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1. An empirical basis for the simulation structure 

The sampling approach used in our simulations was designed to reflect the structure of real 

datasets collected by volunteer naturalists. Here we present the major patterns evident 

within opportunistic datasets in the UK and the Netherlands. 

 

1.1 Biases in opportunistic data 

In the manuscript we describe four forms of bias in opportunistic data: 1) uneven 

recording intensity over time, measured as the number of visits per year, 2) uneven spatial 

coverage, 3) uneven sampling effort per visit, and 4) uneven detectability. Here we present 

data from the UK recording schemes from 1970-2010 to illustrate the first three of these 

forms of bias. 

 

Uneven sampling over time is the best-known form of bias. The number of records being 

generated has increased markedly in recent years, and for many groups is growing 

exponentially (figure S1). Thus, for our MoreVisits scenario we simulated a doubling in the 

number of visits over a ten year period. 

 

Figure S1: Number of records per year for 11 taxonomic groups in the UK, 1970-2010 

 
 

Uneven spatial coverage occurs because most recorders tend to submit records within a 

well-defined geographic area (figure S2), and because a small number of very prolific 
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recorders generate a disproportionate amount of the total data. The four most prolific 

Orthoptera recorders (of which there are over 2000) generated 14% of the total visits; half 

the visits were from just 38. The patterns evident in Orthoptera are typical of the datasets 

in figure S1. Moreover, since recorders are active at different times, the spatial intensity of 

recording is uneven over time. Our MoreVisits+Bias scenario attempted to capture this 

phenomenon. 

  

Figure S2: Recording footprints of the four most prolific recorders of Orthoptera in Great 

Britain, 1970-2010. Yellow colours indicate grid cells with the highest number of visits; red 

colours indicate a single visit. 

 
 

Uneven sampling effort reflects two phenomena in opportunistic data: one is the fact that 

surveys are highly variable in duration; the other is that an unknown proportion of visits 

are not surveys at all, but rather a collection of ‘incidental records’. No direct information 

on this phenomenon, but we can infer sampling effort indirectly from the list length, L (the 

number of species recorded on a visit). For the British datasets we examined, at least 40% 

of all species lists contain just a single species (figure S3), which are unlikely to be the 

subject of thorough searching. Similar values are apparent in the dataset of Dutch Odonata 

(van Strien et al, 2010). For this reason, visits in our simulations do not automatically 

produce records for all species that are actually present.  

 

For some groups, the proportion of single species lists varies markedly across time: the 

proportion of visits with L=1 has increased for isopods and Coleoptera, but has decreased 

for hoverflies and remained relatively constant for bryophytes (figure S4). Our 

LessEffortPerVisit scenario was therefore designed to simulate this pattern of systematic 

trends in survey effort per visit. 

Figure S3: The distribution of list lengths among 11 datasets in the UK, 1970-2010. A visit is 

defined as a unique combination of date and grid reference. Taxa are ordered from highest to 

lowest proportions of single species visits. 



 
Figure S4: the proportion of visits returning a single species for five taxonomic groups in the 

UK, 1970-2010. Lines are plotted as moving average over three years.
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1.2 Recording intensity 

Real datasets differ markedly in overall recording intensity among taxa (figure S5).  

 

Figure S5: Recording rates among 11 opportunistic datasets in the UK, 1970-2010. Numbers 

are expressed as records per species per year, and are directly comparable with numbers in 

tables S2-S4. 

 
 

In addition, recording intensity varies markedly in space. The distribution of visits among 

sites is highly uneven: some sites receive many visits (figure S6). Capturing this pattern is 

important for all the methods that use visit-based information to estimate trends. It’s 

especially important for Occupancy-Detection models, in which only sites with repeat visits 

contribute to the estimated detection probability. 

 

Across 13 British and Dutch opportunistic datasets, the distribution of visits among sites 

each year is characterised by a power law (figure S6). We expressed the number of sites 

(defined as 1km2) as a proportion of the total that received any visits between 1990-2010, 

in order that the patterns are directly comparable with our simulated datasets of just 1000 

sites. We then modelled the probability of a site receiving n visits as a.nb, where a defines 

the proportion of sites receiving a single visit (in our simulation code, this parameter is 

known as pSVS, which stands for the proportion of single visit sites).  

