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Summary  26 

 Understanding how species’ traits relate to their status (e.g. invasiveness or rarity) is 27 

important because it can help to efficiently focus conservation and management effort and 28 

infer mechanisms affecting plant status. This is particularly important for invasiveness in 29 

which pro-active action is needed to restrict the establishment of potentially invasive plants.  30 

 We tested the ability of genome size (DNA 1C-values) to explain invasiveness and compared 31 

it to cytogenetic traits (chromosome number and ploidy level).We considered 890 species 32 

from 62 genera, from across the angiosperm phylogeny and distributed from tropical to boreal 33 

latitudes. 34 

 We show that invasiveness was negatively related to genome size and positively related to 35 

chromosome number (and ploidy level) yet there was a positive relationship between genome 36 

size and chromosome number, i.e. our result was not due to co-linearity between the traits. 37 

Including both traits in explanatory models greatly increased the explanatory power of each. 38 

 This demonstrates the potential unifying role that genome size, chromosome number and 39 

ploidy have as species’ traits, despite the diverse impacts they have on plant physiology. It 40 

provides support for the continued cataloguing of cytogenetic traits and genome size of the 41 

world’s flora.  42 

 43 

Key words: DNA 1C-value, holoploid genome size, invasive, genomic traits, phylogenetic signal, 44 

angiosperm 45 

46 
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INTRODUCTION 47 

Analyses of how traits of different species relate to aspects of their status have been long 48 

considered as a tool in conservation biology (Fisher & Owens, 2004). From these relationships, it 49 

is possible to infer the mechanisms that promote or permit species’ status, e.g. their rarity, 50 

invasiveness or population trends. However, while such approaches have been widely used they 51 

have had mixed success, with sometimes inconsistent results across taxonomic groups or 52 

geographic regions (Williamson & Fitter, 1996; Kunin & Gaston, 1997; Pyšek & Richardson, 53 

2007). 54 

Invasiveness is a trait that is especially valuable to consider with cross-species analyses because 55 

there is great value in identifying species likely to be invasive, given the huge difference in the 56 

cost of management of invasives at different stages in their establishment (Pyšek & Richardson, 57 

2010). Of course, invasiveness is, to an extent, context-specific (van Kleunen et al., 2010a). 58 

However, if invasive species could be predicted from their traits then it would support 59 

governments’ efforts to fulfil their obligation to “as far as possible and as appropriate, prevent the 60 

introduction of, control or eradicate those alien species which threaten ecosystems, habitats or 61 

species” (Article 8h in the Convention on Biological Diversity (CBD)). Several biological traits 62 

have been shown to be important in explaining plant invasiveness, e.g. short generation time, high 63 

growth rate and high fitness (Pyšek & Richardson, 2007; van Kleunen et al., 2010b,a; Ordonez et 64 

al., 2010; Schmidt & Drake, 2011). Also species’ traits such as chromosome number and ploidy 65 

level have shown potential in explaining invasiveness (Soltis & Soltis, 2000; Pandit, 2006; Pandit 66 

et al., 2006, 2011). In addition to these traits, genome size has been used successfully to explain 67 

extinction risk (Vinogradov, 2003), and although it has a variable effect on invasiveness in 68 

individual taxa (Gallagher et al., 2011; Varela-Álvarez et al., 2012) there has been no attempt at 69 

assessing this at a large scale across the plant phylogeny. 70 
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Genome size is an invariant characteristic of an individual and usually invariant within a species; 71 

the amount of nuclear DNA follows a set of simple multiples of its basic quantity, designated as 72 

‘C-values’ (1C, 2C, 4C, 8C...). 1C is the amount of DNA in the unreplicated gametic nucleus of an 73 

organism, i.e. the holoploid genome size (Greilhuber et al., 2005) and the C-values have 74 

subsequently been used as a reference value for genome size studies. Nuclear DNA content varies 75 

approximately 2400-fold in angiosperms due to changes in the amount of non-coding DNA 76 

sequences and genome duplication (Bennett & Leitch, 2011). Despite what was once thought, it 77 

has no relationship with an organism’s phenotypic complexity (Gregory, 2001), but it does 78 

influence a wide array of characteristics, e.g. rate of cell division, sensitivity to radiation and 79 

ecological behaviour in plant communities (reviewed in Bennett, 1987; Bennett & Smith, 1991). 80 

Genome size has been described as a trait that “uniquely lies at the intersection of phenotype and 81 

genotype” (Oliver et al., 2007) and, for this reason, it has also been described as an “important 82 

biodiversity character, whose study provides a strong unifying element in biology with practical 83 

and predictive uses” (Bennett & Leitch, 2005). In plants, comparative studies have suggested that 84 

large genome size is maladaptive through its constraints on plant physiology (Vinogradov, 2003; 85 

Knight et al., 2005). However, some have also suggested that large genome sizes may be 86 

beneficial, e.g. in some fish high DNA C-values (due to the accumulation of non-coding DNA) are 87 

associated with lower basal metabolic rates, which appears to allow them to adapt to 88 

environmental niches with lower energy supply (Szarski, 1983).  It is also possible that variation 89 

in genome size has little adaptive value: the neutral theory of selection (Oliver et al., 2007). 90 

