus of research for over 50 years (Biot,

1956a, 1956b), and the field is still actively developing (Müller et al., 2010). The Biot theory

of poroelasticity attempt to describe the behaviour of global flow in fluid-saturated rocks, has



provided an elegant foundation for many studies. The low frequency limiting velocities

predicted by Biot theory are consistent with those predicted by the Gassmann equation

(Gassmann, 1951), which is still the cornerstone for most studies of fluid substitution in the

petroleum industry.

Recently, it has been suggested that the concept of “squirt-flow” (Mavko et al., 1979)

describing the microscopic wave induced fluid flow between pores and cracks, provides an

important source of additional attenuation, which is not accounted for in the Biot theory (eg.

King, 2000). The first mathematical descriptions of squirt-flow were produced in the 1970’s

(O’Connell & Budiansky, 1977). More recently, the development has proceeded down

parallel paths separated by the preferred means of describing the pore space of the rock. One

general approach (Mavko & Jizba, 1991; Dvorkin et al., 1995; Pride et al., 2004; Gurevich et

al., 2010; Gurevich, 2013) avoids an explicit mathematical description of the pore space, and

emphasises the use of averaged, bulk, rock properties. Another approach (Hudson et al., 1996;

Pointer et al., 2000; Chapman et al., 2002; Chapman, 2003; Jakobsen et al., 2003; Chapman,

2009, Jakobsen and Chapman, 2009) describes the squirt effect on the basis of inclusion

models. Inclusion models benefit from precise mathematical descriptions of the stiffness of

pores, but rely on idealized geometries not encountered in nature. The utility of inclusion

models has been doubted by Avseth et al. (2004) and others.

In theory, the Biot theory assumes that the period of the seismic wave is sufficiently long to

allow local fluid pressure gradients to relax. Squirt-flow theory, by contrast, considers that

heterogeneity in the pore structure gives rise to micro-scale fluid pressure gradients which

may not be equilibrated by fluid flow on the time scale of the seismic wave. When fluid

pressure gradients are un-relaxed, the rock is stiffer than in the relaxed case. This reasoning

leads to a pronounced frequency-dependence of seismic velocities, with higher frequencies

being associated with higher velocities.



Two major differences between the squirt flow and Biot theories lie in the magnitude of the

predicted dispersion and the behaviour of the “characteristic frequency” at which the

maximum attenuation occurs. Generally, squirt flow is believed to produce larger and more

realistic attenuations than the Biot theory. Both approaches suggest that the characteristic

frequency depends on the fluid mobility (defined as the ratio of permeability to fluid

viscosity), but the nature of that dependence is very different. In the Biot theory, the

characteristic frequency moves higher as the fluid mobility is reduced, but the opposite is the

case for the squirt theory. Batzle et al. (2006) tentatively suggest that laboratory

measurements agree with the squirt theory in terms of the dependence on fluid mobility.

When the rock is partially saturated, further complications ensue. In a landmark study, White

(1975) gave a description of how the existence of gas patches give rise to large attenuations.

White’s model predicts no attenuation or dispersion in the absence of a second fluid. Dutta

and Ode (1979) extended White’s approach within the framework of Biot theory. Mavko and

Mukerji (1998) describe the effect of “patchy saturation”, and show that this concept gives

rise to increased velocity dispersion. Recently, the role of the scale length of the

heterogeneities has also emerged as an important concept, with meso-scale structures (smaller

than the wavelength but larger than the grain scale) being associated with dispersion in the

seismic frequency band. This phenomenon has been studied through numerical modelling

(Rubino and Holliger, 2012; Quintal and Tisato, 2013).

Laboratory measurements (Murphy, 1982; Murphy, 1984; Cadoret et al. 1984) suggest that

attenuations for small partial gas saturation are higher than for the fully saturated case. Gist

(1994) presents laboratory measurements on partially saturated rock and argues that their

interpretation requires a unified model with both the “squirt-flow” and “gas pocket” effects.

Unfortunately, no truly satisfactory such model yet exists. Recently, Amalokwu et al. (2014)

present measurements of attenuation versus water saturation in fractured and unfractured



rocks which appear to be a severe challenge to currently developed theory. The development

of models for partially saturated rock is currently a focus of intensive research.

Given the uncertainty in the underlying rock physics, and the absence of a satisfactory

modelling approach, it is tempting to conclude that application of the concepts to the

interpretation of seismic data is currently impossible, and that progress must await the

development of more advanced theories. This paper explores the opposite point of view,

presenting a pragmatic approach to the application of existing theory to infer variations in

porosity and saturation.