 

Figure S6: The frequency distribution of visits among sites among 11 opportunistic datasets in 

the UK and the Netherlands for the year 2000. A site is defined here as a 1km2 grid cell. Note 

log-log axes. 
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Table S1: Summary statistics for the power law distribution of visits among sites for 13 British 

and Dutch datasets, using records gathered between 1990-2010. We excluded the small 

number of sites that received >10 visits in any one year.  

 
a b Total Sites 

Ants 0.042 -2.491 5049 

Bees 0.051 -2.370 13679 

Beetles 0.053 -2.575 28500 

Bryophytes 0.049 -3.445 34263 

Butterflies 0.085 -2.007 126969 

Dutch Butterflies 0.136 -1.771 33822 

Dutch Odonata 0.087 -2.022 23753 

Hoverflies 0.048 -2.365 20444 

Myriapods 0.025 -2.689 7067 

Odonata 0.070 -2.259 35099 

Orthoptera 0.034 -2.929 11723 

Vascular Plants 0.052 -3.011 68316 

Wasps 0.058 -2.304 6357 

 

Parameters for the power law for real datasets are shown in table S1. The exponent, b, is 

remarkably consistent across datasets (median=-2.37, mean=-2.48, sd=0.457). We selected 

a value of -2 for all our simulations, since this corresponds to a situation in which the 

number of sites receiving n visits is 4 times greater than the number receiving 2n visits. 

With a single value of b, parameter a is a straightforward measure of overall sampling 

intensity. Our realised datasets have values of a between 0.025 and 0.136, but most are in 

the range 0.05-0.07 (median=0.0521, mean=0.0607, sd=0.0287). We therefore selected 

three values of a for our simulations: 0.05 (low intensity), 0.07 (medium) and 0.1 (high).  



 

Our simulated datasets do a reasonable job of capturing the distribution of visits among 

sites, especially for those receiving 1, 2 and 3 visits (figure S7). Thus our high intensity 

simulated datasets resemble those for Butterflies, medium intensity datasets resemble 

Odonata, and low intensity datasets resemble those of ants, bees, beetles, bryophytes, 

hoverflies, Orthoptera and wasps. 

 

Figure S7: The frequency distribution of visits among sites among real and simulated datasets. 

Real datasets are as shown in figure S6, but replotted on a proportional scale. Simulated data 

come from a sample of 20 years sampling under the Control scenario.  

 

  



2. Summary statistics on simulated datasets 

Table S2: Summary statistics under low recording intensity. Numbers are mean values across 

1000 simulated datasets. Focal commonness refers to the rank frequency of the focal species 

(out of 26). 

 Control MoreVisits 

MoreVisits 

+Bias 

LessEffort 

PerVisit 

More 

Detectable 

NonFocal 

Declines 

Sites per year 77.3 60.0 63.6 77.3 77.3 77.4 

List Length/visit 6.87 6.87 6.91 2.88 6.85 6.32 

Records/species/year 38.6 29.9 30.1 16.2 38.5 35.6 

Total records 10042.5 7784.2 7819.7 4215.9 10007.2 9250.4 

Focal records 381.7 293.7 323.9 160.5 346.4 382.2 

Focal commonness 10.5 10.7 9.5 10.5 11.8 9.4 

 

Table S3: Summary statistics under medium recording intensity. Details as in table S2. 

 Control MoreVisits 

MoreVisits 

+Bias 

LessEffort 

PerVisit 

More 

Detectable 

NonFocal 

Declines 

Sites per year 108.3 83.9 89 108.3 108.3 108.4 

List Length/visit 6.89 6.89 6.92 2.89 6.86 6.34 

Records/species/year 54.2 42.0 42.2 22.7 54.0 50.0 

Total records 14099.9 10924.2 10976.2 5914.7 14050.3 12998.8 

Focal records 535.0 411.0 454.0 224.7 485.5 536.6 

Focal commonness 10.7 10.8 9.6 10.6 11.8 9.5 

 

Table S4: Summary statistics under high recording intensity. Details as in table S2. 