Genome size influences a wide range of plant physiological and evolutionary traits (Bennett & 91 

Leitch, 2005) which have individually been shown to relate to invasiveness (van Kleunen et al., 92 

2010b), so we expected that invasive plants would have relatively small genome size. This fits 93 

with the conjecture that large genome size is maladaptive (Orgel & Crick, 1980; Rejmánek, 1996). 94 
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Based on predictions of the effects of genome duplication and polyploidisation, we expected that 95 

genome size would be positively correlated with the cytogenetic traits (ploidy and chromosome 96 

number). However, we also expected a positive effect of ploidy and chromosome number on 97 

invasiveness (Pandit, 2006; Pandit et al., 2006, 2011; Schmidt & Drake, 2011) because 98 

chromosome number is positively related to rates of adaptation (te Beest et al., 2012) and 99 

polyploidy leads to an evolutionary advantage due to effects of heterosis and gene redundancy 100 

(Comai, 2005). The fact that these pairs of expectations are contradictory with each other was 101 

identified by Rejmánek (1996), who also identified that “research on this subject seems to be very 102 

scanty”. 103 

In the current study we tested for relationship of genome size with invasiveness in angiosperms, 104 

using a global dataset of species from across the angiosperm phylogeny. We compared these 105 

results with the relationship of cytogenetic traits (chromosome number and ploidy) with 106 

invasiveness. Throughout we considered phylogeny and the latitude of each species, given the 107 

evidence of both on genome size (Bennett et al., 1998; Knight et al., 2005). 108 

MATERIALS AND METHODS 109 

Data on chromosomal data and invasiveness 110 

Holoploid genome size (DNA 1C-values of species in pg) and chromosome numbers were 111 

collated from the Kew Royal Botanic Gardens Plant C-values database, release 5.0 112 

(http://data.kew.org/cvalues/; (Bennett & Leitch, 2010)). We undertook analyses on a balanced 113 

subset of the species for which there was information on genome size, ploidy level and 114 

chromosome number (described in the ‘Data analysis’ section below). We defined invasive plants 115 

as those that were included in the Global Invasive Species Database (GISD; 116 

http://www.issg.org/database) and Pacific Island Ecosystems at Risk (PIER; 117 

http://www.hear.org/pier/scientificnames/scinamea.htm) list. These two databases provide a global 118 

http://data.kew.org/cvalues/
http://www.issg.org/database
http://www.hear.org/pier/scientificnames/scinamea.htm
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perspective on invasiveness in plants. Our dataset therefore had similar scope and global 119 

geographic coverage to our previous study (Pandit et al., 2011). 120 

Latitudinal data 121 

It has previously been suggested that genome size and cytogenetic traits vary according to latitude, 122 

with a peak at temperate latitudes (Bennett, 1987; Knight et al., 2005). We therefore extracted 123 

information on the distribution of each species from the Global Biodiversity Information Facility 124 

(accessed through GBIF Data Portal, data.gbif.org, 2013-02-04) by calculating the average latitude 125 

of the centres of one-degree latitude/longitude grid cells in which the species had been recorded. 126 

The extraction of these data from GBIF was automated with the Rgbif package (Chamberlain et 127 

al., 2012) in R 2.15.2 (R Core Team, 2012), with additional code written by us to gather data on 128 

all the synonyms of each taxon under consideration (as listed by GBIF). We considered the 129 

distribution of occupied cells rather than the distribution of individual records because it was more 130 

robust to spatial variation in recorder intensity and considered the absolute value of latitude 131 

because it provides a better assessment of the latitude for species introduced from the southern to 132 

northern hemisphere or vice versa. A small number of records may have been wrongly geo-133 

located, but our observation of the location data suggests this is negligible in influencing the 134 

average absolute value of latitude. 135 

Phylogenetic data 136 

We constructed the phylogenetic tree according to a fully resolved family-level phylogeny 137 

(R20120829.new) in Phylomatic v3 (Webb & Donoghue, 2005), based on the Angiosperm 138 

Phylogeny (APG III, 2009). We calibrated the branch lengths in the tree using the BLADJ 139 

algorithm in Phylocom 4.2 (Webb et al., 2008). It assigns dates to nodes contained in a dated tree 140 

(Wikström et al., 2001) and then divides the remaining, unassigned, nodes evenly across time. 141 

Although simple, this is a widely-used routine that improves on alternative methods for calibrating 142 
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phylogenetic trees (Webb, 2000) and provides similar results in phylogenetically-informed 143 

analyses to other methods (e.g. Davies et al., 2013). The minimum branch lengths from this 144 

analysis were 6.25 my, but because we wanted to include all aneuploids (chromosome number 145 

variants within a species; 63 instances across 52 species) in the analysis, we set their branch 146 

lengths to an arbitrary small value of 0.1 my. 147 

Data analysis 148 

In our analysis we tested the relationships of invasiveness with genome size and chromosome 149 

number, with and without latitude as a covariate. We found that there were computational 150 

limitations in adopting a fully phylogenetically-informed approach with the whole dataset; 151 

specifically the highly unbalanced nature of the full dataset (i.e. 90% of genera in the full dataset 152 

did not have invasive species present) regularly led to lack of model convergence, while runtime 153 

was estimated to be at least several weeks for each model (it scaled exponentially with sample 154 

size). Therefore we undertook the analysis with the 62 genera for which there were both invasive 155 

and non-invasive species. We thus excluded 854 and 35 genera for which there were, respectively, 156 

only non-invasive and invasive species, although the majority of these genera (61%) comprised 157 

only one species. We excluded a further 50 species for which distribution data was not present in 158 