Our approach is based on three key assumptions. Firstly, we assume that the behaviour of the

rock is consistent with the Gassmann-Wood predictions at low frequency. We further assume

that partial gas saturation generally gives higher values of attenuation than full saturation,

with maximum values of attenuation occurring for low gas saturation. Lastly, we assume that

the dependence of the characteristic frequency on fluid mobility follows the predictions of the

squirt-flow theory.

We show below that it is possible using existing theory to provide a modelling scheme which

is broadly consistent with these assumptions. We do not claim to be able to predict a priori

values of attenuation associated with a given water saturation. Rather, we aim to provide a

modelling framework which is capable of being calibrated when both seismic data and water

saturation information from log data are available. In this way, we hope that our model may

provide useful information even when the precise details of the attenuation mechanisms may

not be fully understood.

Method for the calculation of frequency-dependent reflectivity

We base our calculations on poroelastic rock physics model presented by Chapman et al.

(2002). The model is primarily a squirt flow theory considering the fluid exchange between

pores and cracks, as well as between cracks of different orientations due to wave propagation.



Chapman et al. (2002) discussed the consistency of the model with Gassmann’s relations,

which is an advantage in the current context. We propose to use the model in conjunction

with an effective single-phase fluid model. This produces what may be a reasonable

qualitative relationship between attenuation and water saturation, but it should be borne in

mind that this set up rules out many of the partial saturation attenuation mechanisms which

have been discussed in the literature. Following the theory of Chapman et al.(2002), the

frequency-dependent effective bulk and shear moduli Keff and µeff are expressed as follows:
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where ω is the angular frequency, K, µ , λ denote the bulk and shear moduli and Lame

parameter of the solid mineral matrix respectively, while the fluid bulk modulus is Kf, the

total porosity is  . r, a, ε are the aspect ratio, uniform crack radius and crack density of the

cracks respectively. A and B are:
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where τ is the timescale parameter that controls the frequency regime over which the

dispersion occurs.

When saturating fluid is an mixture of gas and water, density of the partially saturated

sandstone (ρsat) used in the model was calculated as,

fmsat   )1( (9)

wgggf SS  )1(  (10)

where ρm, ρf , ρg, ρw is the densities of rock matrix, effective fluid, gas and water respectively.

Sg is gas saturation. The bulk modulus of mixed fluid Kf is estimated by Wood’s formula,
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Kg and Kw are the bulk moduli of gas and water respectively. Viscosity of the effective single-

phase fluid is averaged arithmetically in term of volume percentage. Thus, viscosity and bulk

modulus of the effective fluid change with gas saturation Sg. This can further changes

attenuation due to squirt flow. After frequency-dependent elastic moduli has been derived,

frequency-dependent PP wave reflectivity can be calculated using the anisotropic Zoeppritz

equation generalized by Schoenberg and Protazio (1992, see Appendix I).

Table 1 displays the parameters of a two-layer model with shales overlying sandstone

reservoir. The lower layer is considered to be dispersive. Figure 1 displays the attenuation

curves varying with (a)frequency, (b)gas saturation at different porosities, and (c)crack

densities, for the lower layer using the theory of Chapman et al.(2002). As shown in Figure 1



(a) and (b), attenuation peaks at about 50Hz, with a corresponding Q value of 16. Figure 1(b)

shows that low attenuation is predicted for full saturation by either fluid, with a maximum of

attenuation occurring at an intermediate saturation and minimum of attenuation for full gas

saturation. The location of the maximum attenuation is model dependent, but usually occurs

for gas saturations between 10% and 50%, with a bias towards low gas saturations. Figure 1(c)

shows the maximum value of attenuation is also sensitive to the “crack density” parameter.

This parameter can be used to modulate the frequency-dependence of reflectivity and

calibrate to the real data.

Figure 2 displays the frequency-dependent PP-wave reflection coefficients when varying

water saturation from 100% to 0% every 20%. The interface has high-to-low P-wave

impedance with Class III AVO response. We can see that with the increasing of gas

saturation, the value of reflectivity become larger. An obvious characteristic is these plots

illustrate nearly no dispersion at full gas saturation(f), slight dispersion at full water saturation

(a) and considerable frequency dependence at partial saturation. This reflectivity behaviour is

consistent with the predicted attenuation as shown in Figure 1(b). It is worth to mention that,

for partial gas saturation, the zero offset variation of reflection coefficient due to frequency is

0.015, which is significant in comparison to the variation with offset over the 40° range (0.05

when Sw=60% at 10Hz). This indicates that the variation of reflection coefficients due to

dispersion is significant in partially saturated sand.

