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SUMMARY  33 

1. Species’ abundances vary in space and time. Describing these patterns is a cornerstone 34 

of macroecology. Moreover, trends in population size are an important criterion for the 35 

assessment of a species' conservation status. Since abundance trends are not 36 

homogeneous in space, we need to quantify variation in abundance trends across the 37 

geographical range of a species. A basic difficulty exists in that data sets that cover large 38 

geographic areas rarely include population abundance data at high temporal resolution. 39 

Whilst both broad-scale geographic distribution data and site specific population trend 40 

data are becoming more widely available, approaches are required that integrate these 41 

different types of data. 42 

2. We present a hierarchical model that integrates observations from multiple sources to 43 

estimate spatio-temporal abundance trends. The model links annual population densities 44 

on a spatial grid to both long-term count data and to opportunistic occurrence records 45 

from a citizen-science programme. Specific observation models for both data types 46 

explicitly account for differences in data structure and quality. 47 

3. We test this novel method in a virtual study with simulated data and apply it to the 48 

estimation of abundance dynamics across the range of a butterfly species (Pyronia 49 

tithonus) in Great Britain between 1985 and 2004. The application to simulated and real 50 

data demonstrates how the hierarchical model structure accommodates various sources of 51 

uncertainty that occur at different stages of the link between observational data and the 52 

modelled abundance. Thereby, it accounts for these uncertainties in the inference of 53 

abundance variations. 54 
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4. We show that by using hierarchical observation models that integrate different types of 55 

commonly available data sources we can improve estimates of variation in species 56 

abundances across space and time. This will improve our ability to detect regional trends 57 

and can also enhance the empirical basis for understanding range dynamics. 58 

 59 

Key words: atlas data, Bayesian statistics, biogeography, butterflies, citizen science 60 

program, conservation biology, count data, macroecology, state-space model 61 

 62 

 63 

INTRODUCTION  64 

Species distribution data are of central importance to ecology. Analysing spatial patterns 65 

of species’ occurrence is the natural first step of studies that assess global change impacts 66 

on biodiversity and design conservation strategies (Dawson et al. 2011). Including the 67 

temporal dimension in macro-ecological data is critical to the development of macro-68 

ecology as a predictive science (Fisher et al. 2010). Indeed, we need data on the spatio-69 

temporal variation of not only occurrence but also abundance in order to understand the 70 

population demographics that underlie species niches and range dynamics (Schurr et al. 71 

2012) and conservation biogeography (Whittaker et al. 2005). In particular, the detection 72 

of abundance trends is an important component of assessing the conservation status of 73 

species according to Red List criteria (IUCN 2011). Since threats are not equally 74 

distributed across the geographical range of species, and conservation actions are 75 

commonly deployed within administrative units rather than globally, we need to quantify 76 
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abundance trends in different parts of the range. However, standardised monitoring data, 77 

from which abundance trends can be inferred directly, rarely have sufficient spatial and 78 

temporal coverage (Whittaker et al. 2005).  79 

 A promising way to overcome data restrictions is the combination of different 80 

data types from various sources that contain information on the occurrence and 81 

abundance of a species across space and time (Scholes et al. 2008). In fact, recent 82 

initiatives like the Global Biodiversity Observation Network of the Group on Earth 83 

Observations (GEO BON) explicitly call for a ‘hierarchical sampling approach’ that 84 

combines large amounts of relatively simple data, like occurrence records, with more 85 

extensive data, like systematic abundance surveys (Scholes et al. 2008). Citizen science 86 

programs that provide geographically explicit data on large spatial and temporal scales 87 

can be particular valuable for the assessment of biodiversity trends (Devictor et al. 2010). 88 

Many of these programs deliver haphazardly collected species lists (Roberts et al. 2007) 89 

where volunteer recorders report the detection/non-detection of certain species from a 90 

target group at occasional and irregular site visits. These records are characterized by an 91 

uneven geographical and temporal distribution of surveys, non-standardized observer 92 

efforts per site visit and possible biases in species’ reporting and detection which has to 93 

be carefully dealt with in order to avoid biased trend estimates (van Strien et al. 2013). 94 

The use of these data for the estimation of abundance trends and their combination with 95 

data from other sources requires flexible statistical models that explicitly account for 96 

differences in data structure and quality and that can handle and quantify the sources of 97 

uncertainty associated with each data type. 98 
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 Recently, a range of hierarchical statistical modelling approaches have been 99 

developed that explicitly distinguish the data-generating observation processes from the 100 

processes that drive the variation of ecological state variables such as occurrence and 101 

abundance (Royle & Dorazio 2008): Occupancy models that estimate species occurrence 102 

from presence-absence data with imperfect detection (McKenzie et al. 2006) are now 103 

common and have been successfully applied to opportunistic detection/non-detection data 104 

from citizen science programs (e.g. Kery et al. 2010, van Strien et al. 2013). Analogous 105 

hierarchical models have been used to estimate of abundance form imperfect count 106 

surveys (e.g. Royle & Dorazio 2006, Royle et al. 2007, Kery et al. 2009). Some authors 107 

have argued for an advantage of using abundance as a state variable even for the analysis 108 

of presence-absence data, since variation in abundance is likely the most important cause 109 

of heterogeneous species detectability in presence-absence surveys (Royle & Nichols 110 

2003, Dorazio 2007). Conroy et al. (2008) have shown how a functional relationship 111 

between abundance and detectability can be estimated by combining (repeated) presence-112 

absence records with capture-mark-recapture data for the same locations and how this 113 

relationship can consequently be used to predict local abundance at sites with only 114 

presence-absence records.      115 

In this study we advance this approach in order to estimate spatial variation in 116 

abundance trends from a combination of widespread opportunistic occurrence records 117 

and local abundance surveys. The presented method links both detection/non-detection 118 

data and count data to a spatially explicit state-space model of abundance variation. The 119 

hierarchical model thereby infers a relationship between the abundance state variable and 120 

detectability and in turn allows the detection/non-detection data to inform the estimation 121 
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of abundance trends. We (1) assess the reliability of this method by testing it in simulated 122 

data scenarios, and (2) demonstrate its application in a case study that estimates 123 

abundance trends for of a butterfly species (the Gatekeeper, Pyronia tithonus) in Great 124 

Britain.    125 

 126 

MATERI ALS AND METHODS  127 

A hierarchical model of abundance variation 128 

The model aims to estimate population densities of a focal species in all cells i of a 129 

regular spatial grid and in all years t within an observation time period. We generally 130 

consider two types of data: (i) standardized count surveys within a certain subarea of a 131 

grid cell and (ii) opportunistic occurrence records that can be geographically referenced 132 

to a grid cell and report the detection/non-detection of the focal species. Count data will 133 

typically only be available for a small subset of grid cells and occurrence records will 134 

come from a highly variable number of recorder visits per cell and year (including zero 135 

visits).  136 

 For the estimation of abundance variation from these heterogeneous data, the 137 

hierarchical model integrates specific observation models for both data types with a state-138 

space model that describes the spatio-temporal variation of population densities Λ 139 

