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ABSTRACT: 

Lumped, conceptual groundwater models can be used to simulate groundwater level time-

series quickly and efficiently without the need for comprehensive modelling expertise. A 

new model of this type, AquiMod, is presented for simulating groundwater level time-series 

in unconfined aquifers. Its modular design enables users to implement different model 

structures to gain understanding about controls on aquifer storage and discharge. Five 

model structures are evaluated for four contrasting aquifers in the United Kingdom. The 

ability of different model structures and parameterisations to replicate the observed 

hydrographs is examined. AquiMod simulates the quasi-sinusoidal hydrographs of the 

relatively uniform Chalk and Sandstone aquifers most efficiently. It is least efficient at 

capturing the flashy hydrograph of a heterogeneous, fractured Limestone aquifer. The 

majority of model parameters demonstrate sensitivity and can be related to available field 

data. The model structure experiments demonstrate the need to represent vertical aquifer 

heterogeneity to capture the storage-discharge dynamics efficiently. 
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1. Introduction 

Groundwater aquifers are complex, non-linear and heterogeneous systems that respond to 

natural and human influences including climate, land use and groundwater abstractions 

(Taylor and Alley, 2001). Our capacity to measure these hydrogeological complexities in the 

field is limited. Currently, regular and long-term groundwater level measurements taken 

from observation boreholes provide the best indication of an aquifer’s flow and storage 

behaviour and allow us to differentiate between natural and anthropogenic stresses on 

groundwater. Thus extensive, accurate and continuous groundwater level time-series data 

are fundamental to understanding and managing our groundwater resources effectively 

(Alley et al., 2002). 

 

Continuous groundwater level time-series contain information on the seasonality and trend 

in groundwater levels. With sufficient data, they also provide information on the frequency 

and magnitude of extreme events which can then be used to infer patterns of groundwater 

drought for example (Bloomfield and Marchant, 2013). Access to this information is 

essential as rates of groundwater abstraction increase with demand and potential stresses 

induced by climate change and urbanisation may take effect (Wada et al., 2010).  

 

Measurements from pumping tests and one-off dip readings comprise the majority of 

groundwater level monitoring datasets which typically run for a period of days or weeks and 

are unsuitable for investigating extreme events or long-term trends (Taylor and Alley, 2001). 

Computational models provide an alternative means of obtaining groundwater level 

datasets through simulation rather than observation and can also be used to derive aquifer 

hydrogeological properties (Peck, 1988). These tools have been used in the past to 
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reconstruct and extend groundwater level records (Conrads and Roehl, 2007), forecast 

extreme events in the near future (Adams et al., 2008; Daliakopoulos et al., 2005) as well as 

aid investigations into long-term water resource sustainability under climate and land use 

stresses (Goderniaux et al., 2009; Jackson et al., 2011; Sun et al., 2011). 

 

A diverse range of groundwater modelling approaches have been applied in the past to 

simulate groundwater levels. Physically based, process-driven models remain the most 

widely used. They are based on simplifications of physical laws of fluid dynamics to simulate 

flow through the subsurface. The equations that they employ are often complex, but offer 

the advantage that they use parameters that it may be possible to relate to known 

hydrogeological properties. The equations are typically approximated numerically across a 

multi-dimensional spatial grid and through time using, for example, finite difference 

methods. This type of distributed modelling makes it feasible to include complex 

heterogeneity and anisotropy. Shepley et al. (2012) describe the benefits of applying 

distributed numerical groundwater models for understanding complex groundwater flow 

systems and assessing the impact of human and environmental stresses on groundwater 

resources. Indeed, distributed models have been applied to some of the world’s major 

aquifers for these purposes (Gossel et al., 2004; Scanlon et al., 2003; Smith and Welsh, 

2011). 

 

An alternative is to disregard physical theories of groundwater flow and instead, derive an 

entirely empirical relationship between groundwater levels and one or a more predictor 

variables. A number of studies have been undertaken in which such empirical approaches 

have been applied to simulate groundwater level time-series. Typically these have used 

classical ‘black box’ modelling methodologies (Jakeman et al., 2006), such as statistical 

transfer function models or neural networks. For example the Box-Jenkins autoregressive 

integrated moving average (ARIMA) model has been used in a number of studies to simulate 

meteorological impacts on groundwater levels (Aflatooni and Mardaneh, 2011; Ahn, 2000; 

Gemitzi and Stefanopoulos, 2011) as it can  incorporate the complex seasonal, non-

stationary and random components observed in groundwater level time-series. Simpler 

empirical regression methods have also been employed including Bloomfield et al. (2003) 
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who constructed multiple linear regression models for several UK catchments to simulate 

annual minimum groundwater level time-series from rainfall datasets from which they could 

explain between 50-84% of the variance in historic levels. Other non-parametric methods 

have been used, perhaps most extensively, artificial neural networks (ANN), which have 

been shown to be very proficient at pattern recognition in time-series datasets. They have 

been applied successfully to aquifers in both arid (Coulibaly et al., 2001) and tropical regions 

(Ghose et al., 2010), karstic aquifers (Trichakis et al., 2011) and for forecasting groundwater 

levels with acceptable predictions up to 18 months ahead (Daliakopoulos et al., 2005; 

Sreekanth et al., 2009). Maier and Dandy (2000) and Dawson and Wilby (2001) provide 

comprehensive reviews on the use of ANNs for hydrological modelling. 

 

Whilst black-box modelling methodologies can be useful, it is recognised that they generally 

provide little insight into the controls on the behaviour of a system (Lees, 2000; Young et al., 

2007). Consequently, Young and Lees (1993) propounded a more structured strategy for the 

development and application of environmental simulation models, namely ‘data-based 

mechanistic’ (DBM) modelling. In this approach prior assumptions about the form of the 

appropriate model to apply are minimised to avoid the incorporation of prejudicial 

perceptions about the structure of the model that is required. In fact, the DBM approach 

incorporates a number of stages, which are aimed at maximising insight into the behaviour 

of the system being studied. Specifically, for example, it seeks to convert deterministic 

simulations into stochastic forms, through, for example, the use of Monte Carlo simulations, 

and to identify parsimonious models through a process of model simplification. Whilst this is 

a much more rigorous approach to model development and simulation it is probably less 

widely used because it is generally a more involved and time-consuming process. For 

example, it is possible that the simulation of groundwater level time-series at a number of 

different sites would require the identification of a number of different models structures 

within the DBM process. To the best of our knowledge no examples of the application of the 

DBM approach to simulate groundwater levels have been reported in the peer-reviewed 

literature.  This is probably partly because the DBM approach has been developed within 

the hydrological modelling research community but also because of the dominance of the 

use of distributed models in hydrogeological studies. An example of the application of the 



5 

 

DBM approach to the simulation of levels rather than flows is provided by Romanowicz et 

al. (2006) who simulated in-channel water levels at various locations within the River Severn 

catchment in the UK. 

 

Similarly to black-box models, physically-based models have their disadvantages. While 

physically-based models allow the inclusion of complex non-linear processes that are 

thought to exist in aquifer systems, characterizing these complexities requires a detailed 

conceptual understanding of the system, numerous model parameters and more 

hydrogeological and climate data than are typically available, making this type of modelling 

inherently uncertain (Beven, 2001; Konikow and Bredehoeft, 1992). Furthermore, physically 

based models are often costly and time consuming to build and demand highly skilled and 

proficient modellers to operate them, rendering them inaccessible to many hydrogeologists. 

 

Conceptual, lumped parameter modelling is an alternative approach that neglects some of 

the complexities incorporated in physically-based models, but maintains some fundamental 

physical principles from our conceptual understanding of groundwater systems. These types 

of models can be assessed against and constrained by physically measured field data, but 

are simple enough to be run quickly, at little cost and without the need for broad modelling 

expertise.  They also require fewer parameters than physical models, making them easier to 

constrain through automated calibration procedures. Birtles and Reeves (1977) developed 

one of the earliest lumped parameter groundwater models where the groundwater system 

was generalised as four units to represent unconfined and confined groundwater zones, a 

superficial layer and a spring unit. All units were lumped in the horizontal and vertical, but 

could interact through vertical and lateral fluxes. They then used the model to derive 

optimum abstraction regimes for multiple water-supply boreholes. Indeed others have 

emulated this approach since (Anaya and Wanakule, 1993; Barrett and Charbeneau, 1997; 

Kazumba et al., 2008; Thiéry, 2012). Lumped models have also been used to simulate spring 

flows and groundwater levels in highly heterogeneous aquifers (Keating, 1982), estimate 

aquifer parameters (Olin, 1995), and to develop early warning systems for groundwater 

flooding (Adams et al., 2008). Flores W et al. (1978) and Pozdniakov and Shestakov (1998) 

made stochastic simulations of groundwater levels using linear reservoirs with parameters 
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drawn from a probability distribution. Flores W et al. (1978) go further and combine their 

model with a simple economic model to calculate optimum pumping borehole operating 

policies. Barrett and Charbeneau (1997)  demonstrated that groundwater level simulations 

from lumped conceptual models can be comparable to physical models when they applied 

both to the Edwards aquifer, USA. Eberts et al. (2012) compared the results from a 3D 

physically-based groundwater particle tracking model (Pollock, 1994) and a number of 

lumped parameter models. Specifically, they compared the simulated age distributions of 

groundwater at a number of wells in four contrasting aquifers in the US as a means to 

quantify contamination vulnerability and found that they gave remarkably similar results. 