Spectral decomposition and balancing

For real seismic data, spectral decomposition techniques may be used to calculate the spectral

amplitude at different frequencies. A variety of spectral decomposition techniques, such as

STFT (Short Time Fourier Transform, Partyka et al., 1999), CWT (Continuous Wavelet

Transform, Sinha et al, 2005), MPD (Matching Pursuit Decomposition, Wang et al., 2007),

WVD (Wigner-Ville Distribution, Wu and Liu, 2009) based methods, have been studied and



used for different applications. Spectral decomposition transforms seismic amplitudes, D(t,

n), at time t and receiver n into spectral amplitudes, S(t, n, f), at frequency f such that,

D(t, n)↔S(t, n, f) (12)

Afterwards, spectral balancing should be performed on the spectral amplitude to remove the

overprint effect of source wavelet (Partyka et al., 1999) if the true spectral behaviour of the

geology and saturating fluid is desired. Various methods such as spectral L-p norm scaling

(Marfurt and Kirlin, 2001), spectral stabilisation (Burnett et al., 2003) and spectral balancing

(Odebeatu et al., 2006; Wilson, 2009) have been proposed. We remove the effect of the

source wavelet by designing a suitable weight function w(n, f),

B(t, n, f)=S(t, n, f)w(n, f) (13)

w(n, f) is calculated from a defined window with k sampling points using the ratio of RMS

amplitudes at the chosen reference frequency f0 and other frequencies as following,
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Then the amplitudes at different frequencies become comparable. We consider a two-layer

Class III P-wave AVO model presented by Chapman et al. (2005), where the top elastic layer

had P- and S-wave velocities of 2743m/s and 1394m/s. For the dispersive model, the lower

layer is defined as a material under water-saturation then substituted with gas by changing the

fluid bulk modulus from 2GPa to 0.2GPa. For the elastic model, the P- and S-wave velocities

of lower layer were calculated from elastic tensor for the dispersive model at low frequency.

Eleven traces for each model are generated using 40Hz Ricker wavelet as the source. The

trace space is 100m.

Figure 3 displays the synthetic gathers of the elastic and dispersive models at the interface

respectively, both of which the amplitudes increase with the offset gradually. However,

compared with the elastic model, the amplitudes for the dispersive model have decreased.



The WVD based spectral decomposition method is performed to calculate the spectral

amplitudes at 25, 30, 40, 50, 60, 70 and 80Hz.

A set of weights are derived in the elastic model by matching the peak amplitude of the

isofrequency trace to the 40Hz amplitude to remove the overprint of source wavelet. These

same weights are applied to the dispersive model. Figure 4 shows a comparison of

isofrequency sections between the elastic and dispersive models at 25, 40, 60 and 80Hz. For

the elastic model (upper), similar energy appears on each isofrequency section after spectral

balance, while for the dispersive model (lower), energy reduces at 25Hz as opposed to elastic

model and decreases significantly with the increase of frequency.

FAVO attributes

AVO attributes (such as intercept, gradient, fluid factor) have been derived from standard

AVO analysis and provided useful fluid information. Analogously, we expect to derive

attributes which can delineate fluid information from FAVO analysis. Wilson et al. (2009)’s

FAVO inversion produces an attribute that measured the frequency-dependence of

reflectivity. Clearly, it would be advantageous to be able to quantitatively relate such attribute

to rock properties of interest.

Our attention is focussed on the particular rock property of interest. We design a two-layer

model with elastic shale overlying fluid-saturated dispersive sandstone. Following the theory

of Boston (2011), the reflectivity at the interface is calculated as a function of rock property

(for instance, gas saturation) frequency and offset. The reflection coefficients of p different

values of gas saturation Xk (k=1,2,…,p), m angles of incidence θi (i=1,2,…,m), n frequencies

fj (j=1,2,…,n) are calculated, and then spliced together into a large matrix of the following

form:
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Following the method of Causse et al. (2007) and Varela et al. (2009), the singular value

decomposition (SVD) is performed on the matrix. This allows us to approximate the

reflection coefficients as a series of weights C, which are a function of rock property X and

frequency f, and basis functions h are a function of angle of incidence:
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The dependence of the weight functions on frequency can be approximated by a linear

relationship,

)()(),( 1 kijikji XdCffCOXfC  (17)

This gives rise to a forward modelling which allows us to carry out intercept-gradient

analysis for the frequency-dependent reflectivity of each rock property. The intercept

attribute is a measure of the “low frequency” reflectivity, while the gradient attribute is a

measure of the frequency-dependence of reflectivity, which is similar to the attribute by

Wilson et al.(2009). Crossplotting the two attributes may help us differentiate different gas

saturation scenarios.