(Fig. 1). For the basic model concept presented here, we do not consider the effect of 140 

environmental covariates on the observation processes or the species’ population density, 141 

but we will address their potential inclusion in the discussion. In the following, we 142 

specify basic observation models that describe the likelihood of either count data or 143 
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detection/non-detection records conditional on the population density Λ, as well as the 144 

state-space model of Λ. As outlined below, we will interpret Λ as a relative measure of 145 

population density rather than an absolute measure.  146 

 147 

Modelling count data 148 

We assume a single number of individuals yj,t that was counted at a survey site j located 149 

within grid cell i of size A. Survey sites may differ in their area aj. A reasonable starting 150 

point for modeling count data is a Poisson distribution with a rate parameter λ that is 151 

proportional to the sampled area aj and the total number of individuals Ni,t in the grid cell. 152 

Yet, a common feature of count data is that the sample variance is larger than assumed 153 

for a Poisson distribution (i.e. larger than the mean). This overdispersion may arise from 154 

various factors, including a spatially aggregated distribution of individuals and sampling 155 

variability (Linden & Mantyniemi 2011, Kotze et al. 2012). Without aiming to resolve 156 

individual factors that contribute to overdispersion and for technical convenience we 157 

model count data yj,t by a mixed lognormal-Poisson distribution 158 

yj,t ~ Poisson(λj,t)        (eqn. 1) 159 

λj,t
 
~ LogNormal(μj,t, σλ

2
) 160 

which is parameterized via the log-scale mean μj,t = aj·Λi,t, so that the median count is the 161 

product of a relative measure of population density Λi,t and the sampled area aj. σλ
2
 is an 162 

estimated variance parameter that represents overdispersion with respect to the Poisson 163 

distribution.  164 
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 We chose to link the count data to a relative measure of population density, 165 

because the estimation of absolute population sizes would rely on estimating the rate ω at 166 

which individuals are detected. Robust methods to estimate ω have been proposed for 167 

cases where a closed (i.e. constant during the sampling period) population is counted 168 

repeatedly (Royle et al. 2007, Royle & Dorazio 2008). Since here we do not assume that 169 

data from repeated counts are available, we instead normalize the estimated population 170 

density by the (unknown) average per individual detection rate E[ω]. From the expected 171 

count at a survey site E[yj,t] = (aj/A)·Ni,t·E[ω], it follows that the estimated relative 172 

population density is proportional to population size: 173 

 
)2exp(

]E[
2

,

,






A

N ti

ti        (eqn. 2) 174 

Due to this normalization the observation model does not explicitly account for variation 175 

in ω. Yet, the inference of trends from estimated relative population densities Λ does not 176 

assume that detection rates are constant, but just that there is no distinct spatial or 177 

temporal pattern to this variation (Link & Sauer 1998).       178 

 179 

Modelling detection/non-detection data 180 

Detection/non-detection histories for each cell i and year t consist of the total number of 181 

recorder visits Ji,t  and the respective number of visits xi,t that report the focal species’ 182 

presence. We model this as a binomial process xi,t ~ Binomial(Ji,t, ψi,t) with detectability 183 

ψi,t denoting the per-visit probability to record a presence. To formulate a likelihood of 184 

detection/non-detection data conditional on the state variable Λ we describe a functional 185 
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relationship between detectability ψi,t and population density (hereafter called density-186 

detectability-curve). A basic model of the dependence of ψ on the population size N can 187 

be derived from a binomial model for the number of detected individuals per visit 188 

n ~ Binomial(N , r) with per-individual detection probability r (Royle & Nichols 2003). 189 

The detectability, i.e. the probability to encounter at least one individual during a visit, is 190 

then Pr(n = 1) = 1 − (1 − r)
N
. An equivalent formulation of this relationship with respect 191 

to relative population density Λ is 192 

 ψi,t = Pr(n = 1) = 1 − exp(−α·Λi,t)     (eqn. 3)  193 

with the new parameter α = −ln(1 − r)·N/Λ. The saturation rate α describes how fast 194 

detectability approaches one when population density Λ increases and can be interpreted 195 

as a relative measure of sampling effort that is scaled by the proportionality between Λ 196 

and absolute abundance N (cf. eqn. 2). 197 

However, the binomial model makes the assumption that all individuals of a cell 198 

were independently detected (McCarthy et al. 2013) and does not account for additional 199 

variation in detectability. In practice, ψi,t may vary widely due to factors like weather  and 200 

habitat conditions as well as observer effort and skill. In order to reflect additional 201 

sources of uncertainty, we modify the detectability by a multiplicative random term φi,t so 202 

that ψi,t = φi,t(1 − exp(-α·Λi,t)).  Furthermore, we allow also φi,t to depend on population 203 

densities and formulate a linear regression of logit(φi,t) on ln(Λi,t). This specific 204 

functional form of the density-detectability-curve was motivated by a preliminary data 205 

analysis for our case study, which we discus in Appendix S1 in the Supporting 206 

Information. 207 
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Altogether, the probability of obtaining xi,t presence records from Ji,t recorder 208 

visits, conditional on a relative population density Λi,t, saturation rate α and regression 209 

parameters β0, β1, and σφ
2
, is    210 

     kJ

ti

k

ti

ti

tititi

ti
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Jkx
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10,,, 1,,,,,Pr   (eqn. 4) 211 

 ψi,t = φi,t (1 − exp(-α·Λi,t)) 212 

 logit(φi,t) = β0 + β1·ln(Λi,t) + εi,t 213 

 εi,t ~ Normal (0, σφ
2
) 214 

 215 

Modelling population density 216 

Spatio-temporal variation of relative population density Λ is modelled by a lognormal 217 

distribution. We account for zero-inflation due to complete absence in parts of the study 218 

area by introducing an indicator variable I that denotes species presence. Thus, variation 219 

of Λi,t is described by a zero-inflated lognormal distribution, where Pr(Ii,t  = 1) is the 220 

occurrence probability and i,t and 
2
 are the log-scale mean and variance of a lognormal 221 

distribution of Λi,t conditional on the species being present (Ii,t  = 1): 222 
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Models for both occurrence probability Pr(Ii,t  = 1) and log-scale mean density i,t include 224 

spatially autocorrelated random effects as well as temporal random effects on annual 225 

mean incidence and density:  226 

 logit[Pr(Ii,t = 1)] = Inc + Δi,t + ε.Inct     (eqn. 6) 227 

 i,t = D + ρΔi,t + ε.Dt       (eqn. 7) 228 

The temporal random effects ε.Inc and ε.D are normally distributed with zero mean and 229 

variances Inc
2 

and D
2
, respectively. For spatial effects Δi,t we do not consider 230 

environmental covariates but include a year-specific parabolic effect of geographical 231 

latitude L:   232 

Δi,t = γ1,t·Li + γ2,t·Li
2
 + δi,t      (eqn. 8) 233 

The motivation for this latitudinal effect is mainly to constrain estimates of Λ for poorly 234 

sampled areas beyond the species’ range (cf. Fig. 3). For the spatially auto-correlated 235 

random effects δi,t we use an intrinsic conditionally autoregressive (CAR) model (Besag 236 

et  al. 1991):    237 

 δi,t| δ-i,t ~ Normal(δ.bari,t, ν/ni)      (eqn. 9) 238 

where δ.bari,t is the mean Σj δj,t/ni over all ni cells that are adjacent to i. Note that, 239 

conditional on the variance parameter ν which is constant across years, random effects δt 240 

in different years t are independent of each other. 241 

 242 

  243 
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Simulation study  244 

We conducted a simulation study to test the performance of the presented model for a 245 

range of data scenarios. On an artificial landscape grid of 5050 cells we simulated 246 

dynamic abundance patterns in a changing environment. In a ‘Virtual Ecologist’ 247 

approach (Zurell et al. 2010) we then sampled observation data from the simulated 248 

abundance patterns, used these data to estimate the spatio-temporal variation in 249 

population densities and assessed model estimates based on the known, simulated 250 

population dynamics. Imperfect count and detection/non-detection data were drawn from 251 

probability distributions (conditional on the simulated population density) as specified by 252 

the respective observation models above. For count data we deliberately set the 253 

proportionality factor between simulated abundances and estimated relative abundances 254 