GBIF, but excluding these species did not influence the final number of genera. Overall, we 159 

reduced the overall sample size from 4504 to 890 species (see Results), but we retained as many 160 

highly informative comparisons as possible (i.e. between congeners; Pandit et al., 2011), while 161 

creating a smaller, more balanced dataset suitable for analysis. This then was akin to a ‘sister 162 

pairs’ analysis. Importantly, because species within a genus have a tendency to regionally co-163 

occur, this analysis also helps to account for regional variation in the intensity of records in GBIF 164 

(Yesson et al., 2007) and the unbalanced geographical representation of the Kew Plant C-values 165 

database (Leong-Škorničková et al., 2007). 166 
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Given that species’ traits are often not randomly distributed across phylogenetic trees, we 167 

undertook analyses with a phylogenetically-informed approach, thus incorporating an appropriate 168 

degree of phylogenetic signal (Revell, 2010). In our analyses when the response trait was 169 

continuous, we used phylogenetic generalised least squares (PGLS) analyses using the function 170 

‘pgls’ in ‘caper’ (Orme et al., 2011). When the response variable was binary (e.g. invasive or not), 171 

we used phylogenetic logistic regression (PLR) (Ives & Garland, 2010), which is a logistic 172 

regression with the appropriate degree of phylogenetic signal, run in MATLAB (Release 2013a, 173 

The MathWorks, Inc., Massachusetts) with code available from T. Garland. 174 

For all analyses, we complemented the fully phylogenetically-informed approaches with a 175 

generalised linear mixed model (GLMM) in which genus was treated as a random intercept, thus 176 

retaining within-genus comparisons. Although reporting both phylogenetically-informed and 177 

cross-species analyses is not recommended (Freckleton, 2009), the value of using GLMMs is that 178 

they allowed us to assess model fit (both absolute model fit with r
2
 and relative model fit with 179 

Akaike’s information criterion: AIC); these values are not currently possible to obtain for PLRs 180 

(Ives & Garland, 2010). Model fit was apportioned as the proportion of variance explained by the 181 

fixed effects (r
2

GLMM(m)) and the proportion of variance explained by the total model (r
2

GLMM(c))  182 

(Nakagawa & Schielzeth, 2013). These models were run with the function ‘lmer’ and the 183 

significance of the variables were estimated with ‘mcmcamp’ in ‘lme4’ (Bates et al., 2012) in R 184 

2.15.2. 185 

We also tested for a positive relationship between genome size and cytogenetic traits 186 

(chromosome number and ploidy) by using PGLS models with genome size as the dependent 187 

variable and by considering the additive and interaction effects of latitude on the relationship. 188 
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RESULTS 189 

Our final dataset comprised the species for which we had chromosome numbers, genome size and 190 

distribution data, from all genera for which there were both invasive and non-invasive species: i.e. 191 

890 species from 62 genera in 27 families belonging to 21 orders. The species in the dataset were 192 

from across the angiosperm phylogeny (Fig. S1) and were well distributed across latitudes, from 193 

tropical to northern temperate regions (Fig. S2). 194 

We found that invasiveness was negatively related to holoploid genome size but positively related 195 

to chromosome number (Table 1; Figs 1 & 2). We found best support for models that included 196 

genome size and chromosome number together. In these models the qualitative results were the 197 

same as for the traits individually but the magnitude and significance of the effects was increased 198 

(Table 1; Figs 1 & 2). The models explaining invasiveness showed little phylogenetic signal (in 199 

the PLRs the measure of phylogenetic signal was low: a< -2.7; Ives & Garland, 2010) which is 200 

what we expected because ‘invasiveness’ is a complex trait that is not directly inherited. These 201 

findings confirmed our expectations, and the simplest way of explaining them is that the two 202 

independent traits are negatively associated. However, the findings were particularly striking 203 

because genome size and chromosome number are actually positively related, as we predicted 204 

(Figs 2 & S3; Table S1). This positive relationship showed strong phylogenetic signal (in the 205 

PGLS models the measure of phylogenetic signal was high:  > 0.92; Revell, 2010) which 206 

confirmed our expectations because both genome size and chromosome number are directly 207 

inherited. 208 

We used three lines of evidence supporting the conclusion that genome size and chromosome 209 

number are best included together in models to explain invasiveness: model fit (r
2
), relative model 210 

fit (AIC) and standardised effect sizes (the latter two as recommended by Freckleton (2009)). It is 211 

not currently possible to obtain r
2
 or AIC for PLRs (Ives & Garland 2010) so we relied on the 212 
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results of the GLMMs. We were confident in doing this because the measure of phylogenetic 213 

signal in the PLRs was low (a< -2.7) and model parameters were similar between the two (Table 214 

1). The fit of the fixed effects to the data (r
2

GLMM(m)) increased considerably when the two traits 215 

were included together (i.e. r
2
 rose from <4% with each univariate model to 9% with both traits; 216 