We apply this method to the two-layer model used by Rutherford and Williams (1989). The

lower layer is considered to be saturated with effective fluid of gas and water, where

dispersion and attenuation are introduced. Gas saturation is the reservoir property of interest.

The material parameters for the model are listed in table 2.

The reflection coefficients matrix R are calculated for 15 scenarios of gas saturation, 5 cases

from 1% to 5% with a step of 1%, and the other 10 cases from 10% to 100% with a step of

10%. Then the “intercept-gradient” crossplot can be generated by the foregoing method.



Figure 5 displays the crossplot of the two attributes. It indicates that the intercept attribute

increase with gas saturation. Peak value of the attribute measures “frequency-dependence of

reflectivity” at 5% of gas saturation. From this crossplot, partial gas saturation (larger than

10% and smaller than 50%) and “fizz water” saturation (larger than 1% and smaller than 10%)

are clearly separated.

Bayesian inversion using FAVO analysis

The Bayesian theorem in terms of probability density functions (pdf) can be written as
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where P(m | d) is the pdf of model parameters m when giving the observing data d. P(d | m) is

the pdf of d when given m, which is also known as likelihood function. It measures the misfit

between the forward modelling data r derived from m and the observing data d. High misfit

between r and d will give small likelihood. P(m) is the prior information. P(d) can be

considered as a constant since the data d is observed. Here, we propose a model-based FAVO

inversion technique to estimate porosity and gas saturation from analyses of well logs and

pre-stack seismic data, which has the merit of being readily applicable to field data. The main

steps are as follows:

(i) Spectrally decomposing and balancing pre-stack data along the reservoir position to obtain

the spectral amplitudes d varying with angle of incident θi at frequencies fj,

d = d(θ
i
, f

j
). (19)

(ii) Deriving a starting background model for both upper and lower layers from well log data.

This includes representative values of Vp, Vs and density, or distributions of values, associated

with given petrophysical parameters such as porosity φ and water saturation Sw.

(iii) Calculating the attenuation and frequency-dependent reflection coefficient r for each

realisation of the petrophysical parameters using the parameters derived in step (ii),



r = r(θ
i
, f

j
). (20)

(iv) Comparing r with d, and calculate the misfits between them. This provides a basis for an

inversion of the data in terms of petrophysical parameters.

(v) Using Bayesian theorem to estimate the probability of each scenario of petrophysical

parameters. For estimating the posterior probability of φ and Sw when given the observed

spectral amplitudes d:
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The prior probability P(φ, Sw) can be derived from statistical analysis of well log data. P(d |

φ, Sw) is the likelihood function. We use an empirical relation to estimate P(d | φ, Sw):

)exp(),|( EsSwdP  , (22)

where s is a constant, ΔE is the sum of absolute error between forward modelling

reflectivities g(φ, Sw) and d at each incident angle.
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Equation (21) illustrates that the posterior probability depends on both prior information and

likelihood function. We use the parameters in Table 1, and assume 60% water saturation in

the pores to perform a synthetic study. Under such case, the characteristic frequency is 31Hz

and 11.76 for corresponding Q value. Figure 6 displays the frequency-dependent reflectivity

and phase for the two-layer model. The high-to-low interface gives rise to Class III AVO

with phase around 180 degree. The value of reflectivity is higher with increasing of

frequency. Since the spectral amplitude of a seismic signal become positive value, we

consider the amplitude value without phase effect. 10% Gaussian random noise was added

into the reflectivity as the “observing data”. Then, we can study the potential resolution of the

method for determining variations in porosity and saturation.



We then scan through different combinations of porosity φ and water saturation Sw, and

compute misfit between the theoretical reflectivity and the “observing data”. This analysis is

repeated by replacing the frequency-dependent modelling with the single frequency approach.