(cf. eqn. 2) to one, in order to facilitate the comparison of true and estimated population 255 

densities. The sampling scheme for the standard data scenario covers an observation 256 

period of 20 years and was designed to mimic the data availability of the butterfly case 257 

study (see below) with respect to the total amount as well as the temporal and spatial 258 

heterogeneity of both data types (see Appendix S2 for details on the simulation of 259 

abundance and virtual data). We also created a set of reduced data scenarios by 260 

shortening the observation period to the last ten years and/or by reducing the number of 261 

sites with count data to either 10% or 25% of the number in the standard scenario. 262 

 263 

  264 
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Case study  265 

The Gatekeeper (Pyronia tithonus, sometimes called Hedge Brown) is a common 266 

butterfly species in sheltered grasslands of England and Wales that has expanded its 267 

range northwards in recent years (Mair et al. 2012). For the estimation of abundance 268 

trends across its range in Great Britain, we used two data sets: (i) presence records from 269 

the Butterflies for the New Millennium (BNM) project and (ii) transect count data from 270 

the UK Butterfly Monitoring Scheme (UKBMS). Based on these data, we estimated 271 

relative population densities for the 2689 cells of a 10 km (i.e. cells of area 100 km²) 272 

UTM grid across Great Britain and for all years from 1985 to 2004.  273 

 274 

UKBMS abundance indices  275 

The UKBMS is a long-term monitoring program that conducts systematic counts of 276 

butterflies in a standardized survey on permanent transects in the United Kingdom. In 277 

each of 26 weeks from the beginning of April until the end of September surveyors count 278 

all butterflies within a 5 m wide corridor around each transect. Pollard & Yates (1993) 279 

provide further details and validation of the sampling scheme. The length of individual 280 

transects varies between 1.5 and 3 km and hence the specific surveyed area aj differs 281 

between transects. Since surveys require suitable weather conditions, the precise timing 282 

of the weekly counts is irregular and occasional weeks are missing for a given transect. 283 

For our analysis we use an annually aggregated index of butterfly abundance (IBA) that 284 

interpolates between temporally irregular samples. For each transect and year this index 285 

is calculated from the series of all counts n1, n2, ..., nT at days d1, d2, ..., dT as 286 



14 

 

IBA = ∑nk(dk+1 − dk-1)/2 (see Rothery & Roy 2001 and Dennis et al. 2013 for a discussion 287 

of alternative indices). The IBA represents for each transect the cumulative counts 288 

throughout one season and thereby integrates over the phenology. Consequently, the IBA 289 

does not enable us to directly estimate the absolute abundance of butterfly individuals. 290 

Instead we use it to estimate butterfly days, i.e., the expected total number to have been 291 

counted if a transect had been sampled every day. Since our case study directly uses the 292 

IBA as count data y (eqn. 1), the modelled relative densities Λ are likewise defined 293 

relative to butterfly-days per year (see the discussion for implications this has for trend 294 

estimation).  The number of transects from which data were available varied between 80 295 

and 151 per year, with a median of 124. 296 

 297 

BNM occurrence records 298 

Extensive data on the occurrence of butterfly species across Great Britain were collected 299 

in the Butterflies for the New Millennium project (BNM, Asher et al. 2001). The 300 

underlying raw data, which we use in our analysis, consist of record cards that were 301 

submitted mainly by volunteer observers since 1970. These records list all species 302 

observed at one field visit and typically originate from opportunistic rather than 303 

systematic recording (Asher et al. 2001). However, records occasionally pool 304 

observations for a whole month or year. We excluded any record that could not be 305 

assigned to a single visit of a site. As a simple treatment to account for selective 306 

recording of rare and interesting species, we also removed all records which report only 307 

one species (van Strien et al. 2013). The remaining data for the years 1985–2004 308 
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comprise a total of 510,209 recorder visits. Aggregation of the recorder data to the 100 309 

km² grid then gives for each cell the total number of times J at which the cell has been 310 

visited within a year and the respective number of visits x that recorded a presence (cf. 311 

eqn. 4). On average about half of all grid cells (1408) were visited at least once each year 312 

and the number of visits per year in these cells varied between 1 and 555, with a median 313 

of 6 (Fig 3a). 314 

 315 

Bayesian parameter estimation 316 

For both the simulation study and the butterfly case study, estimates of all parameters in 317 

the hierarchical model, including spatio-temporal density estimates Λ, were generated by 318 

a Markov chain Monte Carlo (MCMC) algorithm. We used OpenBUGS (version 3.2.1, 319 

Lunn et al. 2009) and ran three independent MCMC chains with 100,000 iterations each, 320 

the first 75,000 of which were discarded as burn-in. Convergence of the MCMC sampler 321 

after the burn-in period was checked by calculating the multivariate scale reduction factor 322 

of Gelman & Rubin (1992). Samples of the high-dimensional state vector Λ were only 323 

stored for every 50
th

 iteration in view of memory limitations (Link & Eaton 2012). 324 

Computation times for the different data scenarios were 18–35 hours per MCMC chain 325 

(Intel i5 2.4 GHz CPU). Details of model estimation and the OpenBUGS code are 326 

presented in Appendix S3. 327 

 328 

  329 
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RESULTS  330 

Simulation study  331 

For the simulation study we tested the model’s capability of estimating the relationship 332 

between population density and occurrence-detectability form the combination of both 333 

data sets and using this relationship to estimate population densities also in grid cells for 334 

which no count data was available. Results for the standard data scenario show that the 335 

estimated density-detectability-curve, as predicted from posterior estimates of parameters 336 

α, β0 and β1 (cf. eqn. 4), matches well the ‘true’ occurrence-detectability-curve applied in 337 

sampling of the simulation data (Fig. 2a). Evaluating estimated population densities 338 

against the simulated ‘true’ population densities shows no systematic under- or 339 

overestimation across the range of simulated population densities, but a decreased 340 

precision for grid cells where occurrence data stems from only a few reorder visits per 341 

year (Fig. 2b).           342 

 In order to compare the accuracy of these estimates across the different data 343 

scenarios, we calculated the predictive deviance for population densities in all grid cells 344 

in the last 5 years of the observation period. We summarized the posterior sample for 345 

each population density Λi,t  by the three parameters of a zero-inflated lognormal 346 

distribution (cf. eqn. 5): the mean incidence Ii,t, i.e. the fraction of  non-zero samples 347 

