
Appendix S2 - Instructions for reproducing the simulation

results

July 7, 2014

1 Introduction

This document is designed to help you replicate the analysis presented in Isaac et al., 2014. If
you are only interested in replicating the analysis as presented in our paper then sections 2 and 3
should satisfy your needs, however if you are interested in learning more about the code we used
to produce our results, sections 4 onward go into a little more detail.

2 Setup

Getting setup is easy if you are already a regular R user but a bit more complicated if you are
not. Not to worry, we are here to hold your hand.

1. You will need to install two pieces of software to run the full analysis. The first is R, you
will need to download this from http://cran.r-project.org/.

2. The second is JAGS, which is used to run occupancy models. You can download this from
http://sourceforge.net/projects/mcmc-jags/files/JAGS/3.x/

3. To download all the code for our analyses, and to have a go yourself use this link: https:

//github.com/BiologicalRecordsCentre/RangeChangeSims/archive/master.zip. This
will download a .zip file (10.9MB) containing everything you need.

4. Extract the .zip file to your machine. Now we are ready to go!

5. IMPORTANT: Our code relies on a number of packages and as they change over time our
code may start to experience issues. Once such instance has already occurred and the latest
version of reshape2 does not function correctly with our code. To rectify this, if you have a
version of reshape2 greater than 1.2.2, we have included a version of reshape2 in our zip that
you can install and will work. For our full sessionInfo see the last section of this tutorial.

3 Replicating the paper

To replicate the analysis as in Isaac et al. 2014, find the script ’Run full analysis.r’ from the .zip
file and run it in R (make sure your working directory is set to the folder this script is in). The
script will install required packages, check that JAGS is working, run the analyses (you can specify
the number of runs to do) and plot all figures and tables from the results. The results will be
saved in the working directory. However, this is a computationally intensive task and to replicate
the full 1000 runs presented in the paper and Appendix S1 on a regular desktop PC will take
approximately 170 days! We addressed this problem by using a computer cluster, achieving a run
time of under a week. The only function that cannot be run in parallel on a cluster is frescalo as
this uses a Windows complied executable.

1

http://cran.r-project.org/
http://sourceforge.net/projects/mcmc-jags/files/JAGS/3.x/
https://github.com/BiologicalRecordsCentre/RangeChangeSims/archive/master.zip
https://github.com/BiologicalRecordsCentre/RangeChangeSims/archive/master.zip

4 Analysis: Step by Step

Here we demonstrate a few of the functions we have written that will give you a deeper un-
derstanding of our methods and provide the potential to test out your own methods using our
framework.

To access all the functions we simply source in the function script from the R console by typing
the following:

source("Sim_functions.r")

Loading required package: reshape2

Loading required package: lme4

Loading required package: Matrix

Loading required package: Rcpp

You will need to ensure that ’Sim functions.r’ reflects the file path from your current working
directory to the functions script. You can change your working directory using the setwd function

We will look at a number of functions, each builds on the previous function and is often a
wrapper around the simpler functions.

create data

Randomly generates ’true’ data. This is a binary table indicating the presence/absence of
each species at each site.

recording visit

Send out our virtual recorders on a visit and return what they find

recording cycle

Send out our virtual recorders on a year’s worth of sampling to multiple sites

generate records

Undertake virtual recording across multiple years in our simulated study

generate all scenarios

Undertake virtual recording, producing results for each recording scenario

run all methods

Take a dataset of records and apply to this a suite of modelling methods

iterate all scenarios

Combine the previous two functions and allow multiple runs, each run using new data
generated by generate all scenarios

get all stats

Produce summary information from the results of iterate all scenarios

4.1 Generating simulated data

Simulated data can be created using the ’true data’ function. This function generates ’true’ data
telling us whether each species is present or absent from each location which we can later use to
build our observation data (see section ’Species occurrence matrices’ in the methods section of the
manuscript).