  

None of these studies that have used lumped parameter models to simulate groundwater 

levels explicitly investigated the appropriateness of the form of the relationship between 

groundwater level, storage and discharge adopted within their model structures. Rather, 

they each applied a deterministic representation of this relationship justified based on 

conceptual understanding. Moore and Bell (2002) briefly discuss what form this function 

should take, and present the appropriate type of linear or non-linear store for different 

aquifer types, based on a consideration of the Horton-Izzard model (Dooge, 1973) and 

standard groundwater theory (Todd, 1959). They incorporate a representation of 

groundwater discharge into their PDM rainfall-runoff model, which is then used to simulate 

flow in the River Lavant, and the groundwater level in an observation borehole in this Chalk 

catchment in south-east England. The suitability of a linear form for homogeneous constant 

transmissivity aquifers, and of a quadratic form for homogeneous unconfined aquifers, is 

summarised. However, they also state that cubic forms have been found to be useful in 

practical applications of the PDM model and then adopt this type of store in the model that 

they apply to simulate the groundwater level time-series of their study catchment borehole, 

West Dean Nursery. The simulated groundwater hydrograph is reasonable but their model is 

poor at reproducing groundwater recession and the observed variability in the annual 

minima. This is likely to be because the model cannot capture the heterogeneity in the 

hydraulic conductivity and storage structure of the Chalk aquifer. By contrast Keating (1982) 

adopted a conceptualisation of the vertical variation of hydraulic conductivity with depth of 

the Chalk informed by the hydrogeology of this aquifer system (Allen et al., 1997; 
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Bloomfield, 1997; Williams et al., 2006). In this model, a classical ‘cocktail glass’ 

representation of the Chalk depth-hydraulic conductivity profile (Rushton, 2003) was used 

to describe the increase in hydraulic conductivity of the aquifer in the zone of water table 

fluctuation. 

 

In summary, computational groundwater models have been used extensively to simulate 

groundwater level time-series for a variety of applications. A wide range of modelling 

approaches exist, the choice of which is likely to reflect the user’s background and expertise 

in modelling, the availability of field data, and the purpose of the modelling exercise. 

Simple, lumped conceptual models have been shown to be an efficient means to simulate 

groundwater level time-series. They include some physical principles from our conceptual 

understanding of groundwater systems which means that their structure and parameters 

can be assessed against and constrained by measured field data. They also employ simple 

algorithms and can be run quickly and efficiently without the need for broad modelling 

expertise. Of course, the suitability of applying simple, lumped process representations to 

systems that are known to be highly non-linear and heterogeneous should always be 

considered. As such, it is important to test the appropriateness of different representations 

of the relationship between groundwater storage and discharge. In particular, the 

incorporation of vertically heterogeneous properties of hydraulic conductivity in simple 

lumped models has been neglected even though it has often been shown to be very 

important for capturing groundwater storage-discharge dynamics (Keating, 1982; Rushton 

and Rathod, 1981; Rushton et al., 1982).  

 

In this study, we present a new modular, modelling framework, AquiMod, which has been 

developed to simulate groundwater level time-series at observation boreholes in 

unconfined aquifers by linking simple conceptual hydrological algorithms that represent soil 

drainage, the transfer of water through the unsaturated zone and groundwater flow. These 

algorithms are based on established hydrological concepts and employ parameters that can 

be assessed against field data. AquiMod represents a significant development over previous 

lumped parameter models because it has been designed to include multiple representations 

of groundwater flow and also vertically heterogeneous hydraulic conductivity parameters. 
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In this study, five different model structures are applied to four contrasting aquifers known 

to possess complex hydrogeological characteristics. This research aims to determine first, if 

AquiMod is able to simulate groundwater levels efficiently in these different settings. 

Second, if the optimised model parameters are related to, and thus can be constrained by, 

available field data. Finally, by analysing  the impact of using gradually simpler 

representations of groundwater flow on the model behaviour at each study site, this paper 

explores the importance of including vertically heterogeneous aquifer properties and uses 

this analysis to gain understanding about storage-discharge controls for each aquifer. 

2. Methodology 

2.1. Model development 

The AquiMod code has a modular design implemented using the object-oriented C++ 

programming language. It consists of three primary modules that represent the downward 

flux of water through the soil (root) zone and unsaturated zone and the lateral flow and 

subsequent discharge of groundwater through the saturated zone (Figure 1). Each module 

may accommodate different components based on different conceptual representations of 

the process being considered. Similarly, each module may be switched off entirely if the 

user only wishes to consider part of the hydrological system. All components for a given 

module adhere to the same generalised structure and exchange the same hydrological 

variables. Firstly, rainfall and potential evapotranspiration (PET) time-series data are fed into 

the soil zone module, which calculates the proportion of water that infiltrates the soil 

column, becomes runoff, and evapotranspires. A proportion of soil water is allowed to drain 

downwards to the unsaturated zone module, which attenuates the flux of recharge to a 

saturated zone. Finally, groundwater storage, level and discharge are calculated by the 

saturated zone module. It is important to note that the lumped structure of AquiMod means 

that the groundwater level simulations are for a single point at the observation borehole 

and are therefore not necessarily indicative of the levels in the system as a whole.   

2.1.1. Soil zone 

A single soil zone component has been selected for this study which is used as part of the 

Environment Agency of England and Wales’ national Continuous Estimation of River Flows 
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(CERF) model (Griffiths et al., 2006)  and been shown to simulate soil moisture fluctuations 

in temperate climates efficiently and comparably to more sophisticated physically-based 

land surface models (Sorensen et al., 2014). The method is based on the widely applied soil 

water balance method developed by the UN Food and Agricultural Organisation (Allen et al., 

1998). This component simulates soil moisture as a function of vegetation and soil 

properties. The soil column is conceptualised as a bucket with a maximum volume of water 

available to plants after the soil has drained to its field capacity. This is termed the total 

available water (TAW) which is calculated as: 

 

               (1) 

  

where Zr is the estimated maximum root depth [L] of the overlying vegetation, and FC and 

WP are the soil field capacity and wilting point respectively. 

 

As the soil moisture content decreases, it becomes more difficult for vegetation to extract 

moisture from the soil matrix. The proportion of TAW that can easily be extracted before 

this point is reached is conceptualised as readily available water (RAW) which is calculated 

as: 

 

          (2) 

 

where p is the depletion factor of the overlying vegetation. 

 

The water balance of the soil zone is a function of the rainfall input and evaporative flux 

from the soil and can be written as: 

 

              (3) 

 

where SMD is the soil moisture deficit [L], PPTN is the total precipitation input [L] and AET is 

the actual evapotranspiration rate [L] which is calculated as a function of the soil moisture 

deficit at the previous time-step, SMD* using the power law developed by Griffiths et al. 

(2006):  
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(4) 

When the soil zone becomes saturated, a proportion of the excess water (EXW) drains to 

the unsaturated zone:  

           (5) 

 

where SD is the soil drainage and BFI is the baseflow index. The BFI is typically used to 

classify low flow characteristics of river catchments (Marsh and Hannaford, 2008) and it 

defines the average proportion of stream flow that a river receives from groundwater 

discharge. It is important to note that this soil zone representation is most suited to 

temperate climates and may not be suitable elsewhere. However, other soil zone 

representations could be employed in the AquiMod software such as that devised by 

Rushton et al. (2006) who developed an improved version of the method used here which 

was shown to work well in a semi-arid setting in Nigeria. 

 

2.1.2. Unsaturated zone 

The rate at which water flows through the unsaturated zone depends on a number of 

factors including the permeability of the porous material, the presence of preferential 

pathways and the depth to the water table. To approximate the role of the unsaturated 

zone in attenuating the transfer of soil drainage to the water table a simple transfer 

function has been implemented. This method is similar to that applied by Calver (1997) in 

which a proportion of the soil drainage in each month is applied to the water table over the 

current month and a number of subsequent months. In AquiMod, recharge is distributed 

over a number of time-steps, n, and the proportion of soil drainage for each time-step is 

calculated using a two-parameter Weibull probability density function: 

 

          
 

 
 
 

 
 
   

           

    

  
 

(6) 
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where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. The 

λ parameter primarily controls the location of the peak in the probability density function 

while k controls the density of the function around the peak (Figure 2). The resulting 

distribution is scaled such that the discrete integral of f is equal to unity and consequently 

the recharge for each time-step (Rt) is spread over the selected number of time-steps, n: 

 

                 

 

   

 
 

(7) 

 

where α is the scaling parameter. The Weibull function can represent exponentially 

increasing, exponentially decreasing, and positively and negatively skewed distributions. It is 

used because it allows the exploration of different distributions, whilst being smooth, which 

is considered to be more physically justifiable than randomly selected monthly weights. In 

conjunction, this method requires only three, rather than the n+1 model parameters of the 

Calver (1997) approach. 