Λi,t > 0, and the log-scale mean i,t  and variance σ
2

 i,t  of a lognormal distribution fitted to 348 

all non-zero posterior samples. The predictive deviance is then calculated from the 349 

likelihood of the true population density Λ*i,t under the posterior distribution as  350 

−2·ln[Pr(Λ*i,t  | i,t, σ
2

i,t, I i,t)]. To further investigate the relationship between accuracy of 351 
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model estimates and the number of recorder visits per site and year (#visits) we then 352 

compared, for each data scenario, the mean predictive deviance across grid cells that had 353 

no count data but different #visits (Fig. 3c). For all data scenarios the accuracy of 354 

estimated population density increases with #visits, particularly for grid cells that 355 

received more than 25 visits. Shortening the overall length of the observation period had 356 

very little effect, whereas decreasing the total number of sites with count data per year 357 

decreased accuracy. However, a severe loss of accuracy only occurred after reducing the 358 

count data to 10%, whereas a reduction to 25% had almost no effect.    359 

 360 

Abundance trends of the Gatekeeper 361 

Parameter estimates for the Gatekeeper are given in Table 1. As in the simulation study, a 362 

comparison of posterior estimates of population densities Λ for different years (Fig. 3) 363 

indicates that precision increases with data availability: In general, both the number of 364 

monitoring transects and the number of recorder visits increased during the study period 365 

(Fig. 3a) and consequently the variance in the posterior distributions of local population 366 

densities becomes smaller in later years (Fig. 3e). Additional to temporal variation in data 367 

availability, there are also geographical differences in the data coverage that likewise 368 

result in more uncertain estimates in regions from which only few records were reported. 369 

In the following, we derive estimates of local and global trends in the Gatekeeper’s 370 

occurrence and abundance from the full posterior distributions of Λ at each site and 371 

thereby account for this heterogeneous precision. 372 

 373 
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Local changes 374 

We evaluated the detection of changes in local abundance between two 5 year periods: 375 

1990–1994 and 2000–2004. Thus, we calculate the posterior distributions of both 5 year 376 

means 1994...1990

i  and 2004...2000

i for each grid cell i (Fig. 4a,b). The probability of 377 

abundance increase or decrease, respectively, is then calculated from these posterior 378 

distributions as  1994...19902004...2000Pr)Pr( iiIncrease   and 379 

 1994...19902004...2000Pr)Pr( iiDecrease  . The results indicate a likely increase of 380 

Gatekeeper abundance in the central northern part of its range, in the Southwest 381 

(Cornwall and South Wales) and in an area of northward range expansion at the west 382 

coast, whereas abundance widely decreases in other parts of the range (Fig. 4c). In total, a 383 

likely increase (Pr(Increase) > 0.95) is detected for 80 grid cells (8.000 km²) and a likely 384 

decrease (Pr(Decrease) > 0.95) is detected for 261 grid cells (26.100 km²). 385 

 386 

General trends in range size and abundance 387 

General trends in the Gatekeeper’s abundance and range size in Great Britain can be 388 

inferred by summarizing the posterior estimates across all sites for each year. The 389 

estimated densities Λi,t
 
for year t serve to estimate the global relative abundance as 390 

∑i Λi,t·100km². The range size (measured at a resolution of 100 km²) can be calculated 391 

directly from the zero-inflation component as ∑i Ii,t. Range size is estimated to slightly 392 

increase throughout the study period, although range sizes begin to stabilize after 1995 393 
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(Fig. 5a). In contrast, global relative abundance declines after an interim peak in 1995 394 

(Fig. 5b). 395 

 396 

DISCUSSION  397 

Lessons from the British butterfly data 398 

In our analysis of the Gatekeeper data we integrated two major data sources of British 399 

butterfly populations. Previous studies based the detection of large scale range shifts on 400 

presence-absence maps for distinct time periods that were summarized from occurrence 401 

records (e.g. Parmesan et al. 1999), whereas abundance indices from transect sites were 402 

used to study population trends at the site level or lumped over the entire range (e.g. Roy 403 

et al. 2001, Rothery & Roy 2001, Dennis et al. 2013). A few studies have used both types 404 

of data (Cowley et al. 2001; Warren et al. 2001; Mair et al. 2012), but they analyzed 405 

them separately and combined the respective findings only qualitatively. For instance, 406 

Mair et al. (2012) estimated trends in range size (from BNM atlas data) and total 407 

abundance (from collated UKBMS transect counts) for the Gatekeeper between the 408 

periods 1970–1982, 1995–1999 and 2005–2009 and found an increase in range size 409 

between the first intervals and a decrease of abundance between the later intervals. Our 410 

findings are in line with these general trends, but draw a more detailed picture of the 411 

spatial pattern of abundance trends. 412 

 Similar to previous analyses of UKBMS transect data, our case study estimated 413 

relative population densities corresponding to an index that summarizes count data from 414 

weekly surveys. Estimates of population trends from such indices commonly assume that 415 
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these indices are proportional to actual population size, i.e. that the average flight activity 416 

per individual is constant (e.g. Rothery & Roy 2001) and that variation in detection rates 417 

is small relative to variation in abundance across sites (Isaac et al. 2011). Studies on the 418 

covariance of transect counts and independently measured population sizes have 419 

confirmed strong correlations across time and space (e.g. Pollard 1977; Collier et al. 420 

2008). Although there is strong support for spatio-temporal variability in the phenology 421 

of butterflies in the UK (Hodgson et al. 2011) this does not necessarily imply systematic 422 

variation in the length of the flight period. Nonetheless, the relationship between transect 423 

counts and population size deserves further investigation in order to provide reliable 424 

estimates of absolute population sizes. A more explicit link between weekly counts and 425 

annual population abundance, however, would have to account for possible phenological 426 

shifts, eventually by a model of population dynamics (Zonneveld 1991, see Gross et al. 427 

2007 for a discussion). In a range-wide application, the modelling of intra-annual 428 

population dynamics would likely increase model complexity beyond practical limits. In 429 

addition to ignoring intra-annual dynamics, our analysis also does not explicitly resolve 430 

spatial heterogeneity of the surveyed transects, which are divided into subsections by a 431 

classification of habitat type. The location of both the transects and of the areas visited 432 

for presence records are non-randomly selected by the recorders and are likely to be 433 

biased towards habitat types where the occurrence of butterflies is expected. The 434 

presented model framework does not explicitly account for this bias and instead assumes 435 