The derived misfits can be transformed to likelihood function by using equation (22). Figure

7 displays the likelihood functions, the well known result that it is hard to distinguish

between low and high gas saturations on the basis of Gassmann theory is recovered (b), but

the frequency-dependent theory shows more promising (a). The reason for this result is that

while high and intermediate gas saturations show the same reflectivity for low frequencies,

the frequency-dependence of the reflectivity is different because of the behaviour depicted in

Figure 1. Figure 7(a) shows that the maximum likelihood occurs at 16% porosity and 55%

water saturation. The deviation of water saturation from true value (60%) is due to the

Gaussian random noise added into the “observing data”. Three other local maximum

likelihood values also occur. This indicates that increase in porosity and water saturation to a

certain extent may have similar seismic response, which leads to multi-solutions of

petrophysical parameters. Figure 8 shows the fitting results at the maximum likelihood for (a)

frequency-dependent case and (b) Gassmann case.

Finally, normal distributions of N(0.1, 0.25) for porosity and N(0.9, 0.25) for water saturation

are assumed respectively as the prior information. Figure 9 displays the prior probability of

porosity and water saturation. Figure 10 displays the posterior probability, which is calculated

by multiplying the likelihood functions with the prior information. The frequency-dependent

theory (a) provides more accurate inversion of porosity and saturation than Gassmann theory

(b). The similar procedure can be applied to seismic data for different locations. Seismic data

is compared to the theoretical response for different combinations of porosity and saturation.

As such, this technique can be used to assess the likely changes in porosity and saturation

between zones where seismic data are available.



Conclusions

In this paper, we have discussed the feasibility of using FAVO response for quantitative

estimation of gas saturation. The Frequency-dependent rock physics model is combined with

reflectivity method to calculate the reflectivity that is incident angle, frequency and reservoir

properties (porosity and saturation) dependent. A crossplot of two FAVO attributes is derived

using singular value decomposition, one measured the reflectivity at low frequency and

(intercept) the other measured the frequency-dependence of reflectivity (gradient). Numerical

study demonstrates that crossplotting of the two attributes is able to differentiate the three

cases of full gas saturation, full water saturation and partial gas saturation.

A Bayesian inversion of porosity and saturation is also introduced based on FAVO response.

Through synthetic modelling studies, we have demonstrated that the Bayesian inversion of

FAVO response is theoretically capable of providing more quantitative estimation of

petrophysical parameters than the standard AVO techniques. In real data processing, the field

data can be decomposed and balanced into a set of spectral amplitudes, while the parameter

“crack density” can be used to modulate the frequency-dependence of reflectivity and

calibrate the theoretical reflectivity to real spectral amplitudes. It is worth to mention that not

only suitable for attenuation due to squirt flow, our methodology of estimation gas saturation

also applies to cases where other dispersive mechanisms (such as patchy saturation) give rise

to velocity dispersion. Hence, we argue that it may be possible to estimate gas saturation

from FAVO response with suitable processing and analysis of seismic data.
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Appendix I

Schoenberg and Protazio (1992) gave an explicit solution to the plane-wave reflection and

transmission problem in terms of sub-matrices of the coefficient matrix of the Zoeppritz

equation. Based on Schoenberg and Protazio (1992), Chapman and Liu (2003) derived the

reflectivity, which is incident angle and azimuthal dependent. When fixing a polar angle ψ

and an azimuthal angle θ, the direction of propagation of the plane wave is n = (sinψcosθ,

sinψsinθ, cosψ). Assuming a homogeneous incident P-wave travelling in cosψ, the axis

normal to the interface is taken to be the direction n. The velocity field of the incident wave

will then be of the form:

v=i0epexpiw(s∙x-t)

where ep is polarization and i0 is the amplitude. The slowness ξ of this wave is calculated as

the value of  / having the smallest real part for χ is an eigenvalue of the matrix Cijklnink

and ρ is the density of the rock. We then have s=ξn. The polarization is given by the

eigenvector corresponding to χ. We now calculate expressions for the transmitted and

reflected waves. Snell’s law states that the horizontal slownesses of all waves interacting at

the interface are equal. Since we know s1 and s2, the condition:

|Cijklsisk - ρδjl|=0

In both the upper and lower media gives a bicubic equation on the vertical slownesses.

Solving for the admissible values of s3, the polarizations, e, satisfy the equation:

(Cijklsisk - ρδjl)el=0

and are obtained through singular value decomposition.