Create our 'true' data

true_data <- create_data(nSites = 1000, nSpecies = 25, pFocal = list(Occ = 0.5,

DetP = 0.5))

head(true_data)

2

focal spp1 spp2 spp3 spp4 spp5 spp6 spp7 spp8 spp9 spp10 spp11 spp12

site1 1 1 0 1 1 0 1 1 1 1 1 0 0

site2 0 1 1 1 0 1 0 1 1 1 0 1 0

site3 1 1 0 1 0 1 1 1 1 0 0 0 1

site4 0 1 1 1 1 0 1 1 1 0 0 1 0

site5 1 1 1 0 0 0 0 1 1 1 1 0 1

site6 1 1 1 0 1 1 1 1 1 1 0 0 0

spp13 spp14 spp15 spp16 spp17 spp18 spp19 spp20 spp21 spp22 spp23

site1 1 0 0 0 0 1 0 0 1 0 0

site2 1 1 1 1 0 1 0 0 0 1 0

site3 0 1 0 1 0 1 0 1 0 1 0

site4 1 1 0 1 0 0 0 0 0 1 0

site5 1 1 0 0 0 0 0 0 1 0 0

site6 0 0 0 1 0 0 0 0 0 1 1

spp24 spp25

site1 1 0

site2 0 1

site3 1 0

site4 1 0

site5 0 1

site6 1 1

true_data has some useful attributes

str(attributes(true_data))

List of 4

$ dim : int [1:2] 1000 26

$ dimnames:List of 2

..$: chr [1:1000] "site1" "site2" "site3" "site4" ...

..$: chr [1:26] "focal" "spp1" "spp2" "spp3" ...

$ richness: num [1:1000] 13 15 14 13 12 14 15 16 10 9 ...

$ p_detect: num [1:26] 0.5 0.866 0.838 0.806 0.773 ...

nSites specifies the number of sites we want, nSpecies specifies the number of species, and
pFocal specifies the occurrence probability of the species (Occ), and the probability of detection
of the focal species on a given visit (DetP). There are some attributes assigned to true data that
can be quite informative. The two elements of dimnames give the names of sites and species
respectively, richness gives the species richness of each site as listed in dimnames, and p detect

gives the probability of detection for each species as listed in dimnames.

4.2 Nested functions: Visits within years within year ranges

The following examples detail the generation of the control scenario data described in the ’Control
scenario’ section in the methods section of the manuscript. At the lowest level of our models is the
concept of a visit. Here we take the ’true’ data that we just generated and send out our virtual
recorders to a site. The function takes the true occurrence of the species at the site as well as the
sampling intensity for each species and returns what was recorded by our virtual recorders.

Get the true data for one site

site1 <- true_data["site1",]

Send out our virtual recorders

observations <- recording_visit(spp_vector = site1, p_obs = attr(true_data,

"p_detect"))

3

View the species actually present

names(site1[site1 == 1])

[1] "focal" "spp1" "spp3" "spp4" "spp6" "spp7" "spp8" "spp9"

[9] "spp10" "spp13" "spp18" "spp21" "spp24"

View the species recorded by our observers

names(observations[observations == 1])

[1] "focal" "spp3" "spp6" "spp7" "spp10" "spp13"

recording visit is wrapped up in the function recording cycle which allows us to undertake
a years sampling in one go. The resulting data.frame gives us a row for each observation with
columns for species, visit and site.

Undertake a year's sampling setting the recording intensity to 7% (medium)

year1 <- recording_cycle(pSVS = 0.07, true_data = true_data)

Preview our results

head(year1)

Species Visit Site

2 spp1 15 105

4 spp3 15 105

5 spp4 15 105

6 spp5 15 105

8 spp7 15 105

11 spp10 15 105

In recording cycle, pSVS specifies the overall recording intensity as described in the ’control
scenario’ section of the methods section of the manuscript. Recording cycle has three optional
arguments: max vis defines the maximum number of visits that a site can receive in any year (fixed
at 10); stochastic defines whether the number of visits is fixed each year (stochastic=FALSE)
or whether it varies from year to year (stochastic=TRUE), as in the simulations; VisRichSites
determines how visits are apportioned among sites. There are two components: a sel component
determines whether sites with higher species richness are more likely to be selected for a visit; the
num component determines whether the number of visits received (once selected) is determined by
species richness. The default is that both components are set to be FALSE, but in our simulations
we set sel=FALSE and num=TRUE.

We further wrap recording cycle within the function generate records which allows us to
create our baseline unbiased records for all years of the study. In this example we implement an
unrealistically dramatic decline in most of our species, this is just for demonstration and does not
reflect any of the scenarios we used in the manuscript.