– for the estimation of relative abundance variation – that the selection of sampling 436 

locations for both data types favours certain habitat types in a similar way. Extending the 437 

model towards a separate analysis of transect subsections and attribution of occurrence 438 
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records to different habitat types (when recorded at sufficiently high spatial resolution) 439 

would be possible, e.g. by modelling the expected counts (λ) and the detectability (ψ) 440 

also as a function of within-cell habitat distribution. This would be particularly relevant 441 

for studies aiming to quantify small-scale habitat-abundance relationships. For the 442 

detection of relative abundance trends, the neglect of within-cell spatial heterogeneity, 443 

just as the integration over the phenology, represents a trade-off with model complexity 444 

and computational constraints. Clearly, the extent to which range-wide estimates of 445 

abundance trends can reasonably aggregate the available data – either spatially or 446 

temporally – will have to be assessed each time the model is applied to other data sets 447 

and study species.  448 

 449 

Potential for widespread application 450 

Our assessment of different data scenarios indicates that, on the one hand, a network of 451 

abundance surveys as extensive as in the UKBMS scheme might not be a prerequisite for 452 

a application of the method, but that a more moderate number of about 25 sites may 453 

suffice to infer a relationship between abundance and detectability. On the other hand, the 454 

accuracy of abundance estimates for sites without count data strongly depends on the 455 

number of occurrence records per year. In the most recent years of our study period about 456 

40% of all grid cells received five or more recorder visits per year; about 15% had more 457 

than 25 visits (cf. Fig 2c, 3a). From our findings, having many repeated visits per grid 458 

cell for such a substantial fractions of the study region appears desirable, if detection/non-459 

detection data is expected to inform about spatial variation in abundance trends.    460 
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 However, to what extent an abundance-detectability-curve can be inferred from a 461 

given amount of abundance and occurrence data will depend on a range of additional 462 

factors, including the accuracy of the abundance data, the spatial match of both data types 463 

and the degree of unexplained variation in detectability among occurrence records: For 464 

instance, using a systematic two-phase sampling of occurrence data and capture-mark-465 

recapture data at distinct sites, Conroy et al. (2008) estimated an abundance-detectability 466 

relationship from as few as six surveyed sites and eight occurrence records per site. If 467 

comprehensive information on the environmental conditions (e.g. weather or habitat type) 468 

and the sampling effort (time spent in the field, recorder skill) is available for the 469 

occurrence records, such covariates can be used to explain additional variation in 470 

detectability (e.g. Kery et al. 2009; van Strien et al. 2013) and thereby be expected to 471 

facilitate the estimation of an abundance-detectability relationship. A more detailed 472 

analysis of the variation of detection rates, in both count and occurrence data, would also 473 

be required to control for possible temporal trends in detection rates (van Strien et al. 474 

2013). The model framework could also be extended to accommodate other data types of 475 

different structure. For instance, if repeated counts of closed populations or capture-476 

mark-recapture data are available instead of or additional to the simple count surveys, 477 

then the integration of these data would not only allow a more direct estimation of their 478 

own observation errors (Royle & Dorazio 2008) but also inform better about absolute 479 

population sizes and thereby facilitate the estimation of observation errors of other 480 

surveys and of the relationship between abundance and detectability for the occurrence 481 

records (Conroy et al. 2008). 482 
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 In the form presented here, we expect the model to be readily adaptable for other 483 

taxa for which numerous detection/non-detection data overlap in their spatial coverage 484 

with a moderate amount of standardized local abundance surveys. Possible examples 485 

include the Rothamsted Insect Survey (Harrington & Woiwod 2007) that runs a long-486 

term light trap network for moths, in parallel with geographic distribution records of 487 

moths collected by volunteer recorders for Butterfly Conservation; and the British Trust 488 

for Ornithology Breeding Birds Survey count data, in combination with their Atlas data. 489 

Using opportunistic occurrence records for the estimation of spatio-temporal abundance 490 

variation could not only improve the assessment of conservation status but also enhance 491 

the empirical basis to fundamental research in biogeography. For instance, recent 492 

approaches to understand species range dynamics from demographic process like hybrid 493 

species distribution models (e.g. Anderson et al. 2009; Cabral & Schurr 2010) and 494 

dynamic range models (Pagel & Schurr 2012) are often restricted by their need for data 495 

on large-scale abundance variation for parameterisation and validation.  496 
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Table 1 Overview of model parameters and their posterior estimates for the Gatekeeper 643 

case study (only for scalar, i.e. non-vector, parameters). MCMC SE quantifies the Monte 644 

Carlo sampling error in terms of the time-series standard error of the posterior mean. 645 

Parameter Description 
Posterior 

mean 

Posterior 

standard 

deviation 

MCMC SE 

State variable 

Λi,t Relative population density in cell i and year t  (see Fig 3c-e)  

Observation process of count data 

λj,t Expected count at site j in year t    

σλ
2
 Overdispersion in count data 1.77 0.07 0.01 

Observation process of detection/non-detection data 

ψi,t Detectability in cell i and year i    

α Saturation rate of density-detectability-curve 0.0156 0.0007 0.0001 

β0 
Regression coefficients of detectability 

−3.77 0.05 0.01 

β1 0.461 0.007 0.002 

σφ
2
 Variance in detectability 0.285 0.032 0.008 

Hyperparameters of spatio-temporal variation in population density 

Inc  Mean incidence −0.56 0.27 0.05 

σInc
2
 Inter-annual variance of overall incidence 0.88 0.26 0.03 

Dens  Mean (log) population density −5.93 0.24 0.04 

σ
2

D Inter-annual variance of overall log-density 1.09 0.40 0.02 

μγ1 
Mean latitude effects across all years 

−12.01 0.27 0.05 

μγ2 −11.38 0.32 0.07 

ν Variance of the CAR model  4.48 0.16 0.04 

ρ Proportionality factor of spatial effects 0.392 0.020 0.003 

σ² Spatially uncorrelated variance of log density 0.0088 0.0021 0.0005 
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 646 

Figure 1 Structure of the hierarchical statistical model. The directed acyclic graph 647 

(DAG) describes conditional relationships between data and parameters at different 648 

levels. For each grid cell the observation models describe the likelihood of presence 649 

records and of count data from transects (if any) within this grid cell conditional on the 650 

local relative population density Λi,t and a set of observation parameters. The variation of 651 

Λi,t across grid cells i and years t is constrained by a set of hyperparameters that describe 652 

spatial and temporal random effects (see text for model details and Table 1 for an 653 

overview of all model parameters). 654 

 655 
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Figure 2 Results for the standard data scenario of the simulation study (a,b) and 657 

comparison with reduced data scenarios (c). (a) Median (blue line) and 90% credibility 658 

interval (shaded) of the estimated relationship between population density and 659 

occurrence-detectability compared to the (true) occurrence-detectability-curve applied in 660 

sampling of the simulation data (black dashed line). Points show the simulated 661 

occurrence data as the fraction of presence records obtained for cells with different 662 

population densities and numbers of recorder visits (#visits, see colour scale). (b) 663 

Estimated (posterior median) vs. true population density for sites with count data (blue) 664 

and different #visits (see colour scale). (c) Effects of shortening the observation period 665 

and reducing the proportion of cells with count data on the mean predictive deviance of 666 

population densities in the last five years of the observation period for cells with different 667 

#visits (in categories; number of cell-year combinations per category given in brackets). 668 

Error bars show the standard error of the mean. For one scenario (dotted line) the 669 

convergence criteria were not completely met after 100.000 iterations of the MCMC 670 

sampler.    671 
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Figure 3 Data and model estimates on distribution and abundance variation of the 672 