Table 1). The best fitting candidate model (i.e. lowest AIC) was that which included both traits, 217 

with some support for the model with an interaction between the two and decreasing support for 218 

the models with chromosome number alone and genome size alone (Table 1). The standardised 219 

model parameters revealed that standardised effect sizes of genome size and chromosome number 220 

were similar in magnitude, albeit in opposite directions, but when included together the magnitude 221 

of each almost doubled (Fig. 2). In other words, genome size not only explains variation in 222 

invasiveness but, importantly, it explains residual variation of the relationship of chromosome 223 

number with invasiveness.  224 

We present results for chromosome number because this is a directly observable trait but all our 225 

reported results were very similar with ploidy level (Tables S1 & S2). Latitude was not an 226 

important explanatory variable for invasiveness, chromosome number or ploidy level (Table S3). 227 

Genome size was significantly higher at higher latitudes but there was no evidence of a unimodal 228 

(quadratic) relationship. Latitude was not an important covariate in models explaining 229 

invasiveness (Table S2).  There was little phylogenetic signal in the results (the value of 230 

phylogenetic signal, a, in the PLR models was always < -2.7 (Tables 1 and S2; Ives & Garland, 231 

2010). Also, although we used information on invasive plants from two sources (the GISD and the 232 

PIER database), all our results were qualitatively similar whether considering GISD alone, PIER 233 

alone or both (Table S4). 234 

The simplest explanation for our findings about the relationship between genome size or 235 

chromosome number and invasiveness was that the two are negatively associated, but the data 236 
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confirmed out expectations that genome size is significantly positively related to chromosome 237 

number. The simplest PGLS model was: log2 (DNA C-value) = -1.327 + (0.460  238 

log2(chromosome number)), with both intercept and slope being significantly different from zero 239 

(P=0.047 and P<0.001, respectively). Therefore, a doubling of chromosome number results in a 240 

1.38-fold increase in genome size (because 2
0.460

 = 1.38).  However there was support for a more 241 

complex PGLS model in which genome size was a function of the interaction between 242 

chromosome number and latitude squared. The relationship of genome size with chromosome 243 

number was steepest at high latitudes (a doubling of chromosome number resulted in a 1.8-fold 244 

increase in genome size when latitude was 55°, but a 1.3-fold increase at 30°; Fig. S3). In all 245 

PGLS models the effect of phylogeny was substantial (>0.925, indicating strong phylogenetic 246 

autocorrelation). There was a similarly strong relationship of genome size with ploidy level (Table 247 

S1). 248 

DISCUSSION 249 

The results presented in this study show that there is strong evidence that invasiveness is 250 

associated with both smaller genome sizes and larger chromosome numbers (and ploidy levels). 251 

The results also show that there is synergy in explaining invasiveness with both traits together 252 

rather than considering each separately. The results for the individual traits are despite the 253 

conflicting positive relationship of genome size with chromosome number (and ploidy) and so all 254 

three sets of relationships (Fig. 2) confirm the conjecture of Rejmánek (1996) using a global 255 

dataset of species from across the angiosperm phylogeny.  256 

Our results raise two important questions. The first question is: how is it possible for all three 257 

relationships to be significant when they appear to conflict? Co-linearity between genome size and 258 

chromosome number would have been the simplest explanation, but these traits are positively 259 
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related (Fig. 2), so co-linearity is not the answer (Rejmánek, 1996). The effect of genome size and 260 

chromosome number is much stronger when considering both traits together in an analysis (i.e. 261 

standardised betas are increased; Fig. 2), which shows the important of genome size, when 262 

considering the effect of chromosome number, and vice versa. Therefore, one parsimonious 263 

interpretation is that invasiveness is related to changes in chromosome number/ploidy (and its 264 

consequent effect on genome size) and to changes in genome size for a given chromosome 265 

number/ploidy. Genome downsizing after whole genome duplication (Ibarra-Laclette et al., 2013) 266 

also helps explain these effects and there may be interactions between the effects of genome size 267 

and ploidy on plant physiology, e.g. increases in genome size being more important as ploidy level 268 

increases (Bennett & Smith, 1972). 269 

The second important question raised by the results is: what are the causal mechanisms explaining 270 

the relationship of invasiveness with genome size and chromosome number/ploidy? Genome size, 271 

chromosome number and ploidy each have effects on diverse aspects of plant physiology, and 272 

there are many mechanisms by which they may influence plant status, such as invasiveness. 273 

Considering genome size, it appears to affect adaptability of plant species, with larger genome 274 

sizes failing to adapt to variable habitats, while plants with smaller genomes, thrive successfully 275 

and become invasive (Bennett, 1987; Bennett et al., 1998). This is possibly because smaller 276 

genomes are associated with smaller cell size (Cavalier-Smith, 1982) and faster rates of mitotic 277 

and meiotic divisions (Gregory, 2001; Knight & Beaulieu, 2008; Francis et al., 2008), faster 278 

germination (Minelli et al., 1996) and hence reduced generation times (Bennett, 1972; Grime et 279 

al., 1985; Mowforth & Grime, 1989). It is likely that this is an adaptation to time-limited 280 

envionrments, so pre-adapting the plant to invasiveness (Rejmánek, 1996). Smaller genome size is 281 

also associated with smaller seed mass (Bennett, 1987; Knight & Ackerly, 2002) and lower plant 282 

height (Minelli et al., 1996), which due to complex trade-offs in plant traits could lead to 283 
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increased or decreased spread of spread and competetiveness (Thomson et al., 2011; Caplat et al., 284 