Set up our parameters

nYrs = 10 # The number of years we wish to run

which.decline = 1:20 # Specify which species we wish to be in decline

decline = rep(0.7, 20) # The rate of decline of each speces (here all 70%)

pSVS = 0.07 # Set our recording effort to 7% (medium)

mv = 10 # Set the maximum number of visits to a site in a year to 10

Generate our records

years10 <- generate_records(nYrs = nYrs, true_data = true_data,

decline = decline, pSVS = pSVS, mv = mv, which.decline = which.decline)

4

Preview our results

head(years10)

Species Visit Site Year

2 spp1 33 101 1

4 spp3 33 101 1

17 spp16 33 101 1

21 spp20 33 101 1

28 spp1 34 108 1

29 spp2 34 108 1

Look for our simulated decline

plot(table(years10$Year), xlab = "Year", ylab = "Number of species records/year",

type = "l")

0
50

0
10

00
15

00

Year

N
um

be
r

of
 s

pe
ci

es
 r

ec
or

ds
/y

ea
r

1 2 3 4 5 6 7 8 9 10

The data is returned in the same format as in recording cycle but now contains data across
all the years of our virtual study. We can see from the plot that the 70% decline we have simulated
in the majority of species has resulted in a reduction in the number of records per year as a result

5

Table 1: Scenario codes
Grouping letter Name in code Name in manuscript

A A EvenRcrdng Control
B B2 IncrnVisit MoreVisits
B B3f IncrnVBiasFc MoreVisits+Bias
C C1 pShortLEven NA
C C2 pShortLIncr LessEffortPerVisit
D D2 SelectvIncr MoreDetectable
F F NfDecline NonFocalDeclines

of species going extinct from sites over the duration of the study.

4.3 Applying sampling scenarios

To create our simulated recording data we use the true data and a number of sampling protocols
described in our paper. Each scenario uses the generate records function (described above) to
generate data and then subsamples this data according to the specifics of the scenario (see ’Biased
recording scenarios’ in the methods section of the manuscript).

For ease of coding scenarios were grouped using a letter which was used in the Scenarios

argument of generate all scenarios. For historic reasons the scenarios names are different in
our code and the manuscript. We present these different naming conventions in Table 1

The task of generating the true data and from this generating records for each simulated
recording scenario is handle by generate all scenarios.

Produce the records for each recording scenario

recs <- generate_all_scenarios(nSites = 1000, nSpecies = 25,

pFocal = list(Occ = 0.5, DetP = 0.5), nYrs = 10, pSVS = 0.07,

mv = 10, Scenarios = "BCDF", p_short = list(init = 0.6, final = 0.9),

pDetMod = 0.2, decline = 0)

The output is a list of data.frames, one for each Scenario

length(recs)

[1] 7

A preview of the results from the MoreVisits+Bias scenario

head(recs$B3f_IncrnVBiasF, 10)

Species Visit Site Year

1 spp2 1 1 10

2 spp5 1 1 10

3 spp7 1 1 10

4 spp10 1 1 10

5 spp13 1 1 10

6 spp14 1 1 10

7 spp16 1 1 10

8 spp19 1 1 10

9 spp1 4 10 3

10 spp3 4 10 3

We have covered some of these parameters in previous sections (nSites, nSpecies, pFocal,
nYrs, pSVS, mv), here is a brief description of those that are new. Scenarios is a string that
specifies the scenarios that are to be generated as given in the table above by grouping letter

6

Table 2: Model codes
Code Name Included in manuscript?
nSites Naive Yes
Telfer Telfer Yes
Frescalo1tp Frescalo Y Yes
Frescalo2tp Frescalo P Yes
VRsimple ReportingRate Yes
LLsimple RR+LL Yes
RR SS RR+SF Yes
MMbin0 RR+Site Yes
LLmm RR+LL+Site No
mmSS RR+SF+Site No
LLSS RR+SF+LL No
LLmmSS RR+SF+LL+Site Yes
Occ+Simple OccDetSimple Yes
Occ+LL+Site Occ+LL+Site No
Occ+SS+Site Occ+SF+Site No
Occ+SS+LL OD+SF+LL No
RR SS3 RR+SF3 No
LLmmSS3 RR+LL+SF3+Site No
Occ+SS3+Site Occ+SF3+Site No
Occ+SS3+LL Occ+LL+SF3 No
Occ+Full OD+SF+LL+Site Yes
MMbin2sp WSS 2 No
MMbin4sp WSS 4 No
Maes RDC No

(scenario A is run by default). p short is used for both ’C’ scenarios and gives the proportion of
lists that should be ’short’ on the first (init) and last (final) year of the simulation. pDetMod

defines the proportion of lists where the focal species should be ’unrecorded’ and is used to simulate
reduced detectability in scenario ’D’. decline gives the proportional decline of the focal species
across the duration of the study period (here 10 years). We set this to 0.3 when testing the power
of statistical methods.

generate all scenarios returns a list of data.frames. Each data.frame is the result of a
recording scenario, giving a list of observations. This details the species recorded, the year, visit
and site on which it was recorded. Note that multiple visits can be made to a site in a given year.