Gatekeeper butterfly in 1990 (upper row) and 2000 (lower row). The individual columns 673 

show (a) the number of recorder visits in each grid cell for the respective year and the 674 

location of UKBMS transects for which count data was available (black triangles); (b) the 675 

fraction of reported presences for the Gatekeeper among all reports from a cell; (c) the 676 

estimated occurrence probability Pr(Λ > 0); (d) the posterior median of estimated relative 677 

population density Λ (log scale); (e) the posterior variance of log(Λ). Note that relative 678 

population density is measured by an annual index of butterfly abundance (IBA) that 679 

integrates over the phenology of butterfly activity (see UKMBS abundance indices for 680 

details).  681 



34 

 

Figure 4 Spatial variation in abundance trends of the Gatekeeper butterfly in Great 682 

Britain. (a-b) Posterior median of 5-yr-means of abundance for the periods 1990–1994 683 

and 2000–2004. (c) Comparison of the estimated 5-yr-means result in a map which gives 684 

for each grid the estimated probability of a decrease or increase of local abundances 685 

between both periods. (d) Examples of time series of estimated relative population 686 

density (left, grey areas depict 95% credibility intervals) and respective posterior 687 

distributions of the estimated 5-yr-means (right) for two grid cells, where local 688 

abundance either increases (top) or decreases (bottom) between 1990–1994 and 2000–689 

2004.  690 
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 691 

Figure 5 Estimated annual variation in range size (a) and total abundance (b) of the 692 

Gatekeeper butterfly in Great Britain. For both graphs the lines depict the posterior 693 

median of model estimates and shaded areas comprise the central 95% credibility 694 

interval. Note that estimated range sizes correspond to a spatial resolution of 10×10 km². 695 

The shown abundances are not absolute values but refer to a relative measure of the 696 

butterfly-day-index (see text for details) and are presented on a logarithmic scale. 697 



Supporting Information: Quantifying range-wide variation in population trends from local 
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S.1 Pre-analysis of the relationship between population density and detectability 

The estimation of population density from detection/non-detection data is based on inferring 

how population density (or abundance) influences the detectability of a species’ presence. 

Here, we review approaches that have been applied in previous studies to model this 

relationship, and test different models in a preliminary analysis of the count and occurrence 

data from our case study on the Gatekeeper butterfly in Great Britain.  

 

Models for the density-detectability-curve 

A model for a principal relationship between abundance N and the probability ψ to detect a 

species’ presence was presented by Royle & Nichols (2003). Their model (hereafter called 

RN model) derives from a binomial model for the number of encountered individuals x if 

individuals have per-individual detection probability r. With the number of encountered 

individuals x ~ Binomial(N, r) the detectability can be calculated as the probability to 

encounter at least one individual: 

ψ = Pr(x > 1|r, N) = 1 – (1 – r)
N 

     (eqn. S.1.1) 

An alternative approach starts from describing sampling as a Poisson process, where the rate 

at which individuals are encountered is a product of the abundance N and a measure of 

sampling intensity α. With the number of encountered individuals x ~ Poisson(α·N) the 

probability to encounter at least one individual is 

 ψ = Pr(x > 1|α, N) = 1 – exp(-α·N)      (eqn. S.1.2) 

This is equivalent to eqn. S.1.1 with α = –ln(1 – r). In the following we use the formulation of 

eqn. S.1.2 for the RN model. Conveniently, if abundance is not described as the total number 

of individuals but by some relative measure, as in our case study, the proportionality factor 

between relative and absolute abundance will simply scale the estimate of α. 

McCarthy et al. (2013) demonstrate how the linear increase of the rate parameter in 

eqn. S.1.2 with abundance implies the assumption of independent encounters of individuals, 

which is likely violated in many applications. They propose a generalization (hereafter MC 

model) 

 ψ = 1 – exp(–λ)         (eqn. S.1.3) 

 ln(λ) = β0 + β1·ln(N) 



which is equivalent to the RN model for scaling exponent β1 = 1 (and with β0 = ln(α)). A 

scaling exponent β1 < 1 describes non-independent detection due to increased clustering of 

individuals. Notably, the MC model is equivalent to a linear regression with a complementary 

log log link
1
 function, i.e. cloglog(ψ) = β0 + β1·ln(N). Other studies have used the (more 

common) logit link and applied a logistic regression model 

 logit(ψ) = β0 + β1·N         (eqn. S.1.4) 

to describe the relationship between abundance and detectability (e.g. Tanadini & Schmidt 

2011). Additional to these previously proposed functional relationships, we consider an 

additional model that combines the basic RN model with a logistic regression. Therefore we 

add a multiplicative term φ and formulate a logistic regression of φ on the abundance N: 

 ψ = φ· {1 − exp(-α·N)}       (eqn. S.1.5) 

 logit(φ) = β0 + β1·N 

 

Data analysis 

In order to investigate which functional form of the density-detectability-curve is most 

appropriate for our case study, we performed a preliminary analysis based on count data 

(UKBMS abundance indices) and occurrence data (detection/non-detection data). In the 

preliminary analysis we only use data for grid cells i and years t for which both data types are 

available. To study the relationship between abundance indices and detectability ψ we 

formulate a binomial model xi,t ~ Binomial(Ji,t, ψi,t) for the number of presence records xi,t 

among all visits Ji,t of a cell and use the different models outlined above to describe ψi,t as a 

function of population density. For this preliminary analysis, an index of relative population 

density on the grid cell level Λi,t is calculated from the UKBMS abundance indices by simply 

dividing the sum of all counts from one cell and year by the total transect area. Considered 

models for the relationship between ψ and Λ include the RN model, the MC model, the 

logistic regression (LR) and our extension of the RN model by a multiplicative random effect 

with (MR.LR) or without (MR) an additional dependence on Λ. For the logistic regression 

model (LR) and the regression part of the MR.LR model we additionally include alternative 

versions that use ln(Λi,t) as covariate (denoted LR.log resp. MR LR.log). We used a 

maximum-likelihood approach to estimate the parameters of each model and to calculate 

Akaike’s Information criterion (AIC) for each candidate model.    

                                                 
1
The complementary log log link p = 1 – exp{-exp(βX)} dates back to Fisher (1922), where it was introduced in 

the very related context of estimating the number of micro-organisms in a sample of soil or water from the 

distribution of organism’s presence and absence in diluted sub-samples. 

 



Table S.1.1 Overview of the different models for the density-detectability-curve and their maximum-

likelihood estimation for the pre-analysis of the Gatekeeper data.  