2012). Even stronger evidence for these mechanisms comes from within-species studies, e.g. that 285 

genome downsizing leads to increased colonization potential (Lavergne et al., 2010). Polyploidy, 286 

and hence higher chromosome numbers, also contribute to increase invasiveness through the 287 

beneficial effects of heterosis, increased speed of cell division, gene redundancy and increased 288 

phenotypic variation (Bennett & Smith, 1972; Comai, 2005; te Beest et al., 2012) which can ‘pre-289 

adapt’ taxa to be invasive or to evolve invasiveness (te Beest et al., 2012).  Empirical studies on 290 

individual invasive plant species such as Centaurea stoebe (=C. maculosa) (Treier et al., 2009; 291 

Hahn et al., 2012) and Claytonia perfoliata  (McIntyre, 2012) help elucidate these mechanisms 292 

and they have been discussed in previous cross-species studies on the effect of chromosome 293 

number and ploidy on plant status (Pandit, 2006; Pandit et al., 2011).  294 

We found no effect of latitude on the relationship of chromosomal traits with invasiveness (Table 295 

S2), but genome size increases with latitude, when taking chromosome number into account, and 296 

it increases more rapidly with chromosome number at higher latitudes (Table S1; Fig. S3). This 297 

relationship appeared linear rather than unimodal (Bennett et al., 1998; Knight et al., 2005) 298 

probably because we had few high latitude species in the dataset (the absolute latitude of the range 299 

of most species was < 60°) and the omission of arctic species may explain the lack of an observed  300 

relationship of latitude with ploidy. 301 

Plant traits such as genome size, ploidy and chromosome number show potential to be unifying 302 

characters explaining plant status, but we believe that there is important future work to further 303 

elucidate the mechanisms linking these traits to invasiveness and to discover how these relate to 304 

the different stages in the route to becoming invasive (Kubešová et al., 2010).  Within this context, 305 

the intention to continue cataloguing the genome size of the world’s flora (Galbraith et al., 2011; 306 

Bennett & Leitch, 2011) is to be welcomed. We note, however, that increasing representation of 307 
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species within genera, where arguably it is most useful in conservation practice, is not a specific 308 

target of the Plant Genome Size workshops (Bennett & Leitch, 2011). Despite holoploid genome 309 

size being “less cumbersome” to measure than chromosome number (Galbraith et al., 2011), our 310 

results show that both traits are important and data on both traits should be collected for maximum 311 

benefits to conservation practice.  312 

Finally, the bigger evolutionary question that needs to be answered is the role and existence of 313 

‘selfish’ DNA (Orgel & Crick, 1980). Whether or not genome size is under direct selection 314 

(Oliver et al., 2007), increased genome size does appear, through its diverse impacts on plant 315 

competitiveness, plasticity, speed of adaptation or dispersal, to be negatively related to plant 316 

‘success’ whether that is considering the ability of species to become invasive (Figs 1& 2), avoid 317 

becoming rare (Vinogradov, 2003), or respond to climate change (Caplat et al., 2013). Having a 318 

holistic approach to understanding the status of species is therefore important (van Kleunen & 319 

Richardson, 2007; Caplat et al., 2013). Mechanisms influencing genome size, apart from 320 

polyploidy, still remain to be addressed; for example, if smaller genomes proffer adaptive 321 

advantage to plant species, is this because redundant or repetitive sequences are trimmed from the 322 

genome? Even though this study does not provide answers to these questions, the clear 323 

associations that we have uncovered and the links with putative physiological mechanisms makes 324 

the study of genome size a potentially powerful tool for conservation and evolutionary biologists. 325 
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  Phylogenetic logistic 

regression (PLR)* 

Generalised linear mixed model (GLMM) with genus as a 

random effect 

Model Parameters Beta P a† Beta P AIC AIC

‡ 

r
2

GLMM(m)§ r
2

GLMM(c)§ 

1 Log2 (DNA 1C-value) -0.186 0.020 -3.02 -0.172 0.095 708.43 14.17 1.4% 15.2% 

2 Log2 (Chromosome number) 0.315 0.007 -2.71 0.519 <0.001 699.88 5.63 3.7% 17.1% 

3 Log2 (Chromosome number)  0.522 <0.001 -3.06 0.653  <0.001 694.26 0 9.0% 18.6% 

 Log2 (DNA 1C-value) -0.311 <0.001  -0.299 0.005     

4 Log2 (Chromosome number)  0.469 0.013 -3.02 0.609 0.006 696.18 1.92 9.3% 19.0% 

 Log2 (DNA 1C-value) -0.440 0.326  -0.450 0.410     

 Log2 (Chromosome number) : 

Log2 (DNA C-value) 

0.028 0.761  0.032 0.776     

Table 1. Effect sizes (unstandardised beta) from the relationship of plant invasiveness with genome size (DNA 1C-value; model 1) and 

chromosome number (model 2), both together (model 3) and together with an interaction (model 4), with the best supported model being 

model 3. 