 Control MoreVisits 

MoreVisits 

+Bias 

LessEffort 

PerVisit 

More 

Detectable 

NonFocal 

Declines 

Sites per year 154.8 119.9 127.3 154.8 154.8 154.8 

List Length/visit 6.91 6.91 6.94 2.89 6.88 6.36 

Records/species/year 77.8 60.3 60.6 32.6 77.5 71.6 

Total records 20225.4 15668.1 15743.3 8478.6 20154.7 18613.8 

Focal records 764.1 587 648.7 320.9 693.3 765.0 

Focal commonness 10.7 10.8 9.6 10.6 11.9 9.6 

 

  



3. Statistical description of the methods compared by simulation 

Here we define the details and mathematical notation for each of the methods used. This 

includes information the Grain size (the basic unit, defining how many rows of data are in 

the analysis), the Response variable in the model, the conceptual quantity that is being 

modelled (‘what is being modelled’), the class of Statistics used (e.g. GLM) and any other 

relevant details. 

 

In each simulation, we tested the null hypothesis of no change in the distribution of the 

focal species. For Telfer and Frescalo_P, there are specific tests for null hypothesis that are 

described below. For all other methods the null hypothesis was tested using the estimate of 

parameter b and its standard error (or Bayesian credible intervals).  

 

y: the response variable (defined separately for each model) 

T: vector of years (or time periods) 

L: the list length (the number of species per visit), or a vector of list lengths 

a: intercept in a linear model 

b: slope term from a linear model. Generally refers to the annual trend in the response 

variable  

i: species identity 

j: site identity 

t: identifies the year (or time period) 

u: random effect of mean zero, whose variance is estimated from the data. 

v: visit identity  

z: occupancy status of site j (present or absent) 

 

Figure S8 (on page 13) is a conceptual diagram showing how seven of the eleven methods 

are related to one another.  

 

3.1 Naïve model 

Grain size: year 

Response variable: number of sites on which the focal species was recorded in year t.  

What is being modelled: a trend in the expected number of sites. 

Statistics: Poisson generalised linear model (GLM). 

Equation: yt ~ Poisson(λt); log(λt) = a + b.T 

Details: λ is the intensity of the Poisson distribution 

3.2 Telfer’s Index 

Grain size: species 



Response variable: The proportion of sites on which the species i was recorded in the 

second time period, p2i.  

What is being modelled: A change in the relative distribution of species i. 

Statistics: Logistic GLM 

Equation: logit(p2i) – a - m.logit(p1i)  

Details: The equation above defines the unstandardised residual from a double logistic 

regression of the proportion (p1i, p2i) of sites that are occupied by the focal species in 

two time periods (only sites with records in both periods are considered). In fact, the 

index is based on the standardised residual (Telfer, Preston, & Rothery, 2002), so the 

two-tailed p-value can be calculated by assuming these residuals are drawn from a 

standard normal distribution. Parameter m defines the slope of the interspecific 

relationship in relative distribution between time periods: if total recording intensity is 

higher in the second time period then m > 1 and/or a > 0.  

3.3 Frescalo_P 

Grain size: time-period 

Response variable: Not applicable 

What is being modelled: A change in the reporting rate of species i, rit, relative to the change 

in reporting rate of benchmark species.  

Statistics: Z-test on the difference in reporting rates. 

Equation: Z = (ri2 – ri1) / (i12 + i22) 

Details: The Frescalo method was implemented as described in Hill (2012), with = 0.74, 

R*=0.27 and a neighbourhood size of 100 cells. We used the same set of neighbourhood 

weights for all our simulated datasets: the file containing these weights is included in 

the data on our Github repository. The weights were calculated using the dist function 

in R, from a species occurrence matrix generated by the same rules used in our 

simulation. We used two equal time periods, in order to produce estimates of rit and 

associated standard deviations (it). The null hypothesis is rejected if |Z| > 1.96. Note 

that rit is referred to in Hill (2012) as a ‘time factor’, but we prefer the more informative 

term ‘relative reporting rate’ (following Fox et al., 2014). 