Model Formula 
Estimated parameters 

ΔAIC 
ln(α) β0 β1 

RN ψ = 1 – exp(-α·Λ) 2.38   21238 

MC 
ψ = 1 – exp(–λ) 

ln(λ) = β0 + β1·ln(Λ) 
 -0.79 0.075 154 

LR logit(ψ) = β0 + β1·Λ  -0.83 0.38 292 

LR.log logit(ψ) = β0 + β1·ln(Λ)  -0.55 0.092 150 

MR 

ψ = φ· {1 − exp(-α·Λ)} 

logit(φ) = β0 
5.97 -0.76  52 

MR.LR 
ψ = φ· {1 − exp(-α·Λ)} 

logit(φ) = β0 + β1·Λ 
6.06 -0.80 0.27 30 

MR.LR.log 
ψ = φ· {1 − exp(-α·Λ)} 

logit(φ) = β0 + β1·ln(Λ) 
6.36 -0.62 0.058 0 

 

 

Results and Interpretation 

Among the considered models, the modification of the RN model by a multiplicative term 

with additional dependence on ln(Λ) (MR.LR.log) clearly performs best in describing the 

relationship between abundance data and detection/non-detection data for the Gatekeeper 

(Tab. S.1.1). When fitted to the data, this model describes a rapid sigmoid increase of 

detectability for smaller population densities, whereas detectability increases much slower and 

approximately linear to ln(Λ) for larger population densities (Fig. S.1.1). While the 

mechanisms underlying this relationship cannot be fully resolved by this analysis, a possible 

interpretation can be deduced from the specific structure of the detection/non-detection data. 

The citizen science program that provides the opportunistic records is targeted not specifically 

at the focal species but at all butterflies in Great Britain, which vary in both their habitat 

requirements and phenology. Consequently, recorder visits occur in habitat types and at times 

within the season, where the detection of the focal species is highly unlikely irrespective of its 

relative population density in the area. A potential rate of not reporting the species when 

detected might add to this. This substantial probability of non-detection (resp. reporting) even 

for high population density is reflected by the saturation of the sigmoid part of the density-

detectability-curve at values far below one. Interestingly, the best model still predicts a 

positive effect of population density on detectability at higher densities (beyond saturation of 

the RN model component). Under the given interpretation, this could indicate a ‘spill-over-



effect’, where a very high population density increases the chance to encounter the species 

outside the preferred habitat type. 

 While the emergence of the found density-detectability-curve clearly demands further 

investigation, for our study on estimating trends in relative population densities, we conclude 

that the MR.LR.log model proves most suitable to describe the relationship between 

population density and detectability of the Gatekeeper in the opportunistic occurrence records.  

 
Figure S.1.1 Estimated density-detectability-curves based on different models for the functional 
relationship between relative population density and detectability of the Gatekeeper butterfly.  
  

 

  



S.2 Simulation of virtual data  

The simulation study was designed as a virtual ecologist study (Zurell et. al 2010) to test the 

presented model framework for the estimation of spatial and temporal abundance variation 

from observation data. We therefore generated virtual data from a dynamic abundance pattern 

in three steps: 

(i) Creating a spatially heterogeneous and dynamic virtual landscape   

(ii) Simulation of population dynamics 

(iii) Probabilistic sampling of (imperfect) observation data from the simulated ‘true’ 

abundance pattern 

The simulation of spatial population dynamics in a dynamic landscape (i–ii) was based on a 

modified model from a previous virtual ecologist study (Pagel & Schurr 2012).  

 

(i) Artificial landscape 

We generated a dynamic artificial landscape with an extent of 5050 grid cells and a cell size 

of 1010 km². Environmental variation across the landscape was represented as variation of 

the intrinsic population growth rate r (see model description below, eqn. S.2.1) in space and 

time. We used fractal Brownian motion (Hurst index = 0.5) to generate a spatially auto-

correlated static landscape and added a humped-shaped latitudinal effect. To represent 

temporal dynamics, i.e. environmental change, the optimum of this latitudinal effect was 

shifted towards the northern border of the model landscape. We generated yearly maps of 

intrinsic population growth rates for a spin-off period of 50 years (without environmental 

change) and subsequent 50 years of gradual environmental change. Finally, growth rates were 

scaled so that on average 25% of the model landscape had positive growth rates (r > 0).        

 

 (ii) Population dynamics 

We simulated spatio-temporal population dynamics by a stochastic grid-based simulation 

model that combines local (within-cell) population dynamics with dispersal between grid 

cells. As a description of population dynamics within cells we used the stochastic Ricker 

model  

log(Ni,t+1
 
) =

 
log( tiN ,

~
) + ri,t h tiN ,

~
+ εi,t    (eqn. S.2.1)  

Stochasticity is introduced by the error term ε being an iid normal random variable 

ε ~ Normal(0, σP
2
). N

~
denotes the post-dispersal population size. Dispersal was described by 

a mixture-dispersal-kernel, where a fraction fLDD of dispersal units is subject to long-distance 

dispersal following an exponential kernel f(r) = 1/exp(r/R), with mean dispersal distance 



R. The dispersal kernel was then integrated over both the cell of origin j and the target cell i to 

obtain dispersal probabilities Pji(fLDD,) between spatially discrete cells and to calculate 

post-dispersal population sizes as  

   

j

tjLDDijti NfPN ,, ,
~

     (eqn. S.2.2) 

Note that with the parameterisation of the Ricker model (eqn. S.2.1) in terms of intrinsic 

growth rate r and competition intensity h, the carrying capacity (K = r/h) likewise varied 

across the artificial landscape, which mainly drives spatial variation in simulated abundances. 

These abundances were finally divided by the grid cell area of 100 km² to calculate 

population densities Λi,t  (Fig. S.2.1a). Parameter values used in the simulation were 

h = 0.0002; σP
2
 = 0.1;  fLDD = 0.05; R = 5 km The model was initialized by assigning to each 

cell a population size equal to its carrying capacity K (if positive) at the beginning of the spin-

off period.  

 

(iii) Virtual data collection 

The sampling scheme for the virtual data was designed to mimic the data availability (the 

distribution of transects and of recorder visits across cells) in the butterfly case study. Hence, 

we randomly assigned to each cell A in the artificial landscape a ‘sister cell’ B of the British 

1010 km² grid and used the number of annual recorder visits and the characteristics of 

transects (if there are any) in B to generate observation data from the population density in A 

(see Fig. S.2.1b for examples of annual sampling schemes). Data was sampled for the last 20 

years of the simulation period and for each year the number of presence records and the count 

data were randomly sampled from probability distributions as given by the observation 

models: The number of presence records was drawn from a binomial distribution with sample 

size equal to the assigned number of recorder visits and a per-visit-probability of a presence 

record calculated from the population density Λi,t (cf. eqn. 4 in the main text, see Fig. S.2.1c 

for examples of generated data). Count data yj,t was drawn from a lognormal-Poisson 

distribution with the mean calculated by multiplying the population densities Λi,t with the 

assigned transect area (cf. eqn. 1 in the main text).  We deliberately set the proportionality 

factor between simulated abundances and estimated relative abundances (cf. eqn. 2 in the 

main text) to one. The following parameter values were used to simulate the data:  = 0.005; 

β0 =  -1; β1 = 0.1; σφ = 0.05; σλ = 0.1.  

 



Figure S.2.1 Simulated population density and virtual data of the standard scenario for the years 86 

(upper row) and 96 (lower row) of the simulation. The individual columns show (a) the simulated 

population density; (b) the number of recorder visits in each grid cell for the respective year and the 

location of sites for which count data was sampled (black triangles); (c) the fraction of presence 

records among all visits of a cell. For the presented years the quantity of data is equal to the available 

data for the Gatekeeper case study in the years 1990 and 2000 (see Fig. 3). 