 

2.1.3. Saturated zone 

The aquifer in the saturated zone module is represented as a rectangular block with 

dimensions Δx and Δy denoting its length and width [L] respectively. A mass balance 

calculation is performed at each time-step to calculate the new groundwater head: 

 

             
  

  
 

(8) 

 

where R is recharge input [LT-1], Q is the total groundwater discharge [L3T-1], S is the storage 

coefficient (dimensionless), dh is the change in groundwater head [L] over time, dt [T]. 

 

This rectangular block of aquifer can be split into a number of layers of different thickness 

and permeability. Each layer is independent and has its own discharge outlet at the base. 

The total groundwater discharge is the sum of discharge from all layers in the saturated 

zone, which is calculated using a quadratic equation of the form: 
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(9) 

 

where i is the layer number for m layers and Δhi [L] is the difference between the 

groundwater head and the elevation of the layer outlet. Importantly due to the explicit form 

of Equation 9 used in AquiMod, the groundwater head at the previous time-step, h* [L] is 

used: 

 

     
          

      
  

(10) 

 

where zi is the outlet elevation. Transmissivity, Ti [L
2T-1] is a function of the hydraulic 

conductivity, Ki [LT-1] and is calculated using the following piece-wise function: 

 

    

             

    
                  

                      
                  

  

 

(11) 

 

When equation 9 is substituted into equation 8, the Δy term is lost. Accordingly, the 

saturated zone component is a lateral flow aquifer model that receives recharge from the 

unsaturated zone over a specified representative aquifer length (Δx). Here, Δx can be 

considered as the distance between a point in the aquifer where AquiMod simulates 

groundwater levels (typically where a field observation borehole exists) and the 

groundwater discharge point such as a river or a spring. By defining the saturated zone in 

this way, and to satisfy equation 8 it is assumed that groundwater abstractions and lateral 

inflows have negligible control on groundwater levels at the observation borehole. It is also 

important to note that the groundwater level simulations from AquiMod are for a single 

point at the observation borehole and are therefore not necessarily indicative of the levels 

in the system as a whole.   
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Equation 11 indicates that the chosen number and positioning of outlets in the saturated 

component could drastically change its behaviour. Shallow layers positioned within the zone 

of groundwater level fluctuation are likely to activate and deactivate as the water level rises 

above and falls below their outlet elevations, while layers that remain fully saturated will 

exhibit a more linear discharge response to changes in groundwater storage. The optimal 

configuration is likely to reflect the local complexities of the chosen study area such as 

vertical heterogeneity in the aquifer and regional discharge features such as rivers and 

springs. Accordingly four different saturated zone structures are presented in this study 

which contain varying degrees of complexity (Figure 1). The first is a three-layer 

representation where the outlet of the deepest layer is positioned at the base of the aquifer 

below the zone of water table fluctuation and can be considered to represent groundwater 

which flows out of the model domain via perennial flow paths. The two upper outlets are 

positioned within the zone of water table fluctuation and are lumped representations of 

surface discharge points which flow intermittently. The additionally tested saturated zone 

components were gradual simplifications of this model structure starting with a two-layer 

representation with one perennial outlet and only one intermittent outlet in the zone of 

groundwater level fluctuation. A simpler one-layer component was also used with a single 

perennial outlet at the base of the aquifer. Finally, a one-layer aquifer with a fixed 

transmissivity was used which represents the simplest saturated zone structure applied. 

 

2.2. Model construction and implementation 

AquiMod is an executable file that is run through the command prompt and is compatible 

with windows and linux machines. The driving data, parameters and preferences (such as 

which module components the user wishes to use) are specified using a series of text files 

which AquiMod reads before running. Parameter values for model structures are generated 

using its in-built Monte Carlo function. The run-time of AquiMod varies depending on 

available computer power, number of Monte Carlo runs, length of the simulation sequence 

and complexity of the chosen model components. For this study a PC running Windows 7 

with a quad-core 2.9GHz processor was used. A run-time of 60 seconds was typically 

required for 106 runs of a 300 time-step sequence using the soil and unsaturated zone 

components outlined above with a three-layer saturated zone representation. 
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AquiMod returns the time-series of state variables or fluxes for each component including 

soil drainage, recharge and groundwater levels so that the user can analyse the model 

behaviour visually. AquiMod does not have a graphical user interface, but the output text 

files can easily be imported and analysed using standard external software packages. All of 

the outputs from AquiMod presented in this study were analysed and visualised using 

MATLAB. 

 

In total five different model structure configurations were tested including the four different 

saturated zone components outlined previously. A fifth test was also conducted using the 

most efficient model structure from the prior tests, but with the unsaturated component 

switched off, allowing soil drainage to reach the saturated zone instantaneously. From this, 

the role and importance of the unsaturated zone component was also investigated.   

 

2.3. Model Calibration 

The in-built Monte Carlo functionality was used to calibrate the different model structures, 

where model parameters are randomly sampled from a finite parameter space to produce 

multiple parameter sets. One million parameter sets were sampled from a uniform 

distribution with upper and lower bounds defined based on expert judgment. All of the 

parameters used in the study are summarised in Table 1. Calibration of all of the AquiMod 

parameters simultaneously necessitates an infeasible number of model runs to sample the 

parameter space adequately, especially for the most complex model structures. Accordingly, 

eight of the parameters were fixed within this study using available information about the 

study sites. The representative aquifer length, Δx, was quantified as the distance between 

the observation borehole and a single discharge point on a river based on the catchment 

geometry and hydrogeology as an approximation of the distance to drainage. Marsh and 

Hannaford (2008) detail catchment BFI estimates and Boorman et al. (1995) provide 

distributed field capacity and wilting point values for UK soils. By analysing cross correlations 

between rainfall and groundwater levels, the unsaturated zone component n parameter 

(Equation 7) was set to the period over which there is a significant correlation at a 95% 

confidence level. For the five model structures, the deep outlet was set to the known 
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bottom elevation of the aquifer. Preliminary model runs showed that for the two and three-

layer saturated zone components the remaining outlet elevation parameters significantly 

interacted with the hydraulic conductivity parameters. As such, a preliminary set of 

calibration runs were undertaken to determine elevation values that produced behavioural 

models to which they were subsequently set. For each model, calibration runs were 

performed over half of the available groundwater level time-series with the remaining half 

reserved to evaluate the model outside of its calibration range. 

 

 

2.4. Model evaluation 

Here, we have used two quantitative model performance metrics. The first is the Nash-

Sutcliffe Efficiency (NSE) score (Nash and Sutcliffe, 1970), a metric which has been widely 

adopted by the environmental modelling community (Bennett et al., 2013) which indicates 

how well the model explains the variance in the observations compared with using the 

mean of the observations as the prediction for every time-step:  

 

       
    

    
    

   

    
        

  
   

  
(12) 

 

where ho
t and hm

t are the observed and modelled groundwater heads at time t. A score of 

one denotes a perfect match to the observed data, a value of zero indicates that the model 

is as efficient as using the mean and a negative score is less efficient than this. This NSE was 

used to compare the relative efficiency of the different model structures and parameter sets 

in order to determine the optimum model configuration. To complement the NSE, monthly 

and overall bias metrics were also calculated and plotted to identify systematic deficiencies 

in model predictions which lead to over or underestimation of groundwater levels.  

 

It should be noted that the term ‘optimum’ is used here with the knowledge that there 

could be other models which are equally, or even superior predicting tools (Beven and 

Freer, 2001). It should also be noted that simple empirical indicators of model fit such as the 

NSE have come under criticism in the past for returning high efficiency scores even when 
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simulations show significant magnitude and timing errors (Legates and McCabe, 1999; 

Pappenberger et al., 2004). Furthermore, Beran (1999) revealed that the NSE possesses in-

built biases that can exaggerate model skill. Accordingly, a qualitative comparison of the 

simulated and observed hydrographs has also been conducted, as recommend in the review 

of characterising model performance by Bennett et al. (2013) to complement the NSE and 

bias indicators to provide further insight into the relative strengths and weaknesses of 

AquiMod. 