* We were unable to perform model selection for the PLRs due to the lack of a verified method for calculating model fit (AIC or r
2
) for these 

types of models, so we included GLMMs to provide an assessmentof fit. 

† a is a measure of the phylogenetic signal of the PLR; values <-2 indicate weak phylogenetic signal. 

‡AIC is an assessment of the relative model fit and is the difference between the model Akaike’s Information Criterion (AIC) and the minimum 

AIC. 
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§r
2

GLMM is an assessment of the variance explained (i.e. the absolute model fit) when considering: (m) the fixed effects alone, and (c) the fixed and 

random effects.
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Fig. 1. The relationship of the probability that a species in our dataset is invasive with (a) 

genome size (DNA 1C-value), (b) chromosome number, and (c) chromosome number and 

genome size. In (a) and (b) the results of the fully phylogenetically-informed analyses 

(phylogenetic logistic regression; PLR) are shown in red, while from the GLMM the overall 

average effect is shown in black and effects for individual genera are shown in grey. Individual 

data points are shown as translucent points and are jittered in the y-axis for clarity. These genus-

level random effects and individual data points are omitted for clarity in (c). In (c) the additive 

effect of genome size is presented at low, medium and high values (DNA 1C-value = 0.5, 2 and 

8, respectively). Relationships with ploidy level instead of chromosome number are very similar, 

and so are not shown. 
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Fig. 2. Standardised effect sizes of the phylogenetic logistic regressions (PLR) between 

holoploid genome size (DNA 1C-value), chromosome number and invasiveness. Arrow widths 

are proportional to standardised effect sizes and significance is indicated by *=P<0.05 and 

**=P<0.001. Black arrows indicate negative relationships, white arrows indicate positive 

relationships. The joined arrow indicates the model in which the two traits are included as 

additive effects. 
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Fig. S1 A phylogeny of the genera included in the final analysis, showing the number of non-invasive 

(‘Non’) and invasive (‘Inv’) species included in our dataset in each genus, and the order they belong to 

(according to the APG III (2009)). Tree branch lengths were estimated using the ‘bladj’ algorithm, as 

described in the Methods.  
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Fig. S2 The mean of the absolute value of latitude for each species in the dataset, as derived from 

records in GBIF, grouped by genus.
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Fig. S3 The relationship of genome size (independent variable) with chromosome number from the best 

phylogenetic generalised least squares (PGLS) model, showing the interaction with latitude. The overall 

model included latitude and its interaction with genome size but for ease of interpretation, the model 

outputs for three reference latitudes is shown.  
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Table S1 Genome size (the dependant variable) and its relationship to cytogenetic traits (chromosome 

number and ploidy level) and latitude as demonstrated with phylogenetically-informed models 

(specifically phylogenetic generalised least squares models: PGLS). According to model selection with 

AIC, ploidy was a better fit to genome size than chromosome number, but for the main text we have 

presented our analyses with chromosome number because this is a directly-observable trait. The 

measure of phylogenetic signal (lambda) was close to one, indicating strong phylogenetic signal in the 

PGLS analyses. 

  PGLS     

Model Covariates beta P  AIC AIC 

1 Log2(Chromosome number) 0.460 <0.001 0.926 2143.23 60.18 

2 Log2(Chromosome number) +  0.460 <0.001 0.925 2139.57 56.53 

    Latitude 0.007 0.018    

3 Log2(Chromosome number) +  0.266 0.005 0.935 2136.14 53.09 

    Latitude + -0.026 0.066    

    Log2(Chromosome number): Latitude 0.007 0.017    

4 Log2(Chromosome number) +  0.464 <0.001 0.925 2138.99 55.94 

    Latitude + 0.021 0.023    

    Latitude
2
 -0.000 0.109    

5 Log2(Chromosome number) +  0.553 0.001 0.928 2134.45 51.40 

    Latitude + 0.098 0.100    

    Latitude
2
 + -0.002 0.034    

    Log2(Chromosome number): Latitude + -0.017 0.179    

    Log2(Chromosome number): Latitude
2
 0.000 0.057    

6 Log2(Ploidy level) 0.564 <0.001 0.931 2094.63 11.59 

7 Log2(Ploidy level) +  0.564 <0.001 0.931 2091.34 8.30 
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    Latitude 0.007 0.022    

8 Log2(Ploidy level) +  0.263 0.011 0.940 2083.04 0 

    Latitude + -0.007 0.150    

    Log2(Ploidy level): Latitude 0.010 0.001    

9 Log2(Ploidy level) +  0.567 <0.001 0.931 2090.73 7.69 

    Latitude + 0.020 0.024    

    Latitude
2
 -0.000 0.107    

10 Log2(Ploidy level) +  0.380 0.063 0.938 2083.60 0.56 

    Latitude + 0.020 0.355    

    Latitude
2
 + -0.000 0.179    

    Log2(Ploidy level): Latitude + 0.000 0.977    

    Log2(Ploidy level): Latitude
2
 0.000 0.498    
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Table S2 Plant invasiveness (the dependent variable) and its relationship to genome size (DNA 1C-value) 

and cytogenetic traits (chromosome number and ploidy level). The linear and quadratic effect of latitude 

on the relationship is also shown. The dataset comprised 890 species in 62 genus from across the 

angiosperm phylogeny and distributed globally. Latitude was the mean of the absolute value of 1 grid 

cells in which the species had been recorded. ‘n.c.’ indicates models that did not converge. We show 

that the phylogenetic logistic regressions (PLR) and generalised linear mixed models (GLMM; with genus 

as a random effect) provide similar results. Even though it is recommended not to use multiple 

modelling approaches (Freckleton, 2009), we do so in order to show the similarity between the two 

approaches and hence justify interpretation of the AIC values, which are currently not available for PLR 

models. 