 

 

 

 

  



S.3 Bayesian model estimation with OpenBUGS 

Here we give the OpenBUGs model code that was implemented for the parameter estimation 

of the presented hierarchical Bayesian model. Both the simulation study and the Gatekeeper 

case study used the same code. In order to facilitate the application of the model to other data 

sets we briefly describe the necessary pre-processing of the data and give an overview of the 

variables of the model and their relation to variable names used in the main text (Table S.3.1).  

The following overview lists the various data objects that need to be passed to the model:    

 

State-space dimensions 

The spatial and temporal dimensions of the state-space model of population densities are 

given by:     

n.sites  – the number of cells in the model grid 

n.yrs  – the length of the time period for which population densities are estimated  

 

Spatial configuration 

For the estimation of spatially correlated random effects one has to specify the adjacency of 

grid cells (eight-neighbour-rule). The implemented CAR model requires the following data 

format: 

n.NB[n.sites]  – a vector of length n.sites that gives for each site the number of  

neighbours   

NBvec[NBtot]  – a vector that lists consecutively for all cells the indices of their 

neighbouring cells 

NBtot   – the total length of NBvec 

For illustration, imagine that (as in the rectangular grid of the simulation study) cell 1 has 

three adjacent cells (2, 51, 52) and cell 2 has five adjacent cells (1, 3, 51, 52, 53). Then n.NB 

=  (3, 5, ...) and NBvec =  (2, 51, 52, 1, 3, 51, 52, 53, ...) and the total length of  NBvec 

equals the sum of n.NB.  For further details see the GeoBUGS manual.  

 

Lat[n.sites] – (normalized) geographical latitude of grid cell midpoints 

 

Occurrence data 

After aggregating the occurrence records to #visits and #presence per grid cell and year, data 

is passed to the model only for those cells and years for which the number of recorder visits is 

positive:  

http://www.openbugs.net/Manuals/GeoBUGS/Manual.html


n.rec   –  the total number of grid cells (per year) with recorder visits 

visits[n.rec]   –  the number of recorder visits 

presence[n.rec]   –  the number of recorded presences 

rec.site[n.rec]  –  the index of the grid cell where the records were sampled 

rec.year[n.rec]   –  the index of the year when the records were sampled  

 

Presence record data 

The format of the count data is similar and comprises four vectors with one entry each for 

every count:  

n.S   – the total number of count data 

S.index[n.S]  – the result of the count survey  

S.area[n.S]   – the area of the sampled site 

S.site [n.S] – the index of the cell where the site is located  

S.year [n.S]   – the index of the year when the survey was conducted 

    

Table S.3.1 Overview of model parameters and the respective variable names in the OpenBUGS 

code.   

 

Parameter Description Variable name in OpenBUGS code 

ln(α) Saturation rate of detection probability (log) log.alpha 

β0 Regression coefficients of detection 

probability 

pi.b0 

β1 pi.b1 

σ²λ Variance of detection probability sig.pi 

σ²φ Overdispersion of count data sig.S 

λj,t Expected count at site j in year t lambda.eff[n.S] 

Λi,t Population density in cell i and year t Lambda[n.sites,n.yrs] 

Inct Mean overall incidence in year t  b0[n.yrs] 

μInc Mean incidence across all years   mu.b0 

σ
2
Inc Inter-annual variance of overall incidence sig.b0 

Dt Mean log-density in year t c0[n.yrs] 

μD Mean log-density across all years mu.c0 

σ
2
D Inter-annual variance of overall log-density sig.c0 

Δt Spatially autocorrelated random effects rho[n.sites,n.yrs] 

μγ1 
Mean latitude effects across all years 

mu.b1 

μγ2 mu.b2 

ν Variance of the CAR model v 

ρ Proportionality factor of spatial effects beta 

σ² Spatially uncorrelated variance of log density sig.dens 



OpenBUGS model code 

model{ 

 

# spatio-temporal abundance variation 

for(yr in 1:n.yrs){ 

  for (i in 1:n.sites){      

    logit(pInc[i,yr]) <- b0[yr] + beta * sp[i,yr]   

    Inc[i,yr] ~ dbern(pInc[i,yr]) 

    sp[i,yr] <- b1[yr]*Lat[i] + b2[yr]*Lat[i] *Lat[i] + rho[yr,i] 

    muDen[i,yr] <- c0[yr] + sp[i,yr]    

    LogD[i,yr] ~ dnorm(muDen[i,yr], prec.dens) 

 

    Lambda[i,yr] <- Inc[i,yr]*exp(LogD[i,yr]) 

    } 

 

  rho[yr,1:n.sites] ~ car.normal(NBvec[], weights[], n.NB[], tau) 

  } 

# constant weights for CAR    

for(k in 1:NBtot) {weights[k] <- 1}  

 

# temporal random effects 

for(yr in 1:n.yrs){ 

  b0[yr] ~ dnorm(mu.b0,pr.b0) 

  b1[yr] ~ dnorm(mu.b1,pr.b1) 

  b2[yr] ~ dnorm(mu.b2,pr.b2) 

     

  c0[yr] ~ dnorm(mu.c0,pr.c0) 

  } 

 

# presence records 

# in loop over all gridcell-year combinations with recorder visits 

for(rec in 1:n.rec) { 

  presence[rec] ~ dbin(psi[rec],visits[rec])  

  psi[rec] <- pi[rec] * (1 - exp(-exp(log.alpha) * Lambda[rec.site[rec],rec.year[rec]])) 

  logit(pi[rec]) <- pi.b0 + pi.b1 * LogD[rec.site[rec],rec.year[rec]] + e.pi[rec] 

  e.pi[rec] ~ dnorm(0,prec.pi) 

  } 

 

# count data 

# in loop over all site-year combinations where count data were recorded 

for (s in 1:n.S){ 

    S.mu[s] <- log(Lambda[S.site[s],S.year[s]] * S.area[s] + 0.001) 

    lambda.eff[s] ~ dlnorm(S.mu[s],prec.S) 

    S.index[s] ~ dpois(lambda.eff[s]) 

    } 

 

# prior distributions     

mu.b0 ~ dnorm(0,0.01) 

mu.b1 ~ dnorm(0,0.01) 

mu.b2 ~ dnorm(0,0.01) 

 

mu.c0 ~ dnorm(0,0.01) 

   

pr.b0 <- dgamma(0.001,0.001) 

pr.b1 <- dgamma(0.001,0.001) 

pr.b2 <- dgamma(0.001,0.001) 

pr.c0 <- dgamma(0.001,0.001) 

 

log.alpha ~ dnorm(0,0.01) 

pi.b0 ~ dnorm(0,0.01) 

pi.b1 ~ dnorm(0,0.01) 

prec.pi <- 1 / (sig.pi*sig.pi) 

sig.pi ~ dnorm(0,0.1) I(0,) 

 

prec.dens <- 1 / (sig.dens*sig.dens)  

sig.dens ~ dnorm(0,1) I(0,10) 

prec.S <- 1 / (sig.S*sig.S)  

sig.S ~ dnorm(0,1) I(0,10) 

 

 

v ~ dnorm(0, 0.2) I(0,)  

tau  <- 1/v  

beta ~ dnorm(0, 0.01) I(0,)  

} 
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