2.5. Study Sites and Data 

To assess the performance of the model, AquiMod has been applied to four aquifers with 

observation boreholes in the UK within the different lithologies of the Cretaceous Chalk, 

Carboniferous Limestone, Cretaceous Lower Greensand, and Triassic Sandstone. The climate 

of the sites are typical of the UK with wet and cold autumn and winter months between 

October and March and drier, warmer spring and summer months between April and 

September. The four study sites have been chosen because of their contrasting 

hydrogeological settings, but also because the observation boreholes are located away from 

significant groundwater abstractions. Available groundwater level time-series for each 

borehole have been obtained from the National Groundwater Level Archive (Marsh and 

Hannaford, 2008) between 1961 and 2005 and are reported as meters above sea level (m 

asl). Groundwater level monitoring is typically undertaken on a weekly or monthly basis, but 

the frequency is variable. Due to the irregularity of measurement these data have been 

converted to monthly time-series using linear interpolation (Figure 4). Accordingly, AquiMod 

has been configured to run on a monthly time-step. 

 

While no pumping tests have been carried out at these observation boreholes specifically, 

some information on regional transmissivity and specific yield values does exist; those 

reported below are taken from Allen et al. (1997).  

 

The Chilgrove House observation borehole is located in the River Lavant catchment in south-

east England (Figure 3). The hydrograph has an annual sinusoidal appearance, although 

double and higher multiple peaks are relatively frequent, generally due to the uneven 

temporal distribution of rainfall. Flow within the saturated zone of the chalk occurs 
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predominantly in the upper 50 m of the profile through primary and secondary fractures. 

Hydraulic conductivity is generally highest in the zone of water table fluctuation and in 

valleys where fractures have been developed by dissolution. The median transmissivity for 

the chalk in this area is 440 m2 d-1, and the 25th and 75th percentile values are 230 and 

1600 m2 d-1 respectively. Specific yield values of the chalk are typically in the range 0.5-2%. 

The BFI of the River Lavant at Graylingwell, 9 km south-east of the borehole, is 0.82 (Marsh 

and Hannaford, 2008). The mean depth to groundwater level is 28.6 m. It is generally 

accepted that fluxes within the unsaturated zone are transmitted through the matrix until 

they exceed the saturated hydraulic conductivity of the matrix, at which point fracture flow 

becomes dominant (Ireson et al., 2006). Previous studies have shown, however, that the 

generation of fracture flow is rare and for the majority of the time fluxes are transmitted by 

the matrix (Mathias et al., 2006). 

 

The Hucklow South observation borehole is in the River Wye catchment, which drains the 

Carboniferous Limestone in central England. Geological logs of this 123.6 m deep borehole 

do not exist but it is considered that it is likely to have been drilled down to the Litton Tuff 

and Cressbrook Dale Lava members of the Peak Limestone Group, which form an effective 

base to the unconfined aquifer (Downing et al., 1970). Groundwater levels have fluctuated 

by approximately 30 m over the period for which observations have been obtained from 

1969 to 2005. The minimum groundwater level over this period is approximately 55 m 

below ground level, but the rest water level is 16 m below ground level on average. Two or 

more peaks are frequently observed in the winter months due to rapid response to rainfall. 

The BFI of the River Wye at Ashford, 8 km south of the borehole, is 0.75 (Marsh and 

Hannaford, 2008). There is limited information on hydrogeological properties of the Peak 

Limestone Group, but from the few tests that have been conducted, specific yields typically 

range from 0.5 to 8%. Only six pumping tests have been conducted in this region, yielding 

transmissivity values ranging from 0.1 to 770 m2 d-1. All but one of these tests yielded 

transmissivity values less than 60 m2 d-1. 

 

The Lower Barn Cottage observation borehole is located in the River Ouse catchment in 

south-east England. The borehole has been used to monitor groundwater levels in the 
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unconfined Lower Greensand, an important aquifer in south-east England, since 1975. At 

Lower Barn Cottage the Greensand formation is shallow with a total depth of approximately 

9 m, and the annual mean groundwater level resides only 2.6 m below the surface. The 

Lower Greensand comprises a complex series of variably cemented clays and sands, the 

heterogeneity of which results in a relatively irregular hydrograph. The median value of 

Lower Greensand transmissivity estimates is 270 m2 d-1, and the 25th and 75th percentile 

values are 140 and 500 m2 d-1 respectively. Specific yield values are typically in the range 10-

20%. The Lower Greensand outcrops over a small proportion of the Ouse catchment and so 

a locally-related BFI cannot be identified from a nearby gauging station for the aquifer in 

this region. A generally representative, BFI of 0.8 has been estimated for the Lower 

Greensand by Bloomfield et al. (2011) using data from the UK Hydrometric Register (Marsh 

and Hannaford, 2008). 

 

The Skirwith observation borehole is used to monitor groundwater levels in the St Bees 

Sandstone formation located in the River Eden catchment in north-west England. The 

aquifer is largely unconfined although the Skirwith borehole log indicates some localised 

confinement by glacial boulder clay deposits. Regular groundwater level measurements 

have been taken since November 1978 although no records between December 2000 and 

March 2002 exist due to site access restrictions as a result of the foot and mouth disease 

outbreak in the United Kingdom. Two river flow gauging stations are located within 4 km of 

the Skirwith observation borehole on the River Eden at Udford and Temple Sowerby with an 

average BFI of 0.43 (Marsh and Hannaford, 2008). Only seven pumping tests have been 

conducted in this formation which yielded transmissivity values from tens up to 2000 m2 d-1 

with a geometric mean of 100 m2 d-1. No information on typical specific yield properties in 

this area exists. 

 

Monthly PET time-series have been extracted from the Meteorological Office Rainfall and 

Evaporation Calculation System (MORECS) (Field, 1983). This calculates PET on 40×40 km 

grid from synoptic station data using a modified version of the Penman-Monteith equation 

(Monteith and Unsworth, 2008). Rainfall data have been extracted from a 1×1 km gridded 
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dataset (Keller et al., 2006) constructed for the Environment Agency of England and Wales’ 

CERF model (Griffiths et al., 2006) using data from the UK network of rain gauges. 

3. Results 

First we present an analysis of the most efficient model structures calibrated for each study 

site by comparing the simulated and observed groundwater level time-series. Next, we 

describe the sensitivity and identifiability of each calibration parameter for these most 

efficient structures. Finally, we show the effect of using progressively simpler 

representations of saturated and unsaturated groundwater flow using the five different 

model structures outlined.  

 

3.1. Groundwater level simulation efficiency 

First we analysed which of the model structures could simulate the groundwater level time-

series most efficiently. This gave a general overview of the relative strengths and 

weaknesses of AquiMod for simulating groundwater level hydrographs in the four 

contrasting study catchments, and it also provided a benchmark against which the 

remaining model structures could be compared. Table 2 lists the NSE scores obtained for 

the calibration and evaluation runs for each model structure. The NSE and bias results are 

also included for the entire simulation sequence (combined calibration and evaluation 

periods).  

 

For the Chalk site, the three-layer aquifer representation returned the highest combined 

NSE of 0.91, although the bias was 0.16 m greater than in the two-layer model. However, 

this difference in bias constitutes <0.4% of the range of observed levels recorded at this 

borehole and therefore the three-layer representation was deemed optimal. The high 

efficiency score is reflected in the hydrograph where the model closely matches the levels in 

the observation record throughout the simulation period (Figure 5a). There are some 

localised sections of the hydrograph when the model is less efficient including the winters of 

1974/1975 and 1997/1998 when it underestimates the peak levels by up to 7 m. Even so, a 

comparison of the simulated and observed mean monthly groundwater levels (Figure 5b) 

shows that on average this model structure can capture the seasonality of the hydrograph 
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extremely well both in terms of timing and magnitude. The monthly biases are small with 

respect to the variability of the hydrograph, with the largest bias of 1.2 m shown in 

December and an overall positive annual bias of 0.25 m. 

 

The three-layer groundwater component was also the most efficient structure for the 

Limestone aquifer for which it produced the smallest bias. It was considerably less efficient 

than the Chalk model with a combined NSE of 0.65, and the NSE decreased significantly (-

0.09) between the calibration and evaluation runs. In particular, the model is unable to 

capture the flashy response to recharge when groundwater levels are high, sometimes 

adding extra features or missing them entirely. For example, in the winter of 1986/1987 

there is only one observed peak, but the model simulates two separate ones (Figure 5c). 

Conversely, during the winter of 1990/1991 there are two observed peaks, but the model 

only captures one of them. However, a comparison of observed and simulated mean 

monthly groundwater levels (Figure 5d) shows that AquiMod is able to capture the 

groundwater level seasonality with reasonable accuracy. The largest bias is seen over the 

summer months when the model overestimates the low groundwater levels in July by 0.9 m 

on average, a defect that is clearly seen in the simulated time-series. 