BUGS code for different Occupancy-Detection models are each contained in a separate file.
The code for OccDetSimple is in a file called Occ Simple.bugs. The code for OD+SF+LL+Site is
in a file called Occ LL Site.bugs. There are also BUGS code files to run other combinations listed
in table 2.

4.4 Running analyses

Once we have generated our records we can them test for trends using the various methods
explored in the paper. When undertaking the analyses we explored a range of methods but have
chosen not to describe all of them in the manuscript. Table 2 gives the codes used for each of the
methods discussed in the manuscript and some extras. The details of the methods included in the
manuscript can be found in Appendix S2.

Here we use the function run all methods to run a range of analytical methods on one of the
recording scenarios we have simulated. While this function runs most of the methods by default
a couple of methods require us to provide extra details.

7

Lets analyse the control scenario

scenario1 <- recs$A_EvenRcrdng

Specify the occupancy models we want to run These model

specify OccDetSimple and OD+SF+LL+Site respectivly

Occ <- c("Simple", "Full")

Run the analyses

results <- run_all_methods(records = scenario1, nyr = 2, OccMods = Occ,

Frescalo = c(1, 2))

Site Species Year

2 1000 spp1 1

4 1000 spp3 1

6 1000 spp5 1

9 1000 spp8 1

11 1000 spp10 1

14 1000 spp13 1

Site Species Year

2 1000 spp1 1

4 1000 spp3 1

6 1000 spp5 1

9 1000 spp8 1

11 1000 spp10 1

14 1000 spp13 1

Loading required package: R2jags

Loading required package: rjags

Loading required package: coda

Loading required package: lattice

Linked to JAGS 3.4.0

Loaded modules: basemod,bugs

##

Attaching package: ’R2jags’

##

The following object is masked from ’package:coda’:

##

traceplot

##

module glm loaded

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 20770

##

Initializing model

##

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 21159

##

Initializing model

8

nyr dictates that only sites which received visits in at least nyr of the ten years in the simulation
are included in site-filtered models (+SF). OccMods names the occupancy models that we would
like to use. Frescalo specifies the versions of frescalo we want to run, 1 meaning Frescalo Y and
2 meaning Frescalo P.

Preview the results

head(results)

prop.diff plr Telfer plr_p Telfer_p Maes_trend

-0.07097 -0.24858 -0.40024 0.80368 0.68898 0.05602

List the names of all the parameters returned

names(results)

[1] "prop.diff" "plr" "Telfer"

[4] "plr_p" "Telfer_p" "Maes_trend"

[7] "Maes_p" "Maes5_trend" "Maes5_p"

[10] "LLsimple_trend" "LLsimple_p" "LLfs_trend"

[13] "LLfs_p" "LLmmSS_trend" "LLmmSS_p"

[16] "LLSS_trend" "LLSS_p" "mmSS_trend"

[19] "mmSS_p" "VRsimple_trend" "VRsimple_p"

[22] "VRfs_trend" "VRfs_p" "RR_SS_trend"

[25] "RR_SS_p" "MMbin0_trend" "MMbin0_p"

[28] "MMbin0_pCombosUsed" "MMber2sp_trend" "MMber2sp_p"

[31] "MMber2sp_pCombosUsed" "MMbin2sp_trend" "MMbin2sp_p"

[34] "MMbin2sp_pCombosUsed" "Frescalo1tp_trend" "Frescalo1tp_p"

[37] "Frescalo2tp_trend" "Frescalo2tp_p" "Occ+Simple_trend"

[40] "Occ+Full_trend" "Occ+Simple_p" "Occ+Full_p"

[43] "Occ+Simple_Rhat" "Occ+Full_Rhat" "nRecords_trend"

[46] "nRecords_p" "nSites_trend" "nSites_p"

[49] "Fr_Phi" "Fr_MedianAlpha" "Recs_pBnchmk"