  PLR   GLMM    

Model Parameters Beta P a* Beta P AIC AIC 

With no effect of latitude        

1 Log2(Chromosome number) 0.316 0.007 -2.7 0.519 <0.001 699.88 7.8 

2 Log2(Ploidy level) 0.372 0.009 -2.8 0.581 <0.001 700.16 8.0 

3 Log2 (DNA 1C-value) -0.186 0.020 -2.8 -0.172 0.095 708.43 16.3 

4 Log2(Chromosome number) 0.522 <0.001 -3.1 0.653  <0.001 694.26 2.1 

 Log2 (DNA 1C-value) -0.311 0.001  -0.299 0.005   

5 Log2(Ploidy level) 0.719 <0.001 -3.0 0.815 <0.001 692.12 0.0 

 Log2 (DNA 1C-value) -0.355 <0.001  -0.355 0.001   

6 Log2(Chromosome number) 0.469 0.013 -3.0 0.609  0.006 696.18 4.1 

 Log2 (DNA 1C-value) -0.440 0.326  -0.450  0.410   

 Log2(Chromosome number): Log2 (DNA 1C-value) 0.028 0.761  0.032 0.776   

7 Log2(Ploidy level) 0.730 0.001 -3.0 0.805 0.001 694.12 2.0 

 Log2 (DNA 1C-value) -0.336 0.074  -0.367 0.105   
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 Log2(Ploidy level): Log2 (DNA 1C-value) -0.011 0.923  0.008 0.952   

With a linear effect of latitude        

1 Log2(Chromosome number) 0.316 0.007 -2.7 0.518 <0.001 701.78 9.7 

 Latitude -0.003 0.723  -0.003 0.752   

2 Log2(Ploidy level) n.c.   0.585 <0.001 701.88 9.8 

 Latitude    -0.005 0.592   

3 Log2 (DNA 1C-value) -0.163 0.035 -4.0 -0.171 0.098 710.32 18.2 

 Latitude -0.009 0.226  -0.003 0.735   

4 Log2(Chromosome number) n.c.   0.652 <0.001 696.23 4.1 

 Log2 (DNA 1C-value)    -0.298 0.005   

 Latitude    -0.002 0.868   

5 Log2(Ploidy level) 0.736 <0.001 -3.1 0.820 <0.001 693.88 1.8 

 Log2 (DNA 1C-value) -0.353 <0.001  -0.354 0.001   

 Latitude -0.005 0.542  -0.005 0.621   

6 Log2(Chromosome number) n.c.   0.608  0.006 698.15 6.0 

 Log2 (DNA 1C-value)    -0.448  0.413   

 Log2(Chromosome number): Log2 (DNA 1C-value)    0.032 0.778   

 Latitude    -0.002  0.871   

7 Log2(Ploidy level) 0.754 <0.001 -3.1 0.814 <0.001 695.88 3.8 

 Log2 (DNA 1C-value) -0.327 0.084  -0.360 0.113   

 Log2(Ploidy level): Log2 (DNA 1C-value) -0.015 0.891  -0.005 0.623   

 Latitude -0.005 0.502  0.004 0.977   

With a quadratic effect of latitude        
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1 Log2(Chromosome number) 0.552 <0.001 -2.9 0.518 <0.001 703.76 11.6 

 Latitude -0.007 0.832  0.003 0.935   

 Latitude
2
 0.000 0.977  -0.000 0.870   

2 Log2(Ploidy level) 0.588 <0.001 -3.1 0.589 <0.001 703.75 11.6 

 Latitude 0.001 0.987  0.009 0.831   

 Latitude
2
 0.000 0.702  -0.000 0.723   

3 Log2 (DNA 1C-value) -0.223 0.005 -4.0 -0.172 0.095 712.26 20.1 

 Latitude 0.018 0.598  0.006 0.881   

 Latitude
2
 0.000 0.469  -0.000 0.811   

4 Log2(Chromosome number) 0.686 <0.001 -2.9 0.653 <0.001 698.12 6.0 

 Log2 (DNA 1C-value) -0.328 <0.001  -0.300 0.005   

 Latitude -0.014 0.678  0.011 0.781   

 Latitude
2
 0.000 0.425  -0.000 0.743   

5 Log2(Ploidy level) 1.010 <0.001 -3.4 0.831 <0.001 695.43 3.3 

 Log2 (DNA 1C-value) -0.377 <0.001  -0.361 0.001   

 Latitude -0.048 0.139  0.021 0.598   

 Latitude
2
 0.001 0.341  -0.000 0.507   

6 Log2(Chromosome number) -0.156 0.426 -2.8 0.610 0.006 700.05 7.9 

 Log2 (DNA 1C-value) -0.168 0.720  -0.447 0.413   

 Log2(Chromosome number): Log2 (DNA 1C-value) -0.002 0.988  0.031 0.783   

 Latitude 0.001 0.978  0.011 0.784   

 Latitude
2
 0.000 0.685  -0.000 0.747   

7 Log2(Ploidy level) 1.126 <0.001 -3.3 0.835 <0.001 697.43 5.3 
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 Log2 (DNA 1C-value) 0.363 0.087  -0.447 0.115   