 

For the Lower Greensand aquifer, the two-layer groundwater component returned a 

calibration NSE of 0.73 and a negligible bias. The NSE increased to 0.93 over the evaluation 

sequence, although it should be noted that some of the largest errors are also observed 

over this period. The greatest discrepancy between the observations and simulations 

occurred during the winter of 2000/2001 when the model underestimated the groundwater 

level peak by 0.58 m (Figure 5e). Even so, AquiMod is able to capture some of the longer 

inter-annual signals that are present over the evaluation period such as the prolonged low 

levels between 1990 and 1993 and between 1996 and 1997. It is also able to replicate the 

average timing of the hydrograph reasonably well, capturing the September minima, 

although predicting the mean groundwater level peak a month later than observed (Figure 

5f). The largest monthly biases are seen during the recharge season between September 

and December when it underestimates average monthly groundwater levels by as much as -

0.09 m. 
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Finally, for the Sandstone aquifer, the two-layer saturated zone component was the most 

efficient at replicating the hydrograph, achieving a combined NSE of 0.85 and the joint 

smallest bias of -0.05 m. As with the calibrated model of the Lower Greensand aquifer, the 

evaluation run NSE is higher than that for the calibration run even though the largest errors 

are seen over the evaluation sequence. Here, the model underestimates multiple peak 

winter levels (Figure 5g), with the largest discrepancy during the 1994/1995 winter (-0.6 m). 

Nevertheless, AquiMod is able to capture the seasonality and timing of the hydrograph well 

(Figure 5h), reproducing the mean monthly peak groundwater level in March and the lowest 

mean level in October with relatively small biases in comparison to the average variability of 

the hydrograph. 

 

3.2. Sensitivity Analysis 

To extend the assessment of the most efficient model structures for each site, a sensitivity 

analysis of the model parameters was conducted to determine which parameters influence 

the model efficiency, which parameters are identifiable and if these can be related to known 

physical characteristics of the study sites, thereby allowing them to be constrained based on 

available catchment information. A series of dotty plots have been constructed from the 

output files produced by AquiMod (Figure 6), which show how the model efficiency changes 

as each parameter is perturbed. 

 

For the soil zone, the Zr parameter has the most influence on model efficiency, although the 

sensitivity of this parameter differs for each study site. The models of the Chalk and 

Limestone aquifers both demonstrate a sloped response surface, indicating that Zr is 

identifiable. In contrast, the response surface for the Lower Greensand model, with two 

separate peaks, and the Sandstone model, which flattens off, do not show a clear unique 

optimum. The depletion factor parameter, p which controls the point at which the 

evaporation rate falls below the potential rate is relatively insensitive for all sites. For the 

models of the Chalk, Limestone and Lower Greensand, there is a gradual upward trend in 

the response surface as p decreases which indicates some sensitivity to this parameter, 

while for the model of the Sandstone, p is insensitive. 
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Sensitivity in the unsaturated zone arises almost exclusively from the λ scale parameter 

which controls the location of the peak in the Weibull distribution and which represents the 

time taken for soil drainage to pass through the unsaturated zone module. For the Chalk, 

Limestone and Lower Greensand models, the simulations are most efficient when λ is less 

than 1.5. These values produce a Weibull distribution with a peak close to one, causing the 

majority of soil drainage to pass through the unsaturated zone during the first time-step 

(instantaneously). Figure 7 shows that for these models between 73% (Limestone) and 100% 

(Lower Greensand) of soil drainage is allowed to pass through the unsaturated zone 

instantaneously. For the Sandstone aquifer there is a clear maximum in the λ response 

surface at a value of 2.1. Here, soil drainage is attenuated more, so that the majority (47%) 

recharges the groundwater a month later. The model of the Lower Greensand is the only 

one that shows any sensitivity to k, which controls the concentration of recharge around the 

peak, where higher values (which result in very concentrated recharge over a single time-

step) are optimal. The remaining models are not sensitive to the k parameter.  

 

The calibrated unsaturated zone components indicate that the Sandstone unsaturated zone 

has the greatest lagging affect on groundwater recharge. For comparison, a cross 

correlation analysis between the rainfall and groundwater level time-series was performed 

to estimate the peak response time of groundwater to rainfall at each site. That is, the time 

taken for the majority of an instantaneous flux of rainfall to reach the water table and 

perturb the groundwater storage. It should be noted that the groundwater level time-series 

were de-seasonalised using the Loess method (Cleveland et al., 1990) to remove the signal 

induced by seasonal evaporation fluxes. For the Chalk, Limestone and Lower Greensand 

study sites, the highest cross-correlation coefficients were obtained for lead-lags between 

zero and one month while for the Sandstone site the highest cross-correlation score was 

obtained for a higher lead-lag of two months. 

 

The specific yield parameter, S, is identifiable for all of the study sites. Optimum values of 

0.6%, 0.7% and 22.3% were obtained for the Chalk, Limestone and Lower Greensand, 

respectively, all which conform to values obtained from field pumping tests (Allen et al., 
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1997). For the Sandstone model, the optimum S value of 8.3% was obtained although there 

are no data available for this aquifer against which to compare this value. The conductivity 

parameters all demonstrate sensitivity and all are identifiable. Using these parameters and 

the maximum, minimum and mean simulated groundwater levels over the calibration and 

evaluation periods, the corresponding maximum, minimum and mean model transmissivity 

values were calculated for each study site for comparison to available aquifer data. For the 

model of the Chalk, the transmissivity ranges between 24 – 720 m2 d-1 with a mean of 178 

m2 d-1. The modelled transmissivity for the Limestone aquifer is less variable, ranging 

between 17 – 418 m2 d-1 with a mean of 148 m2 d-1, while the model of the Sandstone 

transmissivity values range between 1 – 202 m2 d-1 only with a mean of 94 m2 d-1. The Lower 

Greensand site has the lowest transmissivity values, ranging from 7 – 119 m2 d-1 with a 

mean of 39 m2 d-1. All of these conform to those values obtained from pumping test data, 

although it should be noted that for the Lower Greensand model, the transmissivity values 

fall within the lower quartile of available data. The model of the Limestone is the only one 

where the calibrated K values do not increase with elevation. Instead, the intermediate 

layer returns the highest conductivity, which may indicate a localised zone of high 

transmissivity between the middle (254.9 m asl) and upper (262.6 m asl) outlets.  

 

3.3. Model Structure Analysis 

In addition to evaluating the most efficient structures obtained for each site, a final analysis 

was conducted to explore the impact of using progressively simpler representations of the 

saturated and unsaturated zones on the simulated results and to provide further insight into 

the controls on groundwater storage and discharge at each site.  

 

First, the calibration of the models using the four different saturated zone components has 

been compared. Figure 8 shows the simulated hydrographs over the evaluation sequence 

using these four different structures. It indicates that the difference between using the two 

and three-layer aquifer representations for the Chalk, Limestone and Lower Greensand 

study sites are subtle. For the Chalk site, both the two and three-layer calibrated models 

return very similar combined efficiency scores of 0.90 and 0.91 respectively and almost 

identical simulations (Figure 8a). There are slightly more pronounced differences for the 
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Lower Greensand site  where the three-layer groundwater component underestimates 

levels more so than the two-layer representation between 1991 and 1994, and in 2001 

(Figure 8c). For the Limestone catchment the three-layer component returns only a 

marginally higher (+0.03) combined NSE than the two-layer model. However, the simulation 

bias improves by an order of magnitude (Table 2). The reason for this can be seen by 

comparing the two simulation hydrographs (Figure 8c) where the two-layer aquifer 

representation overestimates the peak groundwater levels substantially. This suggests that 

the inclusion of the intermediate high conductivity layer benefits the simulation efficiency 

by removing this positive bias. For the Sandstone site, the two and three-layer models 

achieve similar calibration NSE scores, but the two-layer representation returns a much 

higher NSE over the evaluation period (+0.34). Indeed, the efficiency of the three-layer 

component deteriorates between 1996 and 2000 where it underestimates the groundwater 

levels while the simpler two-layer groundwater component captures the behaviour of this 

hydrograph well even over this period. 

 

Simplifying the groundwater component further to a one-layer aquifer representation 

resulted in a significant loss of simulation efficiency for all study sites. The one-layer variable 

transmissivity representation for the Chalk still returned a high calibration NSE of 0.73 

although this fell significantly to 0.49 for the evaluation run indicating that this structure 

does not adequately characterise this groundwater system. Certainly, while the model is still 

able to capture the seasonality of the hydrograph, the suitability of this structure breaks 

down during periods of exceptionally low levels (e.g. 1973) and high levels (e.g. 2001) where 

the model exaggerates the magnitude of these events (Figure 8b).  By simplifying the 

groundwater component further to a one-layer representation with a constant 

transmissivity, these deficiencies are amplified. Similar behaviours for both one-layer 

representations are observed for the Lower Greensand site (Figure 8f), especially between 

1992 – 1995 where underestimation of levels persists and between 2001 – 2005 where an 

overestimation of levels persists. In this case, the lack of a high conductivity layer in the 

zone of fluctuation causes the model to deviate from the observed levels for extended 

periods of time. This behaviour occurs most dramatically in the Sandstone simulations after 

1997 (Figure 8h). For the Limestone site, using a one-layer model has a completely different 
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affect on the simulations. Here, it appears the model is not able to capture any of the 

variability in the hydrograph. Actually, the calibration NSE scores which are close to zero for 

both the one-layer variable and fixed-transmissivity groundwater components indicate that 

the best the model can do is approximately match the mean of the observations. 