[52] "Recs_qFocal" "Recs_tot_visits" "Recs_Sp_Yr"

[55] "Recs_total" "Recs_focal" "VisPerYr_t1"

[58] "VisPerYr_t2" "focal_t1" "focal_t2"

[61] "nonfocal_t1" "nonfocal_t2" "meanL_t1"

[64] "meanL_t2" "p_shortLists_t1" "p_shortLists_t2"

[67] "MeanSitesVisited_t1" "MeanSitesVisited_t2" "PrSitesMultiVisit_t1"

[70] "PrSitesMultiVisit_t2"

The returned object ’results’ is a vector of attributes. There are numerous parameters returned
and Table 3 gives details for those of note.

9

Table 3: run all methods output parameters per dataset, or mean across datasets when using
iterate all scenarios

Parameter name Explanation
* trend Specifies the trend estimated for the focal species
* p Indicates the significance of the estimated trend
* pCombosUsed Specifies, for models that used only data from ’well sampled sites’,

the proportion of visits that were used in the model
* Rhat A test of convergence in MCMC chains in occupancy models, val-

ues around 1 indicate convergence
* t1 Time period 1: years 1-5
* t2 Time period 2: years 6-10
Fr Phi In Frescalo, the target frequency of frequency-weighted mean fre-

quency (see Hill, 2012)
Fr MedianAlpha The median value of alpha, an estimate of recording intensity,

across all sites (see Hill, 2012)
Recs pBnchmk The proportion of records that are of ’benchmark’ species (see

Hill, 2012)
Recs qFocal The quantile of the focal species when ranked against all other

species by total number of records
Recs tot visits The total number of visits in the simulation
Recs Sp Yr Average number of records per species year
Recs total The total number of records in the simulation
Recs focal The the number of records of the focal species in the simulation
VisPerYr The average number of visits per year
focal The proportion of visits on which the focal species was recorded
nonfocal The proportion for visits on which a species was recorded, aver-

aged across all non-focal species
meanL The mean list length across visits
p shortLists The proportion of visits that returned short lists (3 species or less)
MeanSitesVisited The mean number of sites visited per year
PrSitesMultiVisit The proportion of sites that once visited once receive another visit

in the same year

10

When running our full analysis we wanted to run numerous simulations for testing. We there-
fore wanted to run generate all scenarios many times and use run all methods on each sce-
nario of each run. We wrote a function called iterate all scenarios that combines the former
methods and allows us to do multiple runs. In the example below I turn off occupancy models (Occ
= NULL) and frescalo (Frescalo = FALSE), and consider fewer scenarios to reduce the amount of
time it takes to run.

Run multiple iterations, here set to 2

output <- iterate_all_scenarios(nreps = 2, nSpecies = 25, nSites = 500,

nYrs = 10, pSVS = 0.07, Scenarios = "B", pFocal = list(Occ = 0.5,

DetP = 0.5), decline = 0, Frescalo = FALSE, Occ = NULL,

nyr = 2, writePath = "Output")

Examine dimensions

dim(output)

[1] 52 3 2

dimnames(output)

[[1]]

[1] "prop.diff" "plr" "Telfer"

[4] "plr_p" "Telfer_p" "Maes_trend"

[7] "Maes_p" "Maes5_trend" "Maes5_p"

[10] "LLsimple_trend" "LLsimple_p" "LLfs_trend"

[13] "LLfs_p" "LLmmSS_trend" "LLmmSS_p"

[16] "LLSS_trend" "LLSS_p" "mmSS_trend"

[19] "mmSS_p" "VRsimple_trend" "VRsimple_p"

[22] "VRfs_trend" "VRfs_p" "RR_SS_trend"

[25] "RR_SS_p" "MMbin0_trend" "MMbin0_p"

[28] "MMbin0_pCombosUsed" "nRecords_trend" "nRecords_p"

[31] "nSites_trend" "nSites_p" "Recs_pBnchmk"

[34] "Recs_qFocal" "Recs_tot_visits" "Recs_Sp_Yr"

[37] "Recs_total" "Recs_focal" "VisPerYr_t1"

[40] "VisPerYr_t2" "focal_t1" "focal_t2"

[43] "nonfocal_t1" "nonfocal_t2" "meanL_t1"

[46] "meanL_t2" "p_shortLists_t1" "p_shortLists_t2"

[49] "MeanSitesVisited_t1" "MeanSitesVisited_t2" "PrSitesMultiVisit_t1"

[52] "PrSitesMultiVisit_t2"

##

[[2]]

[1] "A_EvenRcrdng" "B2_IncrnVisit" "B3f_IncrnVBiasFc"

##

[[3]]

NULL

iterate all scenarios returns a three dimensional object. The first dimension gives the
parameters as returned by run all methods and detailed in the table above. The second dimension
represents each of the recording scenarios selected and the third represents each of the repeats
as specified by nreps. This function also takes an argument writePath which is were the data
generated will be saved.