3.4 Frescalo_Y 

Grain size: year 

Response variable: The reporting rate of the focal species, relative to that of benchmark 

species, rit. 

What is being modelled: A trend in the relative reporting rate of species i. 

Statistics: Quasi-binomial GLM 

Equation: yt ~ Bin(1, pt); logit(pt) = a + b.T 



Details: As Frescalo_P, except that the number of time periods was set equal to the number 

of years (i.e. 10). This produced estimates of rit for each year, which we ran through a 

GLM. 

3.5 Reporting Rate 

Grain size: year 

Response variable: A binomial response (‘successes’ and ‘failures’) for each combination. 

Successes are the number of visits on which the focal species was recorded and failures 

are the number of visits on which it was not recorded. 

What is being modelled: a trend in the probability, p, of being recorded on the average visit. 

Statistics: Binomial GLM 

Equation: yt ~ Bin(Nt, pt); logit(pt) = a + b.T 

Details: p defines the probability of being recorded per visit; N is the number of visits in 

year t. 

3.6 RR+SF 

Identical to ReportingRate, except that the data were first filtered to exclude sites that were 

visited in just one year. 

3.7 RR+Site 

Grain size: site:year combination  

Response variable: A binomial response (‘successes’ and ‘failures’) for each combination. 

Successes are the number of visits on which the focal species was recorded and failures 

are the number of visits on which it was not recorded. 

What is being modelled: a trend in the probability of being recorded on the average visit. 

Statistics: Binomial GLMM 

Equation: yjt ~ Bin(Njt, pjt); logit(pjt) = a + b.T  + uj 

Details: p defines the probability of being recorded per visit; N is the number of visits to site 

j in year t. 

3.8 RR+LL 

Grain size: visit 

Response variable: Logical (was the focal species recorded or not). 

What is being modelled: a trend in the probability, p, of being recorded on the average visit. 

Statistics: Logistic GLM 

Equation: yjtv ~ Bernoulli(pjt); logit(pjt) = a + b.T + c.log(Ljtv) 

Details: L is the list length and parameter c estimates how the probability of being observed 

scales with sampling effort (a measure of species’ detectability). 

3.9 RR+SF+LL+ Site 

Grain size: visit. 



Response variable: Logical (was the focal species recorded or not). 

What is being modelled: a trend in the probability, p, of being recorded on the average visit. 

Statistics: Logistic GLMM 

Equation: yjtv ~ Bernoulli(pjt); logit(pjt)  = a + b.T + c.log(Ljtv) + uj 

Details: L is the list length and parameter c estimates how the probability of being observed 

scales with sampling effort (a measure of species’ detectability). As with RR+SF, the data 

were first filtered to exclude sites that were visited in just one year. 

3.10 OccDetSimple 

Grain size: visit. 

Response variable: Logical (was the focal species recorded or not), conditional on being 

present. 

What is being modelled: A trend in the probability ψjt that an average site is occupied 

Statistics: Hierarchical Bayesian 

Equations: State process: zjt ~ Bernoulli(ψjt); logit(ψjt) = bt  

Observation process: yjtv|zjt ~ Bernoulli(zjt * pjtv); logit (pjtv) = at 

Details: The model consists of two hierarchically coupled submodels, one governing the 

true state of sites (presence-absence) and the other governing the observations 

(detection-nondetection), in which pijv is the conditional probability of detection when 

present. Both state and observation processes are modelled as binary variables. 

Subscript t on parameters a and b indicates that year was modelled as a categorical 

variable, rather than continuous. The linear trend in occupancy was estimated using a 

two-step process: first extracting the posterior distributions of bt  for each year, then 

estimating a trend through those estimates (with full error propagation), as 

implemented in van Strien et al. (2013). This procedure has the advantage that any 

missing values in the data were imputed in a subtle way, namely from year to year 

changes rather than from a linear trend across all years as when linear trends were 

estimated in one step. Especially when changes from one year to another are not 

gradual, our trend slope procedure may describe the data better. In our case, however, 

simulated trends were either stable or gradual, so the results are similar to what we 

would have produced if linear trends were estimated in one step. BUGS code used to fit 

this model, including the prior distribution, is available at 

https://github.com/BiologicalRecordsCentre/RangeChangeSims in a file named 

‘Occ_Simple.bugs’.  