 

The fifth calibrated model structure used the optimum groundwater component from the 

previous tests but with the unsaturated zone component removed all together. This is likely 

to impact the timing and seasonality of the simulated hydrographs as the unsaturated zone 

component attenuates and translates soil drainage to the water table. To investigate this, 

the simulated annual groundwater level distributions using model structures with and 

without the unsaturated zone component were compared (Figure 9). Here, it can be seen 

that the average timing of the Chalk, Limestone and Lower Greensand hydrographs do not 

change considerably. However it should be noted that for the Limestone study site, 

removing the unsaturated zone allows the model to correctly simulate the average peak 

groundwater levels in January rather than December. Of course, the role of the unsaturated 

zone module for each of these sites has shown to be minimal (Figure 7), but even so, 

removing it does have some impact on the monthly errors of these models especially for the 

Limestone and Lower Greensand models which show an enhanced positive and negative 

bias respectively. The removal of the unsaturated zone component results in a significant 

drop in overall efficiency from 0.85 to 0.76 for the Sandstone model. Here, the timing of the 

peak and trough of the hydrograph is out by one month (Figure 9d) and there is a consistent 

overestimation of levels between October and January, and an underestimation of levels 

between February and August. 

4. Discussion 

4.1. Groundwater level simulation efficiency  

AquiMod can simulate groundwater level time-series in contrasting aquifers with 

considerable accuracy. For the quasi-sinusoidal Chilgrove House Chalk hydrograph, AquiMod 

was able to capture the seasonality, timing and magnitude of the peaks and troughs very 

efficiently, achieving the overall highest NSE score. Similarly, for the more slowly 

responding, but still largely sinusoidal Skirwith Sandstone hydrograph, AquiMod was very 
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efficient over the calibration and evaluation sequences. The most efficient calibrated model 

for the Lower Barn Cottage observation borehole in the Lower Greensand aquifer returned 

the highest NSE of any model over the evaluation sequence. AquiMod was able to closely 

match the variability in this observation record, both in terms of the intra-annual seasonality 

and the longer term fluctuations, an observation which is encouraging given the irregularity 

of the hydrograph resulting from the heterogeneous nature of the Lower Greensand 

formation. AquiMod was less efficient at capturing the complex behaviour of the 

hydrograph in the Limestone aquifer achieving the lowest combined NSE of all the study 

sites. Here, the groundwater level, storage and discharge behaviour appears to be more 

complex than the other sites, where the hydrograph shows a smooth recession, but rapidly 

fluctuates during the winter months when levels are high. This behaviour is indicative of the 

complex flow pathways caused by the Limestone’s low primary porosity which means that  

flows are restricted to fast preferential fracture pathways that are only activated at certain 

times of the year when water saturates them (Atkinson, 1977). Even using the most efficient 

three-layer saturated zone representation, AquiMod was not able to capture this complex 

behaviour and showed a notable strong positive bias during the summer minimum levels. 

 

Of course, deficiencies in simulations, like those observed for the Limestone model, may 

arise from a number of sources including errors in the meteorological data used to drive the 

models and the groundwater level observations used to evaluate them. The impact of 

running the simulations on a monthly time-step and the resultant smoothing of the driving 

rainfall and PET data should also be considered. By doing so, the short, intense rainfall 

events that can lead to significant recharge fluxes are not captured by the model which may 

result in a significant underestimation of recharge (Howard and Lloyd, 1979). For the 

Limestone model, the relatively low efficiency score compared to the other study sites 

suggests there are also shortcomings in the model structure that means it is not able to 

capture the non-linear storage-discharge relationship of this aquifer adequately. It is 

certainly possible to conceive new model structures that may improve upon the simulations 

described in the study. Certainly, the object-oriented structure of the AquiMod code allows 

for new structure representations to be included easily. One feature that has not been 

included in the saturated zone components used here is a variation in storage coefficient 
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with depth, which has been shown to be important to include in some groundwater 

modelling studies of the Chalk and Jurassic Limestone aquifers in the UK (Rushton and 

Rathod, 1981; Rushton et al., 1982).  

 

Structural inadequacies aside, another issue made apparent during the initial efficiency 

evaluation of AquiMod was its inability to capture new events outside of those observed in 

the calibration sequence. Even for the most efficient model of the Chalk aquifer, it was not 

able to simulate extreme wet events in the evaluation sequence with a tendency to 

underestimate the response to them. A subsequent analysis of the rainfall dataset showed 

that these periods were especially wet, and wetter than any of the winters contained in the 

calibration dataset. The issue of model robustness over contrasting climatic conditions is 

important, as these can lead to significant simulation uncertainties outside of the chosen 

calibration period. It is acknowledged that the adopted approach of selecting a single 

calibration and evaluation time-series does not account for these uncertainties, and while 

beyond the scope of this paper, more rigorous approaches to quantify these uncertainties 

do exist such as the generalized split-sample test (GSST) formulated by Coron et al. (2012) 

which would be relatively straight forward to use in conjunction with the AquiMod 

software. It is also acknowledged, that the choice of objective function used to evaluate the 

model efficiency can greatly influence the assessment of the model and subsequently the 

selection of suitable structures and parameter sets. For this study, the NSE was chosen to 

assess the simulation efficiency, which was deemed adequate for this initial demonstration 

of the AquiMod software. However, as discussed previously, the NSE has its shortcomings 

(Beran, 1999; Legates and McCabe, 1999; Pappenberger et al., 2004). Certainly, the increase 

in simulation efficiency over the evaluation period for the Lower Greensand and Sandstone 

models is probably more reflective of the increased variability in the observed hydrograph 

rather than a reduction in residuals which were actually larger over the evaluation 

sequences. Accordingly, the choice of objective function should reflect the purpose of the 

modelling exercise (Bennett et al., 2013). 
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4.2. Identification of suitable model parameters and structures 

The modular structure of the AquiMod software, in addition to its in-built Monte Carlo 

parameter sampling functionality, has allowed the sensitivity of the groundwater level 

simulations to be assessed in response to changes in the calibration parameters and model 

structure. Each of the four modelled sites have shown very different behaviours in response 

to these perturbations. Here, we discuss the results from these analyses by considering each 

of AquiMod’s three modules in turn and their influence on the behaviour of the models of 

each study site. 

 

The soil zone module provides an important role in AquiMod by partitioning rainfall into 

runoff, evapotranspiration, soil storage and drainage. Even so, the depletion factor (p) 

parameter was remarkably insensitive while the maximum root depth (Zr) parameter was 

only identifiable for the Chalk and Limestone models. This finding is surprising given that 

these parameters control the evaporation rate from the soil, and thus can dramatically alter 

the recharge input to saturated zone module. However, it is conceivable that other model 

parameters could interact with p and Zr. For example, if they are configured so that the 

overall recharge flux is reduced, this could be compensated for by reducing S in the 

saturated zone module to maintain the variability in the hydrograph. A subsequent set of 

runs were conducted for the four study sites which showed that if all other parameters are 

fixed, the soil parameters do have a significant impact on groundwater level simulations, 

indicating that parameter interaction can explain their insensitive behaviour for this study. 

These findings suggest that it may in fact be beneficial to fix these using the best available 

soil and vegetation information. Certainly, available large-scale soil datasets such as the 

Land Information System (LandIS) for England and Wales (Proctor et al., 1998) and the 

Harmonised World Soil Database (FAO et al., 2012) can be used to inform the selection of 

these parameters. 

 

The Weibull unsaturated zone component influences the behaviour of AquiMod greatly. It is 

calibrated using two calibration parameters: λ which approximately controls the lag in the 

unsaturated zone; and k which controls the attenuation (spread) of the recharge response 

to soil drainage. Both showed varying degrees of sensitivity and optimal values across the 
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study sites. Of the two, λ was most sensitive as it controls the seasonal signal in the 

hydrograph simulation and therefore has a significant impact on the overall efficiency of the 

model. The Weibull distributions for the Limestone and Chalk models both resulted in a 

rapid flux of soil drainage to the water table, although a small portion (approximately 20%) 

of soil drainage was lagged by one month. However, the k parameter was found to be 

insensitive for these models, suggesting this spread of recharge after the peak is not 

uniquely optimal. Rather the rapid peak response induced by the optimal small λ values was 

most crucial to the efficiency of these models. For the Limestone aquifer, the reason for this 

rapid response is likely to be percolation through preferential fracture pathways. For the 

Chalk this rapid response to rainfall is not uncommon even where the unsaturated zone has 

a significant depth (28.6 m on average for the Chilgrove House borehole). This is because of 

so-called ‘piston flow’ through the Chalk matrix in the unsaturated zone. Here, groundwater 

recharge occurs as a result of a pressure wave traversing through the, generally highly 

saturated, matrix which displaces water from bottom of the unsaturated zone rather than 

percolating through it (Mathias et al., 2005). 