11

4.5 Error rates

To examine changes in error rate and power as we have done in our manuscript we must expand
on the code in the previous section. Here we analyse two levels of recording effort, and with the
focal species both stable and in decline. The former allows us to test the effects of recording effort
and the latter allows us to explore model validity and power. In addition we use the function
get all stats to get meaningful results from the data generated.

Create a parameter to hold our results

SimOut <- NULL

Loop through our parameter settings

for (decline in c(0, 0.3)) {
for (pSVS in c(0.05, 0.07, 0.1)) {

Create an id which captures information about the run V for

Validation, P for power (depends if the focal species is in

decline or not)

ch <- ifelse(decline == 0, "V", "P")

Add to this details of the pSVS setting and the date

id = paste(ch, "_", pSVS * 100, "SVS_", format(Sys.Date(),

"%y%m%d"), sep = "")

Run multiple iterations 10 takes 1 minute

output <- iterate_all_scenarios(nreps = 10, nSpecies = 25,

nSites = 500, nYrs = 10, pSVS = pSVS, Scenarios = "B",

pFocal = list(Occ = 0.5, DetP = 0.5), decline = decline,

Frescalo = FALSE, Occ = NULL, nyr = 2, id = id, writePath = "Output")

Create meaningful results from the data

Out <- get_all_stats(output, save_to_txt = TRUE, writePath = "Output")

Create attributes to capture the parameters used

attr(Out, "decline") <- decline

attr(Out, "pSVS") <- pSVS

Add these results to a list

SimOut <- c(SimOut, list(Out))

}
}

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

12

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

[1] "significant correlation opposite to true!"

get all stats creates a series of summary statistics for each scenario, across repeats. During
its run it prints to screen on the occasions when, for a declining focal species, the model suggests
it is in fact increasing. At the top of our results, against the name of each method we have the
proportion of repeats that gave a significant decline for the focal species:

Lets look at one set of results

res <- SimOut[[1]]

This set of results is for pSVS = 0.07, decline = 0

attr(res, "pSVS")

[1] 0.05

attr(res, "decline")

[1] 0

The first rows give proportion of repeats that gave a

significant decline for the focal species Each column

represents a recording scenario

head(res)

A_EvenRcrdng B2_IncrnVisit B3f_IncrnVBiasFc

plr 0.0 0.0 0.0

Telfer 0.0 0.0 0.1

Maes 0.0 0.0 0.1

Maes5 0.1 0.0 0.1

LLsimple 0.4 0.3 0.5

LLfs 0.0 0.2 0.0

For those parameters discussed in Table 3 the figure in this summary table represents the
average:

Summariesd parameters are given. These include records

parameters...

res[17:24,]

A_EvenRcrdng B2_IncrnVisit B3f_IncrnVBiasFc

VisPerYr_t1 90.300 58.700 58.800

VisPerYr_t2 91.600 82.100 82.100

focal_t1 0.245 0.244 0.285

focal_t2 0.240 0.251 0.251

nonfocal_t1 0.251 0.249 0.251

nonfocal_t2 0.254 0.256 0.253

13

meanL_t1 6.533 6.481 6.570

meanL_t2 6.657 6.693 6.657

...and trend estimates

res[37:44,]

A_EvenRcrdng B2_IncrnVisit B3f_IncrnVBiasFc

Maes_trend -0.105 -0.070 -0.179

Maes5_trend -0.121 -0.074 -0.048

LLsimple_trend -0.022 -0.033 -0.046

LLfs_trend -0.017 -0.019 -0.021

LLmmSS_trend -0.049 -0.025 -0.078

LLSS_trend -0.031 -0.034 -0.079

mmSS_trend -0.044 -0.017 -0.062

VRsimple_trend -0.008 -0.017 -0.043

At the end of this table we have information on the number of valid repeats that were done:

The number of repeats are given for each model

res[52:57,]