The required continuity of displacement and traction of the calculated waves give the

conditions on reflected and transmitted amplitudes. Schoenberg and Protazio(1992) arranged

the interface conditions into a convenient matrix representation. Specifically, the 3×3

reflection matrix R, is given by:



R = (X-1X’-Y-1Y’)(X-1X’+Y-1Y’)-1

Where the matrices X, X’, Y and Y’ are as defined in Schoenberg and Protazio (1992), with

the slownesses and polarizations taken from the above calculation. The PP reflection

coefficient corresponding to the angles (ψ, θ) is given by R11.
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Figure 1 P-wave attenuation (100/Q) varying with (a)
frequency; (b)gas saturation; (c)crack densities,
predicted by the theory of Chapman et al. (2002). A
crack density of 0.15 and porosity of 10% are given in
(a). A crack density of 0.15 is given in (b). A porosity
of 10% is given in (c). The values of attenuation peak
at low gas saturation (about 20%) and go down to
minimum values at full gas saturation. Attenuation
also depends on crack density, which can be used for
calibrating theoretical reflectivity to real data.

(c)

(a) Sw=100%,Sg=0% (b) Sw=80%,Sg=20%

(c) Sw=60%,Sg=40% (d) Sw=40%,Sg=60%



(e) Sw=20%,Sg=80% (f) Sw=0%,Sg=100%
Figure 2. P-wave reflection coefficients as a function of incident angle for a series of frequencies when varying
water saturation from 100% to 0%. The porosity is 10%. The maximum frequency-dependence of reflectivity
occurs when gas saturation is 40%. High frequency-dependence of reflectivity is predicted for full water
saturation while nearly frequency-independence for full gas saturation.
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Figure 3 Synthetic reflection gathers at the interface for the two-layer model, with elastic layer (Left) and
dispersive layer (Right) as the lower layer. Amplitudes exhibit Class III AVO feature for the two gathers.
However, amplitudes for the dispersive model have decreased due to frequency-dependence of elastic
impedance.



Figure 4 Isofrequency sections of (upper) the elastic gather and (lower) dispersive gather at 25Hz, 40Hz, 60Hz
and 80Hz. Spectral balance based on the input wavelet has been carried out with 40Hz as reference frequency.
For the elastic case, reflection energy conserved at different frequency. For the dispersive case, reflection energy
decreases with increase of frequency.

Figure 5: Crossplot of “low-frequency-reflectivity” (Intercept) versus “frequency-dependence of reflectivity”
(Gradient). Values labelled near the pink squares refer to gas saturation. Large intercept and frequency-
dependence occur around 5% gas saturation. Full water saturation has low intercept. Full gas saturation has
nearly no frequency-dependence of reflectivity.



(a) (b)
Figure 6. Frequency-dependent reflectivity (a) and phase (b) at the interface of the two-layer model, using
Chapman et al.(2002) theory. The reflectivity does not contain phase information. The high-to-low interface
gives rise to Class III AVO with phase around 180 degree.

(a) Frequency-dependent case (b) Gassmann case
Figure 7. Likelihood functions transformed from misfits between the theoretical reflectivity and the “observing
data” using an exponential relation. Red and white colours represent highly likelihood of the porosity and water
saturation to the true value. The true value of porosity (16%) and water saturation (60%) is labelled with white
circle.



(a) Frequency-dependent case (b) Gassmann case
Figure 8. The fitting results for the maximum likelihood of porosity and water saturation. For frequency-
dependent case (a), φ=16%, Sw =55% and for Gassmann case (b), φ=17%, Sw =85%. Symbols represent the
“observing data”, curves represent the modeling reflectivity.

Figure 9. The prior information for porosity and water saturation. Both of the porosity and water saturation are
assumed to be normally distributed, with mean value μ = 10% and variance σ2 = 0.25 for porosity, and μ = 90%
and σ2 = 0.25 for water saturation.

(a) Frequency-dependent case (b) Gassmann case
Figure 10 The posterior probability of porosity and water saturation for frequency-dependent case (a) and



Gassmann case (b). The true value of porosity (16%) and water saturation (60%) is labelled with white circle.
The frequency-dependent case (a) provides more accurate estimation of porosity and water saturation.

Table 1 The material parameters for the two-layer model with shales overlying sandstone reservoir.

Layers Vp(km/s) Vs(km/s) Vp/Vs Den(g/cm3) Porosity Crack density Water saturation
Upper 3.200 1.600 2.0 2.50
Lower 3.100 1.865 1.66 2.35 0.16 0.15 0.60

Table 2 The material parameters for the two-layer model by Rutherford and Williams (1989)with
shales overlying sandstone reservoir.

Layers Vp(m/s) Vs(km/s) Poisson ratio Den(g/cm3) Porosity
Upper 4000 1760 0.15 2.4
Lower 3800 2438 0.38 2.0 0.12