 

Soil drainage passed instantaneously to the underlying saturated zone module in the most 

efficient model of the Lower Greensand aquifer. The sensitivity analysis showed that the 

most efficient simulations were produced when λ was small (< 1.5) and k was large (> 4), 

resulting in a rapid and sharp recharge response. In fact, at this site the water table lies only 

2 m below ground level on average, which explains the instantaneous flux of soil drainage to 

the saturated zone. Incidentally, this was the only model that showed any sensitivity to k 

suggesting the model fit was very dependent on this sharp spiky recharge response. It 

should be noted that for all models, the sensitivity of k is likely to be inhibited by the coarse 

monthly time-stepping employed for this study as much of the definition of the Weibull 

distribution is lost once it is scaled over a small number of monthly time-steps (clearly seen 

in Figure 7). Therefore, k should show more sensitivity if smaller time-steps are used.  

 

Due to the small attenuation affect of the optimized Weibull unsaturated zone components 

for the Chalk, Limestone and Lower Greensand models, the impact of removing this module 

all together from the AquiMod structure had little effect on the overall simulation efficiency. 
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However, for the Sandstone model which returned the largest optimum λ value resulting in 

the greatest attenuation of recharge, removing the unsaturated zone component had a 

significant impact on the efficiency of the model as it could no longer match the timing of 

the groundwater level hydrograph. The cross-correlation analysis between rainfall and de-

seasonalised groundwater levels indicated a longer response time for the Sandstone aquifer 

and consequently, the importance of including the unsaturated zone module for this site. 

Interestingly, the average thickness of the unsaturated zone for the Sandstone site is only 3 

m which presumably would have little impact on the soil drainage flux. Actually, while the 

Skirwith borehole groundwater catchment is known to be primarily unconfined, the drill log 

for this borehole revealed that there is a potentially confining clay layer present up to 3 m 

thick. This suggests that the lagged response to rainfall determined from the calibrated 

model and from the independent cross-correlation analysis could actually be a result of the 

time taken for groundwater levels in the borehole to respond to recharge taking place 

further away where the aquifer is unconfined. This implies that it is not possible to say with 

certainty that the lag-response induced in AquiMod by the Weibull unsaturated zone 

component represents the time delay between water draining from the base of the soil to 

the water table exclusively. Rather, this component is a transfer function that introduces a 

degree of memory into AquiMod, even though this may derive from a number of sources. 

For example, the saturated zone itself will have a certain amount of memory in its response 

to recharge related to the flow and storage characteristics of the aquifer in question (Kooi 

and Groen, 2003; Neuzil, 1986).  

 

Interpretation of the parameters in AquiMod should always be made with care. AquiMod is 

a lumped model and as such the calibrated parameter sets and structures represent 

simplified conceptualisations of heterogeneous field conditions. Certainly, questions remain 

as to where the lag induced by the unsaturated zone module for the Sandstone model 

originates, and whether it is in fact an artefact of a distribution of localised confining layers 

overlying the aquifer which cannot be explicitly represented in AquiMod. Some of the 

parameters, such as those used in the soil zone component show little or no sensitivity, and 

there is evidence of parameter interaction, both of which inhibit the confidence that we can 

have in the uniqueness of the model parameters and their relation to field properties. It is 
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also important to consider the model assumptions. For example, for the saturated zone 

component, an aquifer length was defined which assumes a fixed discharge point and 

negligible lateral inflows. In highly dynamic catchments where the groundwater divide 

moves significantly, these assumptions are likely to break down. Even so, comparison to 

available field data has shown that  the calibrated specific yield and hydraulic conductivity 

parameters of the most efficient model structures were identifiable and were consistent 

with available field data for all sites which implies that they have some physical relevance 

and that it might be possible to constrain the bounds of the parameter space before 

calibration using measurable catchment properties. The calibrated Lower Greensand 

transmissivity values fell into the lower quartile of the 40 pumping test estimates, which is 

likely to be an artefact of the relatively thin Lower Greensand in this region (9m in 

comparison to a maximum thickness of 220m) as transmissivity is the integral of 

permeability over depth. The optimum transmissivity obtained for the Chalk aquifer also fell 

within the lower quartile of the observed data for this region.  

 

While the calibrated two and three-layer groundwater components for the Chalk, Limestone 

and Lower Greensand models produced models that were almost as efficient at simulating 

their respective groundwater level hydrographs, the three-layer component for the 

Limestone did reveal some interesting features. Here, the three-layer model was 

considerably better than the two-layer model over the evaluation sequence. Furthermore, it 

was the only model structure to include an intermediate high conductivity zone. This helped 

to reduce an overall positive bias in the model by over an order of magnitude compared to 

the two-layer component. Physically, the presence of a high conductivity zone is plausible 

given the complex fracture flow known to dominate this aquifer as previously discussed, and 

as such it may be that the addition of layers to the AquiMod saturated zone module may 

help to test concepts of preferential flow pathways. 

 

The model of the Sandstone showed the most significant change in simulation efficiency 

when switching between a two and three-layer aquifer representation. Here two layers 

were optimal, particularly over the evaluation sequence. Theoretically, a three-layer aquifer 

representation should be able to simulate the storage-discharge relationship as efficiently as 
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a two-layer component: one only needs to understand the mathematical formulation 

(Equation 11) to see that this is the case. So the argument that the three-layer 

representation is mathematically less suited to the Sandstone aquifer than the two-layer 

representation is not adequate. Instead, a more likely reason for this loss in efficiency with 

complexity is an issue of parsimony. It appears that the three-layer component was over-

fitted to the calibration sequence and subsequently performed worse than the simpler, 

more parsimonious, two-layer structure. In this sense, the comparison between the two 

highlights an important consideration when applying these simple models to different 

aquifers; the most complex model will not always prevail as the most suitable model 

structure.  

 

The impact of simplifying the model structure further to single-layer, variable and constant-

transmissivity representations, resulted in a sharp fall in simulation efficiency for all sites 

although the impact for each site was contrasting. The most dramatic impact on the 

simulations was observed for the Limestone aquifer where the optimization procedure 

could only produce a model that approximately matched the mean of the observations. It is 

worth noting that theoretically, the amplitude of the hydrograph could have been matched, 

but probably not the pattern of fluctuation, by extending the calibration range of the 

storage coefficient to much smaller values. However this could not have been justified 

physically. Rather, this serves to further highlight the complexity of the discharge response 

to changes in aquifer storage at this site. The Chalk showed the highest efficiency scores 

using the one-layer aquifer representations, although the suitability of these simple 

structures was shown to break down during periods of exceptionally high and low levels. A 

similar pattern was observed for the Lower Greensand site with persistent under and 

overestimation of levels and most dramatically for the Sandstone site. Indeed, the presence 

of at least one high conductivity layer in the zone of fluctuation acts as a sort of discharge 

moderator where it drains rapidly when the groundwater levels are high and ceases to flow 

when the level falls below it. This combination prevents the model from deviating from the 

typical range of levels for the aquifer. More importantly though, the gradual simplification 

of the model structure from three layers to a single-layer fixed transmissivity component is a 

gradual linearization of the storage-discharge relationship, a relationship that is known to be 
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non-linear because of vertical heterogeneity in the storage and hydraulic conductivity 

properties of the aquifer and other regional characteristics such as the presence of river and 

spring discharge points. As such, these one layer representations are unlikely to be useful 

for most applications of AquiMod.  

 

The inclusion of extra complexity, be it through the addition of extra layers in the saturated 

zone module or other modifications can improve model efficiency and provide further 

insight into the controls on groundwater level fluctuations. However, the inclusion of extra 

parameters may also introduce more uncertainty into the model and result in an 

unparsimonious model structure (Jakeman and Hornberger, 1993).  Interestingly, for three 

of the study sites, the act of removing the unsaturated zone component, thereby simplifying 

the structure of the model, had a small impact on the model efficiencies. It may also be 

beneficial to use simpler functions that describe the relationship between groundwater 

storage, level and discharge that require fewer parameters such as the cubic function 

employed by Moore and Bell (2002), or even simpler approaches such as the semi-analytical 

solution presented by (Park and Parker, 2008) who assume recharge is a fixed proportion of 

rainfall, and lump the flow, storage and hydraulic gradient variables into a single parameter 

assumed constant over space and time. This of course deviates from the layered saturated 

zone structure used in AquiMod, and most physically based models, due to the discrete 

step-wise layering in flow and storage properties often observed in groundwater aquifers 

(Cross et al., 1995; Rushton and Rao, 1988). However, where the variation of aquifer 

properties, such as the hydraulic conductivity, are known to vary gradually, it may also be 

possible to include statistical distributions of these properties which are characterised by 

fewer parameters. 