A_EvenRcrdng B2_IncrnVisit B3f_IncrnVBiasFc

Maes_nReps 10 10 10

Maes5_nReps 10 10 10

LLsimple_nReps 10 10 10

LLfs_nReps 10 10 10

LLmmSS_nReps 10 10 10

LLSS_nReps 10 10 10

These summary statistics are the basis of the graphs presented in our manuscript

5 Creating graphs

In the manuscript we present a number of figures that summarize our results. These can be
replicated using the function Explore results. This function takes two parameters: writePath

and readPath. These specify the file path where you want data to be written to and the path
where you are reading your data files in from. In this case we saved our results from the previous
section to a folder called ’Output’ so we will use that as our readPath. By setting plot = TRUE

we can get the the figures to print to screen as well as being saved to file.

Createmanuscript tables and figures from our results

Explore_results(readPath = "Output", writePath = "Results", plot = TRUE)

14

Control MoreVisits

MoreVisits+Bias

0.01

0.05

0.10

0.20

0.50

0.01

0.05

0.10

0.20

0.50

Method

Ty
pe

 I
er

ro
r

ra
te

Method

Naive

Telfer

ReportingRate

RR+SF

RR+LL

RR+Site

RR+SF+LL+Site

15

Control MoreVisits

MoreVisits+Bias

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Method

P
ow

er

Method

Naive

Telfer

ReportingRate

RR+SF

RR+LL

RR+Site

RR+SF+LL+Site

16

Control MoreVisits MoreVisits+Bias

0.01

0.05

0.10

0.20

0.50

L M H L M H L M H
Recording Intensity

Ty
pe

 I
er

ro
r

ra
te

Method

Naive

Telfer

ReportingRate

RR+SF

RR+LL

RR+Site

RR+SF+LL+Site

17

Control MoreVisits MoreVisits+Bias

0.0

0.2

0.4

0.6

L M H L M H L M H
Recording Intensity

P
ow

er

Method

Naive

Telfer

ReportingRate

RR+SF

RR+LL

RR+Site

RR+SF+LL+Site

18

Control

0.00

0.25

0.50

0.75

1.00

L M H
Recording Intensity

P
ow

er

Method

Naive

Telfer

ReportingRate

RR+SF

RR+LL

RR+Site

RR+SF+LL+Site

6 References

Hill, M.H. (2012) Local frequency as a key to interpreting species occurrence data when recording
effort is not known. Methods in Ecology and Evolution, 3 (1), 195-205.

7 Our sessionInfo

Here is our sessionInfo. This is to aid people who encounter problems in the future that may be
related to the packages we used at the time of writing this code.

Print our sessionInfo

sessionInfo()

R version 3.0.2 (2013-09-25)

Platform: x86_64-w64-mingw32/x64 (64-bit)

##

19

locale:

[1] LC_COLLATE=English_United Kingdom.1252

[2] LC_CTYPE=English_United Kingdom.1252

[3] LC_MONETARY=English_United Kingdom.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United Kingdom.1252

##

attached base packages:

[1] stats graphics grDevices utils datasets methods base

##

other attached packages:

[1] ggplot2_0.9.3.1 R2jags_0.03-12 rjags_3-12 coda_0.16-1

[5] lattice_0.20-29 lme4_1.1-5 Rcpp_0.11.1 Matrix_1.1-2

[9] reshape2_1.2.2 knitr_1.5

##

loaded via a namespace (and not attached):

[1] abind_1.4-0 boot_1.3-9 colorspace_1.2-4

[4] dichromat_2.0-0 digest_0.6.4 evaluate_0.5.1

[7] formatR_0.10 grid_3.0.2 gtable_0.1.2

[10] highr_0.3 labeling_0.2 MASS_7.3-29

[13] minqa_1.2.3 munsell_0.4.2 nlme_3.1-111

[16] parallel_3.0.2 plyr_1.8.1 proto_0.3-10

[19] R2WinBUGS_2.1-19 RColorBrewer_1.0-5 RcppEigen_0.3.2.0.2

[22] scales_0.2.3 splines_3.0.2 stringr_0.6.2

[25] tools_3.0.2

20

	Introduction
	Setup
	Replicating the paper
	Analysis: Step by Step
	Generating simulated data
	Nested functions: Visits within years within year ranges
	Applying sampling scenarios
	Running analyses
	Error rates

	Creating graphs
	References
	Our sessionInfo