3.11 OD+SF+LL+ Site 

Grain size: visit. 

Response variable: Logical (was the focal species recorded or not), conditional on being 

present. 

What is being modelled: A trend in the probability ψjt that an average site is occupied. 

https://github.com/BiologicalRecordsCentre/RangeChangeSims


Statistics: Hierarchical Bayesian 

Equations: State process: zjt ~ Bernoulli(ψjt); logit(ψjt) =  bt  + uj 

Observation process: yjtv|zjt ~ Bernoulli(zjt * pjtv); logit (pjtv) =  at + c.log(Ljtv) 

Details: Differs from OccDetSimple in three ways: 1) the addition of a site-level random 

effect (uj) on the state model, 2) the addition a list length coefficient on the observation 

model (as in RR+LL and RR+SF+LL+Site), and 3) the data were first filtered to exclude 

sites that were visited in just one year. The file containing BUGS code used to fit this 

model is called ‘Occ_LL_Site.bugs’. 

 

Figure S8: Conceptual framework of statistical approaches for dealing with variation in 

recorder activity in opportunistic data, showing how six of the methods in this study are 

generalisations of the simple ReportingRate model. Coloured words refer to four ‘components’ 

described in the main text for circumventing bias in the data. Words in black text are the 

names of methods used in this study. Note that the Naïve model, Telfer’s method, Frescalo_P 

and Frescalo_Y fall outside this framework. 



4. Detailed results of the simulation study 
 

 

Table S5: Type I error rates under low intensity recording 

Method Control MoreVisits 

MoreVisits 

+Bias 

LessEffort 

PerVisit 

More 

Detectable 

NonFocal 

Declines 

Naive 0.048 0.747 0.262 0.292 0.089 0.040 

Telfer 0.02 0.019 0.043 0.020 0.058 0.019 

Frescalo_P 0.027 0.018 0.067 0.048 0.062 0.063 

Frescalo_Y 0.052 0.046 0.124 0.083 0.099 0.092 

ReportingRate 0.114 0.128 0.245 0.596 0.347 0.119 

RR+SF 0.103 0.125 0.159 0.395 0.208 0.112 

RR+LL 0.115 0.135 0.241 0.075 0.339 0.241 

RR+Site 0.057 0.058 0.171 0.472 0.252 0.059 

RR+SF+LL+Site 0.051 0.070 0.092 0.050 0.166 0.159 

OccDetSimple 0.059 0.056 0.340 0.033 0.066 0.062 

OD+SF+LL+Site 0.012 0.020 0.036 0.052 0.026 0.021 

 

 

Table S6: Type II error rates under low intensity recording 

Method Control MoreVisits 

MoreVisits 

+Bias 

LessEffort 

PerVisit 

More 

Detectable 

NonFocal 

Declines 

Naive 0.686 1.000 0.984 0.345 0.880 0.700 
Telfer 0.759 0.813 0.573 0.902 0.881 0.980 
Frescalo_P 0.726 0.807 0.543 0.758 0.894 0.840 
Frescalo_Y 0.661 0.715 0.489 0.692 0.851 0.791 
ReportingRate 0.429 0.520 0.201 0.129 0.809 0.418 
RR+SF 0.616 0.695 0.466 0.372 0.857 0.621 
RR+LL 0.448 0.536 0.213 0.740 0.810 0.747 
RR+Site 0.484 0.625 0.255 0.244 0.868 0.502 
RR+SF+LL+Site 0.641 0.743 0.592 0.882 0.884 0.840 
OccDetSimple 0.567 0.601 0.186 0.904 0.691 0.562 
OD+SF+LL+Site 0.661 0.775 0.550 0.83 0.797 0.670 

 

  