 

The subject of prediction uncertainty is one that has not been addressed in this paper, 

although the issue has arisen on a number of occasions not least because of issues of non-

uniqueness of acceptable model parameter sets and structures. Certainly, future 

applications of AquiMod should seek to take advantage of its fast run-time and its ability to 

incorporate multiple model structures to rigorously quantify uncertainty. Approaches such 

as the previously mentioned GSST scheme and well established multi-model procedures 
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such as the Generalised Likelihood Uncertainty Estimation (GLUE) method (Beven and 

Binley, 1992), which allows the user to quantify model parameter and structural 

uncertainty, are increasingly being applied in hydrological modelling applications. The work 

of Clark et al. (2008), who devised the Framework for Understanding Structural Errors 

(FUSE) in rainfall runoff models, has demonstrated the importance of understanding 

structural uncertainty for river flow simulations, and the AquiMod software could provide a 

useful platform to extend this type of analysis to groundwater level simulation applications 

in the future. 

5. Conclusions 

AquiMod is a simple, lumped conceptual groundwater level prediction tool that can be run 

quickly and efficiently to simulate groundwater levels for contrasting aquifer types. It has 

been shown to be very efficient at simulating smooth quasi-sinusoidal groundwater level 

hydrographs in the Chalk and Sandstone and the highly irregular hydrograph of a Lower 

Greensand observation borehole, but in its current form appears to be less suited to 

complex fractured aquifers such as the Carboniferous Limestone where it could not capture 

summer low levels and the rapid fluctuations in the winter high levels adequately.  

 

The AquiMod software is simple to use, making it more accessible to hydrogeologists than 

more sophisticated, and often complex, distributed physically-based models. It also has the 

potential to derive some average aquifer flow and storage properties and could be used as a 

preliminary investigative tool before applying a distributed model. The software allows the 

user to experiment with different model structures and sample multiple parameter sets, 

which is especially useful for simulating groundwater levels at sites with storage-discharge 

relationships that cannot necessarily be characterised by a single conceptual model. Indeed, 

through using progressively simpler representations of aquifer properties, this work has 

highlighted the importance of incorporating vertical heterogeneity of aquifer hydraulic 

conductivity in the groundwater model structure to capture aquifer storage-discharge 

dynamics efficiently.  
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Due to its modular structure, new components can be included in AquiMod easily, which 

combined with its in-built Monte-Carlo parameter sampling functionality could provide a 

platform from which more rigorous data-based mechanistic modelling approaches (Young et 

al., 2007) can be implemented in the future. There is also the potential to expand its 

application to investigate issues of parameter and structural uncertainty. Here, similar 

studies for river flow simulations such as those conducted by Beven and Binley (1992), Clark 

et al. (2008) and Coron et al. (2012) should help to guide the focus of these future 

applications. 
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Figure 1: Schematic of generalised AquiMod model structure (left) and different saturated 

zone component structures used in this study (right). 

 

 

Figure 2: Probability distribution functions using the parametric Weibull distribution with 

different scale (λ) and shape (k) parameters.  
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Figure 3: Location and geological setting of four observation boreholes. 
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Figure 4: Observed groundwater level time-series in meters above sea level (m asl) at 

modelled sites. 
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Figure 5: Observed groundwater level time-series and those simulated using the most 

efficient model structures (left), and mean monthly and annual groundwater levels (right). 
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Figure 6: Dotty sensitivity plots for the most efficient model structures with parameter value 

on the x-axes and NSE on the y-axes. Black dots indicate individual parameters from Monte 

Carlo sampling and the white dot indicates the optimum parameter value. 

 

 

 

Figure 7: 1 Calibrated Weibull distribution (black line) and corresponding unsaturated zone 

function (grey bars) for the most efficient model structures. 
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Figure 8: Observed and simulated groundwater level hydrographs over the evaluation 

sequence using four different groundwater model structures for the (a,b) Chalk, (c,d) 

Limestone, (e,f) Lower Greensand and (g,h) Sandstone study sites. 



47 

 

 

 

Figure 9: Observed and simulated mean monthly and annual groundwater levels with and 

without the unsaturated zone component. 
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9. Tables 

 

Table 1: List of AquiMod model parameters arranged by module. 

Module Parameter 

(units) 

Description 

Soil 

Δx   (km) Representative aquifer length  

BFI   (-) Baseflow index 

FC   (-) Field capacity of the soil 

WP   (-) Wilting point of the soil 

Zr   (mm) Maximum rooting depth of vegetation 

p   (-) Depletion factor of vegetation 

Unsaturated Zone 

n (-) Maximum number of time-steps taken for soil drainage 

to reach the groundwater  

k   (-) Weibull shape parameter 

λ   (-) Weibull scale parameter 

Saturated Zone 

Ki   (m d-1) Hydraulic conductivity for layer i 

T1   (m2 d-1) Transmissivity for layer 1 (one-layer fixed transmissivity 

component only) 

S   (%) Aquifer storage coefficient 

Zi   (m asl) Outlet elevation for layer i 
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Table 2: Calibration (Cal), evaluation (Evl) and combined (Cmb) NSE and combined bias 

scores obtained for each of the five different model structures tested. The most efficient 

model structures based on their combined NSE scores are highlighted in grey. 

 

 Chalk Limestone Greensand Sandstone 

 Cal 

NSE 

Evl 

NSE 

Cmb 

NSE 

Cmb 

bias 

Cal 

NSE 

Evl 

NSE 

Cmb 

NSE 

Cmb 

bias 

Cal 

NSE 

Evl 

NSE 

Cmb 

NSE 

Cmb 

bias 

Cal 

NSE 

Evl 

NSE 

Cmb 

NSE 

Cmb 

bias 

3-layer 0.92 0.89 0.91 0.25 0.70 0.61 0.65 0.09 0.75 0.88 0.84 -0.04 0.83 0.52 0.66 -0.08 

2-layer 0.91 0.89 0.90 0.09 0.69 0.54 0.62 0.97 0.73 0.92 0.88 0.00 0.82 0.86 0.85 -0.05 

1-layer 0.73 0.49 0.60 1.57 0.00 0.02 -0.02 1.23 0.69 0.15 0.27 0.09 0.23 -4.23 -1.91 -0.40 

1-layer 

(fixed T)  0.38 -0.28 0.02 1.56 -0.01 0.02 -0.01 1.03 0.67 -0.62 -0.33 0.09 0.30 -8.39 -4.73 -0.61 

No UZ 0.91 0.89 0.90 0.13 0.71 0.56 0.64 0.55 0.74 0.91 0.87 -0.02 0.75 0.76 0.76 -0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 

 

Table 3: Optimum model parameter sets for the most efficient model structures. Calibration 

parameters highlighted in white and fixed parameters highlighted in grey. Prior calibration 

bands in square brackets. 

 

Module Parameter 

(units) 

Chalk Carboniferous 

Limestone 

Lower 

Greensand 

Triassic 

Sandstone 

Soil Zone 

Δx   (km) 3.0 1.5 0.5 1.0 

BFI   (-) 0.81 0.75 0.80 0.43 

FC   (-) 0.290 0.285 0.286 0.286 

WP   (-) 0.153 0.116 0.185 0.185 

Zr   (mm) 2269  

[1000-3000] 

565 

[200-1000] 

3501 

[1000-5000] 

4180 

[1000-5000] 

p   (-) 0.04 [0-1] 0.30 [0-1] 0.1 [0-1] 0.52 [0-1] 

Unsaturated 

Zone 

n (-) 5 3 7 6 

k   (-) 4.67 [1-7] 3.6 [1-7] 4.15 [1-7] 2.53 [1-7] 

λ   (-) 1.47 [1-3] 1.47 [1-3] 1.13 [1-3] 2.08 [1-3] 

Saturated 

Zone 

K3   (m d-1) 14.88 [5-30] 12.97 [5-30] - - 

K2   (m d-1) 13.94 [5-30] 15.29 [5-30] 42.76 [1-

100] 

100.5 [10-150] 

K1   (m d-1) 0.57 [0.01-

1] 

0.003 [0.001-0.2] 0.95 [0.01-5] 0.01 [0.001-

0.05] 

S   (%) 0.6 [0.1-1.5] 0.7 [0.5 – 5] 22.3 [1-30] 8.3 [5 – 20] 

z3   (m asl) 49.8 262.6 - - 

z2   (m asl) 38.1 254.9 10.3 129.4 

z1   (m asl) -11.4 182.0 3.0 35.0 

 