 Log2(Ploidy level): Log2 (DNA 1C-value) -0.451 0.002  -0.003 0.982   

 Latitude -0.042 0.200  0.021 0.597   

 Latitude
2
 0.000 0.479  -0.000 0.507   

 

  



 

41 

 

Table S3 The effect of latitude (the independent variable) on genome size (DNA 1C-value) and 

chromosome number, as tested with phylogenetic generalised least squares models (PGLS), and the 

effect of latitude on invasiveness, as tested with phylogenetic logistic regressions (PLR). PGLS and PLR 

were used when the independent variable was, respectively, continuous or binary. These analyses 

provided different measures of phylogenetic signal: lambda which varied from 0 (no signal) to 1 (strong 

signal) and ‘a’ which varied from -4 (no signal) to +2 (strong signal). Generalised linear mixed models 

(GLMM) were run with genus as a random effect to provide measures of AIC for the models with 

invasiveness because AIC could not be calculated for PLRs. ‘n.c.’ indicates that the model did not 

converge. ‘n.a.’ indicates that AIC could not be calculated for PLR models. Only the effect size (beta) and 

significance (P) for the model covariates are shown, so ‘-’ indicates the models with no fixed effects. 

 

Mode

l 

Independent 

variable 

Parameter

s 

Phylogenetically-informed analysis GLMM 

   Beta P  AIC AIC Phylogenetic 

signal*  

Beta P  AIC AIC 

1 Log2(DNA 1C-

value) 

No fixed 

effects 

- - 2241.3

2 

2.89  = 0.84 -  2278.61 0 

2  Latitude 0.0068  0.02

7 

2238.4

4 

0  = 0.71 0.0077 0.014 2284.36 5.75 

3  Latitude+ n.c. n.c. n.c. n.c. n.c. 0.0192 0.057 2300.44 21.83 

   Latitude
2
      -0.0002 0.230   

1 Log2 

(Chromosome 

number) 

No fixed 

effects 

n.c. n.c. n.c. n.c. n.c. -  1569.74 0 

2  Latitude -0.0007 0.76

3 

1605.9

0 

0.45  = 0.71 0.0009 0.676 1582.01 12.27 

3  Latitude+ -0.0113 0.11

4 

1605.4

5 

0  = 0.72 -0.0107 0.126 1597.21 27.47 
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   Latitude
2
 0.0002  0.11

7 

   0.0002 0.081   

1 Log2(Ploidy 

level) 

No fixed 

effects 

- - 1447.6

7 

0  = 0.26 -  1573.30 0 

2  Latitude n.c. n.c. n.c. n.c. n.c. 0.0011 0.607 1585.49 12.19 

3  Latitude+ -0.0075 0.25

2 

1448.8

3 

1.16  = 0.26 -0.1070 0.127 1600.61 27.30 

   Latitude
2
 0.0002 0.14

8 

   0.0002 0.076   

1 Invasiveness No fixed 

effects 

- - n.a.  - -  325.06 0 

2  Latitude -0.0080 0.28

8 

n.a.  a = -3.08 -0.0140 0.974 326.96 1.91 

3  Latitude+ 0.0020 0.96

0 

n.a.  a = -3.03 -0.0150 0.995 328.94 3.89 

   Latitude
2
 0.00022 0.70

5 

   -0.0005 0.990   

 

Table S4 Effect of the source of data on invasive species, obtained from GLMMs including genus as a 

random factor. The datasets for GISD and PIER only was constructed exactly as described in the main 

text, i.e. we included all species from genera that had at least one invasive (from the specific list) and 

one non-invasive species. Remarkably the effect of genome size (DNA C-value) was much stronger 

(larger beta and smaller P value) in this analysis when considering GISD data alone, even though sample 

size and coverage of genera was substantially reduced, and it was comparatively more significant than 

the effect of chromosome number, in contrast to the other two sets of analyses. 

 

  Invasives from GISD 

only 

Invasives from PIER 

only 

Invasives from either* 
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Model Parameters Beta P  Beta P  Beta P  

1 Log2 (Chromosome number) 0.439 0.048 0.492 0.001 0.519 <0.001 

2 Log2 (DNA 1C-value) -0.400 0.004 -0.191 0.066 -0.172 0.095 

3 Log2 (Chromosome number)  0.560 0.013 0.634 <0.001 0.653  <0.001 

 Log2 (DNA 1C-value) -0.485 0.001 -0.313 0.004 -0.299 0.005 

* repeated from Table 1 in the Main Text. 
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