Table S7: Results from the test of power under low intensity recording 

Method Control MoreVisits 

MoreVisits 

+Bias 

LessEffort 

PerVisit 

More 

Detectable 

NonFocal 

Declines 

Naive 0.266     0     0 0.363 0.031 0.260 

Telfer 0.221 0.168 0.384 0.078 0.061 0.001 

Frescalo_P 0.247 0.175 0.39 0.194 0.044 0.097 

Frescalo_Y 0.287 0.239 0.387 0.225 0.050 0.117 

ReportingRate 0.457 0.352 0.554 0.275     0 0.463 

RR+SF 0.281 0.180 0.375 0.233     0 0.267 

RR+LL 0.437 0.329 0.546 0.185     0 0.012 

RR+Site 0.459 0.317 0.574 0.284     0 0.439 

RR+SF+LL+Site 0.308 0.187 0.316 0.068     0 0.001 

OccDetSimple 0.374 0.343 0.474 0.063 0.243 0.376 

OD+SF+LL+Site 0.327 0.205 0.414 0.118 0.177 0.309 

 

 

  



Table S8: Type I error rates under medium intensity recording 

Method Control MoreVisits 

MoreVisits 

+Bias 

LessEffort 

PerVisit 

More 

Detectable 

NonFocal 

Declines 

Naive 0.035 0.889 0.364 0.367 0.103 0.047 

Telfer 0.019 0.019 0.051 0.011 0.067 0.015 

Frescalo_P 0.017 0.017 0.070 0.050 0.065 0.068 

Frescalo_Y 0.046 0.051 0.152 0.068 0.133 0.117 

ReportingRate 0.114 0.125 0.333 0.727 0.421 0.126 

RR+SF 0.100 0.114 0.202 0.516 0.313 0.111 

RR+LL 0.117 0.135 0.315 0.057 0.425 0.293 

RR+Site 0.054 0.06 0.213 0.616 0.367 0.067 

RR+SF+LL+Site 0.051 0.058 0.08 0.033 0.292 0.229 

OccDetSimple 0.055 0.066 0.429 0.034 0.069 0.060 

OD+SF+LL+Site 0.009 0.014 0.036 0.079 0.031 0.015 

 

 

 

Table S9: Type II error rates under medium intensity recording 

Method Control MoreVisits 

MoreVisits 

+Bias 

LessEffort 

PerVisit 

More 

Detectable 

NonFocal 

Declines 

Naive 0.605 1.000 0.971 0.196 0.841 0.591 
Telfer 0.662 0.750 0.457 0.864 0.835 0.984 
Frescalo_P 0.642 0.760 0.409 0.682 0.873 0.820 
Frescalo_Y 0.563 0.667 0.318 0.591 0.815 0.724 
ReportingRate 0.354 0.440 0.102 0.035 0.792 0.334 
RR+SF 0.475 0.591 0.275 0.147 0.819 0.488 
RR+LL 0.355 0.449 0.129 0.666 0.803 0.704 
RR+Site 0.331 0.491 0.150 0.071 0.819 0.333 
RR+SF+LL+Site 0.447 0.595 0.385 0.812 0.859 0.780 
OccDetSimple 0.495 0.539 0.076 0.854 0.658 0.440 
OD+SF+LL+Site 0.426 0.604 0.290 0.672 0.660 0.428 

 

  



Table S10: Results from the test of power under medium intensity recording 

Method Control MoreVisits 

MoreVisits 

+Bias 

LessEffort 

PerVisit 

More 

Detectable 

NonFocal 

Declines 

Naive 0.360     0     0 0.437 0.056 0.362 

Telfer 0.319 0.231 0.492 0.125 0.098 0.001 

Frescalo_P 0.341 0.223 0.521 0.268 0.062 0.112 

Frescalo_Y 0.391 0.282 0.530 0.341 0.052 0.159 

ReportingRate 0.532 0.435 0.565 0.238     0 0.540 

RR+SF 0.425 0.295 0.523 0.337     0 0.401 

RR+LL 0.528 0.416 0.556 0.277     0 0.003 

RR+Site 0.615 0.449 0.637 0.313     0 0.600 

RR+SF+LL+Site 0.502 0.347 0.535 0.155     0     0 

OccDetSimple 0.450 0.395 0.495 0.112 0.273 0.500 

OD+SF+LL+Site 0.565 0.382 0.674 0.249 0.309 0.557 

 

  



 

Table S11: Type I error rates under high intensity recording 

Method Control MoreVisits 

MoreVisits 

+Bias 

LessEffort 

PerVisit 

More 

Detectable 

NonFocal 

Declines 

Naive 0.036 0.964 0.476 0.527 0.124 0.033 

Telfer 0.020 0.02 0.078 0.014 0.086 0.013 

Frescalo_P 0.022 0.023 0.111 0.045 0.067 0.076 

Frescalo_Y 0.060 0.055 0.22 0.104 0.167 0.134 

ReportingRate 0.115 0.133 0.408 0.872 0.523 0.087 

RR+SF 0.103 0.116 0.283 0.776 0.435 0.088 

RR+LL 0.113 0.121 0.386 0.072 0.489 0.396 

RR+Site 0.060 0.059 0.200 0.816 0.509 0.046 

RR+SF+LL+Site 0.060 0.061 0.108 0.042 0.429 0.342 

OccDetSimple 0.040 0.053 0.552 0.068 0.058 0.044 

OD+SF+LL+Site 0.014 0.015 0.041 0.114 0.039 0.009 

 

 

Table S12: Type II error rates under high intensity recording 

Method Control MoreVisits 

MoreVisits 

+Bias 

LessEffort 

PerVisit 

More 

Detectable 

NonFocal 

Declines 

Naive 0.447 1.000 0.973 0.074 0.778 0.460 
Telfer 0.469 0.622 0.254 0.802 0.760 0.987 
Frescalo_P 0.490 0.638 0.241 0.598 0.805 0.785 
Frescalo_Y 0.394 0.513 0.165 0.476 0.741 0.670 
ReportingRate 0.202 0.287 0.026 0.010 0.764 0.211 
RR+SF 0.296 0.426 0.095 0.027 0.792 0.297 
RR+LL 0.217 0.310 0.038 0.583 0.762 0.647 
RR+Site 0.159 0.296 0.073 0.017 0.779 0.180 
RR+SF+LL+Site 0.252 0.383 0.191 0.697 0.809 0.699 
OccDetSimple 0.278 0.380 0.025 0.814 0.511 0.307 
OD+SF+LL+Site 0.139 0.335 0.072 0.445 0.387 0.163 

 

  



Table S13: Results from the test of power under high intensity recording 

Method Control MoreVisits 

MoreVisits 

+Bias 

LessEffort 

PerVisit 

More 

Detectable 

NonFocal 

Declines 

Naive 0.517     0     0 0.399 0.098 0.507 

Telfer 0.511 0.358 0.668 0.184 0.154     0 

Frescalo_P 0.488 0.339 0.648 0.357 0.128 0.139 

Frescalo_Y 0.546 0.432 0.615 0.42 0.092 0.196 

ReportingRate 0.683 0.58 0.566 0.118     0 0.702 

RR+SF 0.601 0.458 0.622 0.197     0 0.615 

RR+LL 0.670 0.569 0.576 0.345     0     0 

RR+Site 0.781 0.645 0.727 0.167     0 0.774 

RR+SF+LL+Site 0.688 0.556 0.701 0.261     0     0 

OccDetSimple 0.682 0.567 0.423 0.118 0.431 0.649 

OD+SF+LL+Site 0.847 0.650 0.887 0.441 0.574 0.828 

 

  



Figure S9. Results from the test of Validity under all scenarios (note square root scale on y-axis). The x-axis shows low (L), medium 

(M) and high (H) levels of recording intensity, as defined in the text. The solid and dashed lines indicate =0.05 and =0.1 

respectively

 
 

 

  



Figure S10. Power of all methods under all scenarios. The x-axis shows low (L), medium (M) and high (H) levels of recording 

intensity, as defined in the text. Power generally increases with recording intensity, except in cases where the Type I error rate is 

more sensitive to recording intensity than the Type II error rate. 
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